二硫化碳对大鼠学习记忆功能的影响及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二硫化碳(Carbon disulfide,CS_2)是一种应用广泛的有机溶剂,为全身性毒物,可累及人体多系统多器官,神经系统是二硫化碳作用的主要靶器官,其毒作用机制尚不完全清楚。大量流行病学调查资料表明,长期接触一定浓度的CS_2可使记忆力受到不同程度的影响。动物实验业已证实CS_2能使染毒动物的行为发生改变。但目前对于CS_2对学习记忆影响机制方面缺乏研究,本研究通过观察不同浓度CS_2对大鼠学习记忆功能、海马组织超微结构、自由基代谢和NOS的影响以及VitE的干预作用,探讨CS_2对大鼠学习记忆功能的影响及其机制,为临床预防和治疗CS_2中毒提供理论依据。
     第一部分二硫化碳对大鼠学习记忆功能的影响
     目的:观察CS_2对大鼠学习记忆功能的影响。方法:将60只大鼠随机分为对照组和三组CS_2染毒组(分别为50mg/m~3组、250mg/m~3组、1250mg/m~3组),每组15只。采用动式吸入染毒,将大鼠置于容积为60L的有机玻璃染毒柜内,每天染毒4h,每周5d,对照组染毒装置内无CS_2,与染毒组放置时间相同。2个月后,Morris水迷宫及跳台实验检测实验大鼠的学习记忆功能。结果:与对照组相比,各染毒组Morris水迷宫测试显示染毒后大鼠平均逃逸潜伏期延长,在原平台象限的游泳时间缩短,差异具有显著性意义;而且随着CS_2染毒浓度的增加大鼠平均逃逸潜伏期有延长的趋势,在原平台象限的游泳时间有缩短的趋势;跳台实验结果显示CS_2染毒后大鼠训练期间的错误次数(SD_1)增加,250mg/m~3组和1250mg/m~3组与对照组比较差异有显著性意义;24h后大鼠第一次跳下平台的潜伏期(SDL)缩短,5min内错误总数(SD_2)增加,各染毒组与对照组比较均有显著性差异;而且SD_1和SD_2有随CS_2染毒浓度的增加而增加的趋势,SDL有随CS_2染毒浓度的增加而缩短的趋势。结论:低浓度CS_2亚急性中毒即可导致大鼠学习记忆能力障碍。大鼠CS_2亚急性中毒所致的学习记忆障碍有随CS_2浓度增高而严重的趋势。
     第二部分二硫化碳对大鼠海马组织氧自由基代谢的影响及VitE的干预作用
     目的:探讨CS_2对大鼠海马组织超微结构和氧自由基代谢的影响以及VitE对CS_2致脂质过氧化作用的影响。方法:以吸入染毒法制作不同浓度CS_2中毒大鼠模型;染毒2个月后,透射电镜观察海马组织超微结构;分别以TBA法、硝酸还原酶法、黄嘌呤氧化酶法和化学比色法检测各组大鼠海马的丙二醛(MDA)、一氧化氮(NO)含量以及超氧化物歧化酶(SOD)活性;观察染毒同时应用不同剂量维生素E(VitE)干预后上述自由基代谢变化情况。结果:电镜下主要表现为,神经元染色质聚集,核膜、胞膜皱缩或溶解,线粒体内出现空泡,线粒体脊结构破坏,50 mg/m~3组神经元结构无明显改变,1250 mg/m~3组损害最为严重。与对照组比较,各染毒组大鼠海马MDA含量增加,SOD活性降低,NO含量降低,经检验差异均有统计学意义。染毒同时给予不同剂量VitE干预后,各浓度CS_2染毒组MDA含量均有不同程度减少,当VitE量达到100mg/kg时,海马MDA含量各染毒组与无干预组比较差异有显著性意义;SOD活性有不同程度增加,当VitE量达到200mg/kg时,海马SOD活性各染毒组与无干预组比较差异有显著性意义;NO含量有不同程度增加,当VitE量达到200mg/kg时,50 mg/m~3组海马NO含量与无干预组比较差异有显著性意义。结论:CS_2所致的大鼠学习记忆能力减退与氧自由基对海马组织的损伤及NO代谢障碍有关;应用VitE可干预CS_2的致脂质过氧化作用。
     第三部分二硫化碳对大鼠海马一氧化氮合酶活力和基因表达的影响
     目的:探讨CS_2对大鼠海马一氧化氮合酶活力和基因表达的影响。方法:以吸入染毒法制作不同浓度CS_2中毒大鼠模型;染毒2个月后,以NOS测定试剂盒测定大鼠海马结构型一氧化氮合酶(cNOS)和诱导型一氧化氮合酶(iNOS)活性;以半定量逆转录-聚合酶链式反应(RT-PCR)法测定海马nNOS-mRNA和iNOS-mRNA含量的变化;免疫组织化学染色,光镜下观察nNOS和iNOS在大鼠海马的表达情况。结果:与对照组比较,各染毒组大鼠海马cNOS活性降低,RT-PCR显示nNOS-mRNA含量减少,免疫组化染色显示nNOS表达减少,差异有显著性意义。各染毒组iNOS活性与对照组比较差异无显著性意义,iNOS-mRNA含量比对照组增加,免疫组化染色显示iNOS表达增加,250mg/m~3组、1250mg/m~3组与对照组比较差异有显著性。结论:CS_2致大鼠海马cNOS活力降低及nNOS-mRNA含量减少可能是CS_2干扰学习记忆功能的机制之一。
     第四部分大剂量VitE对二硫化碳染毒大鼠学习记忆能力的影响
     目的:探讨大剂量VitE对CS_2染毒大鼠学习记忆能力以及海马组织超微结构的影响。方法:以吸入染毒法制作不同浓度CS_2中毒大鼠模型,染毒同时给予200mg/kg VitE。染毒2个月后,应用Morris水迷宫和跳台实验检测大鼠学习记忆能力;透射电镜观察海马组织超微结构。结果:与无干预组比较,染毒同时给予200mg/kgVitE,大鼠平均逃逸潜伏期缩短,空间搜索实验显示大鼠经过7天寻找水下平台的学习后,在原平台象限的游泳时间延长,SD_2减少,SDL延长,50 mg/m~3组差异有显著性意义。200mgVitE+250 mg/m~3CS_2组神经元染色质聚集,核膜及胞膜皱缩,但程度较无VitE干预组减轻,200mgVitE+1250 mg/m~3CS_2组改变不明显。结论:大剂量VitE可部分减轻CS_2导致的大鼠海马组织损伤;大剂量VitE可以预防低浓度CS_2对大鼠学习记忆功能的影响。
Carbon disulfide (CS_2) is a kind of popular organic solvent. It is an intoxicant contributed to all over the body. Nervous system is the main target of CS_2 and the mechanism of toxic action is still unclear. Generous epidemiological investigation indicated that the memory ability could suffer different degree effect after long-term exposure to CS_2. Animal experiments also confirmed that CS_2 could change the behavior of toxic animals. However, at present, there is still no study involoved the mechanism of CS_2 on learning and memory ability. The goal of this study is to explore the effect and the mechanism of CS_2 on the learning and memory of rats by observing the learning and memory ability of intoxic rats, observing the ultrastructure of hippocampus, detecting metabolism of oxygen free radicals and measuring NOS of hippocampus. Fourthermore, the intervention effects of VitE on lipid peroxidation in rat hippocampus after long-term exposure to CS_2 was also observed.
     Part one Effects of carbon bisulfide on the learning and memory ability of rats
     Objective To study the effect of carbon bisulfide (CS_2) on the learning and memory ability of rats. Methods Rats(n=60) were randomly divided into one control group and three CS_2-poisoned groups (50mg/m~3 group, 250mg/m~3 group and 1250mg/m~3 group). The toxic rat models were made by inhaling various doses CS_2 4 hours every day, 5 days every week. After 2 months of inhaling intoxication, the learning and memory ability of all groups were examined by Morris water maze and step down test. Results Compared with the controls, Morris water maze showed that the average run away latent period of CS_2-poisoned groups elongated and the swimming time in the platform located quadrant shortened, and both of which were CS_2 concentration dependented. Step down test demonstrated that the error frequency maked by rats during training increased, the latence before rats stepped down the platform after 24h shortened and the total errors in 5min increased, and all of which were CS_2 concentration dependented. Conclusions CS_2 subacute intoxication include low concentration CS_2 subacute intoxication could induce disturbance of learning and memory ability of rats, which was CS_2 concentration dependented.
     Part Two Effects of carbon bisulfide on metabolism of oxygen- derived free radidicals and the intervention role of VitE in rat hippocampus
     Objective To explore the effects of CS_2 on ultrastructure of rat hippocampus and metabolism of oxygen-derived free radidicals. To study the effects of VitE on lipid peroxidation induced by CS_2 in rat hippocampus. Methods The toxic rat models were made by inhaling various doses CS_2. After 2 months of inhaling intoxication, the ultrastructure was observed by transmission electron microscope. The content of Maleic Dialdehyde (MDA) and Nitric Oxide (NO) and the activity of Superoxide Dismutase(SOD) in rat hippocampus were detected by Thibabituric Acid test, Nitrate reductase test, xanthine oxidase test and chemistry color match test respectively. Treated with different doses of vitamin E simultaneous, changes of above-mentioned markers were observed. Results The principal influence of CS_2 on rat hippocampus was Chromatin aggregation, nuclear envelope and cell membrane shrinkage or swell, vacuole appearance in mitochondria. There was no obvious change in 50mg/m~3group, while the damage in 1250 mg/m~3group was the most sever. Compared with the controls, CS_2 treatment significantly increased MDA levels, decreased SOD activity and NO contents. Treated with VitE simultaneous with intoxication, the content of MDA reduced, and when the dose of VitE reached 100mg/kg, the difference between all intoxic groups and the group without intervention is significant; The activity of SOD increased,and when the dose of VitE reached 200mg/kg, the difference between all intoxic groups and the group without intervention is significant; The content of NO increased, and when the dose of VitE reached 200mg/kg, the difference between 50mg/m~3 group and the group without intervention is significant. Conclusions The decline of learning and memory ability of CS_2 poisoned rats is related to the impairment of hippocampus induced by oxygen-derived free radidicals and the metabolism disturbance of NO. VitE could interfere neurotoxicity of CS_2.
     Part Three Effects of carbon bisulfide on the activity and gene expression of nitricoxide synthase in rat hippocampus
     Objective To explore the effects of CS_2 on the NOS activity and expression of NOS-mRNA of rat hippocampus. Methods The toxic rat models were made by inhaling various doses CS_2. After 2 months of inhaling intoxication, the activity of cNOS and iNOS in hippocampus was detected by NOS Test Kit. The content of nNOS-mRNA and iNOS-mRNA was measured by semi-quantitative reverse transcription polymerase chain reaction(RT-PCR) method. The expression of nNOS and iNOS in rats hippocampus was observed by light microscope after immunohistochemical stain. Results Compared with the controls, the activity of cNOS significantly decreased. The activity of iNOS changed slightly. CS_2 treatment significantly decreased nNOS-mRNA content. The content of iNOS-mRNA in 250mg/kg CS_2 group and 1250mg/kg group increased significantly. Conclusions These results suggested that the activity of cNOS and the expression of nNOS might be related to the effect of CS_2 on learning and memory ability.
     Part Four Effects of large dose of VitE on the learning and memory ability of CS_2–poisoned rats
     Objective To study the influence of large dose of VitE on ultrastructure of hippocampus and the learning and memory ability of CS_2 -poisoned rats. Methods The toxic rat models were made by inhaling various doses CS_2, meanwhile the poisoned rats were treated with 200mg/kg VitE. After 2 months of inhaling intoxication, the learning and memory ability was detected and the ultrastructure was observed by transmission electron microscope. Results Compared with the group without intervention, treated with 200mg/kg VitE simultaneous with intoxication, Morris water maze showed that the average run away latent period of CS_2-poisoned groups shortened and the swimming time in the platform located quadrant elongated. Step down test demonstrated that the error frequency maked by rats during training decreased. The latence before rats stepped down the platform after 24h elongated and the total errors in 5min decreased. The change of ultrastructure of hippocampus in 200mg/kg VitE +250mg/m~3 group was obvious, while 200mg/kg VitE +1250 mg/m~3 group changed slightly. Conclusions Application of large dose of VitE could partly reduce the damage of rat hippocampus induced by CS_2 and preserve the effect of low concentration CS_2 on the learning and memory ability.
引文
1. kishi R. Effects of low lead exposure on neurobehavioral function in the rat. Arch Environ,1983,38:25~36
    2. Schmuck G, Ahr HJ, Mihail F, et al. Effects of the dithiocarbamate fungicide propineb in primary neuronal cell cultures and skeletal muscle cells of the rat. Arch Toxicol,2002,76(7):414~422
    3. Datta NJ, Namasivayam A. In vitro effect of methanol on folate deficient rat hepatocytes. Drug Alcohol Depend,2003,71(1):87~91
    4. Morvai V,Szakmary E,Ungvary G.The effects of carbon disulfide and ethanol on the circulatory system of rats.Toxicol Environ Health A,2005,68(10):797~809
    5. Tan X,Chen G,Peng X,et al.Cross-sectional study of cardiovascular effects of carbon disulfide among Chinese workers of a viscose factory.Int J Hyg Environ Health, 2004, 207(3):217~225
    6. Frumkin H . Multiple system atrophy following chronic carbon disulfide exposure.Encrion Health perpect, 2000, 108(3):110~112
    7. Ku MC, Huang CC, Kuo HC, et al. Diffuse white matter lesions in carbon disulfide intoxication: microangiopathy or demyelination. Eur Neurol, 2003, 5380(4):220~224
    8. Patel KG,Yadav PC,Pandya CB,et al.Male exposure mediated adverse reproductive outcomes in carbon disulphide exposed rayon workers.Environ Biol,2004,25(4):413~418
    9. Chen Guo-yuan,Yang Ke-di,Lu Cei-rong,et al.Teratogenic effects of carbon disulfiin F2 rat.Chemical Abstract,1991,15(13):363~370
    10.陈国元,杨克敌,鲁翠荣,等.二硫化碳对大鼠和接触工人生殖效应的研究.同济医科大学学报,2001,30(5):382~384
    11. Fonte R, Edallo A, Candura SM. Cerebellar atrophy as a delayed manifestation ofchronic carbon disulfide poisoning. Ind Health,2003, 41(1):43~47
    12. Reinhardt F,Drexler H,Bickel A,et al.Neurotoxicity of long-term long-level exposure to carbon disulphide:results of questionnaire, clinical neurological examination and neuropsychological testing.Int Arch Occup Environ Health, 1997, 69(5):332
    13. Huang CC, Chu CC, Chu NS, et al. Carbon disulfide vasculopathy: a small vessel disease. Cerebrovasc Dis, 2001, 11(3):245~250
    14. 14高艳华,梁友信.二硫化碳毒作用蛋白共价交联学说进展.劳动医学,1998,15(1):51~53
    15.杨晓忠,姜其德,马荣花.二硫化碳对工人记忆力影响的调查.实用预防医学,1997,4(2):109
    16.汪根盛,傅慰祖,项翠琴,等.长期接触低浓度二硫化碳对工人健康的影响.职业卫生与应急救援, 2000, 18(4):174~177
    17. Peplonska B , Szeszenia DN , Sobala W , et al.A mortality study of workers with reported chronic occupational carbon disulfide poisoning.Int J Occup Med Environ Health,1996,9(4):291~311
    18.高艳华,傅慰祖,梁友信,等.二硫化碳所致神经行为及电生理改变的研究.中华劳动卫生职业病杂志,1998,16(6):353~354
    19.高艳华,卢坚,梁友信.二硫化碳致大鼠行为改变的实验观察.工业卫生与职业病,1997,23(3):139~142
    20. McGaugh JL. Memory-a century of consolidation. Science, 2000, 287: 248
    21. Morris R, G..M. Place navigation impaired in rats with hippocampal lesions. Nature,1982,297(24):681~683
    22. Kameyama T. Step-down type passive avoidance and escape-learning method. Journal of Pharmacological Methods, 1986, 16: 39
    23. Angelucci ME, Cesario C,Hiroi RH, etal. Effects of caffeine on learning and memory in rats tested in the Morris water maze. Braz J Med Biol Res, 2002,35(10):1201~1208
    24.胡镜清,温泽淮,赖世隆. Morris水迷宫检测的记忆属性与方法学初探.广州中医药大学学报, 2000, 17(2): 117~119
    25.景观,主编.环境化学毒物防治手册.北京人民卫生出版社,2004,136~137
    26.高艳华,葛琳娜,梁友信.二硫化碳对大鼠神经递质及其代谢产物的影响.中华预防医学杂志,1998,32(1):28~30
    27.吕国蔚,徐群渊,张英才.医学神经生物学.北京:高等教育出版社, 2000,300~301
    28. Stevens CF. Spatial learning and memory: the beginning of a dream. Cell, 1996, 87(7):1147
    29. Eichenbaum H. Learning from LTP: a comment on recent attempts to identify cellular and molecular mechanisms of memory. Learn Mem, 1996, 3(3):61
    30. Clapcote SJ, Roder J. Survey of embryonic stem cell line source strains in the water maze reveals superior reversal learning of 129S6/SvW v Tac mice. Behavioural Brain Research, 2004, 152(1):35~48
    31. Yin JCP. Location, location, location: the many addresses of memory formation. Proc Natl Acard Sci, 1999, 96:9985~9998
    32. D'Esposito M, Aguirre GK, Zarahn E, et al. Functional MRI studies of spatial and nonspatial working memory. Brain Res Cogn Brain Res, 1998, 7(1):1~13
    33. Henke K, Behniea H. Memory lost and regained following bilateral hippocampal damage. Journal of Cognitive Neuroscience, 1999, 11: 683~697
    34.刘永红,柏林.学习记忆相关脑区.第一军医大学分校学报. 2003,26(2):153~154
    35. Richard FT. Memory systems in the brain and localization of a memory. Proceedings of the National Academy of Sciences, 1996, 93: 13438~13444
    36.卞永霖,李孔寿,张文昌.二硫化碳对大鼠肝脏脂质过氧化作用的研究.实用预防医学,1996,3(1):36~37
    37.刘辉,陈俊抛.一氧化氮逆信使研究及其启示.医学与哲学,1999,20(2):30
    38.江晓东.二硫化碳致脂质/脂蛋白代谢障碍及其与动脉粥样硬化的关系.国外医学卫生学分册,2000,27:296~299
    39. Aleska MM, Nagy K, Floyd RA.Iron-induced lipid peroxidation and inhibition of dopamine synthesis in striatum synaptosomes. Neurochemistry, 1989, 14:597~605
    40. Zhang S, Chen J, Wang S. Spatial learning and memory induce up-regulation of nitric oxide-producing neurons in rat brain. Brain Res, 1998, 801(1):101~106
    41. Garthwaite J. Neural nitric oxide signaling. Trends Neurosci, 1997, 18(2):51~52
    42. Sills RC, Valentine WM, Moser V, et al. Characterization of carbon disulfide neurotoxicity in C57BL6 mice: behavioral, morphologic, and molecular effects. Toxicol Pathol, 2000, 28(1):142~8
    43.高艳华,阮素云,傅慰祖,等. CS2对大鼠神经组织超微结构及钙分布的影响.中华劳动卫生职业病杂志,1998,16(4):204~206
    44. Graham DG, Amarnath V, Valentine WM, et al. Pathogenetic studies of hexane and carbon disulfide neurotoxicity. Critical Reviews in Toxicology, 1995, 25(2):91~112
    45. Tan XD, Peng XX, Wang YD, et al. Carbon disulfide cytotoxicity on cultured cardiacmyocytes of rats. Environ Toxoxol, 2002, 17:324~328
    46. Wronska-Nofer T, Chojnowska-Jezierska J, Nofer JR, et al. Increased oxidative stress in subjects exposed to carbon disulfide (CS2)--an occupational coronary risk factor. Arch Toxicol, 2002, 76(3):152~7
    47. Loyd RA, Carney JM. Free radical damage to protein and DNA: Mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol, 1992, 32:S22~S27
    48. Dawson VL, Dawson TM. Free radicals and neuronal cell death. Cell Death Differ,1996, 3:47~51
    49. Delwing D, Chiarani F, Bavaresco CS, et al. Protective effect of antioxidants on brain oxidative damage caused by probine administration. Neurosci Res, 2005, 52(1):69~74
    50.简乐,胡迪生,谢晓敏.二硫化碳作业工人血清铜锌超氧化物歧化酶水平初探.中国工业医学杂志,1996,9:196~198
    51. Arklund SL, Westman NG, Lundgren E, Roos G. Copper- and zinc-containing superoxide dismutase, manganese-containing superoxide dismutase, catalase, and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissues. Cancer Res, 1982, 42:1955~1961
    52. Cazevielle C, Muller A, Meynier F, et al. Superoxide and nitric oxide cooperation in hypoxia/reoxygenation-induced neuron injury. Free Radic Biol Med, 1993, 14(4):389~395
    53. Kumar M, Liu GJ, Floyd RA, et al. Anoxic injury of endothelial cells increases production of nitric oxide and hydroxy1 radicals. Biochem Biophys Res Commun, 1996, 49:497~501
    54.江晓东,简乐,胡迪生.二硫化碳接触工人体内一氧化氮水平的初探.中华预防医学杂志,2000,34(6):348~350
    55.陈绍兰,李俊.化学发光法观察二硫化碳对过氧亚硝基阴离子水平的影响.浙江预防医学,2003,15(5):1~3
    56. Lee WD ,Colom LV , Xie WJ,et al1.Cell death induced by beta -amyloid 1 - 40 in MES 2315 hybrid clone : the role of nitric oxide and NMDA - gated channel activation leading to apoptosis1Brain Res,1995,686 (1):49~60
    57.凌亦凌,黄善生,谷振勇.过氧亚硝基阳离子的细胞代谢及病理损伤作用.生理学进展,1997,30(1):70
    58. Eli Gilad, Salvatore Cuzzocrea, Basilia Zingarelli, et al. Melatonin is a scavenger of peroxynitrite. Life Sciences, 1997, 60:169~174
    59. Rubbo H,Radi R,Trujillo M, et al. Nitric oxide regulation of superoxide and peroxynitrite dependent lipid peroxidation. J Biol Che m, 1994, 269:260~266
    60. Ahmet Gurel, Omer Coskun, Ferah Armutcu, et al. Vitamin E against oxidative damage caused by formaldehyde in frontal cortex and hippocampus: Biochemicaland histological studies. Journal of Chemical Neuroanatomy, 2005,29(3):173~178
    61.易继湖,刘正亮,李贵新.二硫化碳致血管内皮细胞损伤及维生素C干预作用的实验研究.中华劳动卫生职业病杂志,2004,22(3):215~216
    62.张文昌、黄慧玲、林炜.锌、硒、维生素E、维生素C对二硫化碳致脂质过氧化作用影响的研究.中国工业医学杂志,2000,13(1):13~15
    63. Zhou M, Small SA, Kandel ER, et al. Nitric oxide and carbon monoxide produce activity dependent long-term synaptic enhancement in hippocampus. Science, 1993, 260(5116):1949
    64. Doyle C, Holscher C, Rowan MJ, et al. The selective neuronal NO synthase inhibitor 7-nitroindazole blocks both longterm potentiation and depotentiation of field EPSPs in rat hippocampal CA1 in vivo. J Neurosci, 1996, 16:418~424
    65. Yun HY, Dawson VL, Dawson TM. Neurobiology of nitric oxide. Rev Neurobiol, 1996, 10:291~316
    66. Schuman EM, Madison DV. A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science, 1991, 254: 1503~1506
    67. Arancio O, Kiebler M, Lee CJ, et al. Nitric oxide acts directly in the presynaptic neuron to produce long-term potentiation in cultured hippocampal neurons. Cell, 1996, 87: 1025~1035
    68. Fitzjohn SM, Palmer MJ, May JE,etal. A characterization of long term depression induced by metabotropic glutamate receptor activation in the rat hippocampus inv itro. J Physiol, 2001, 537(Pt2):421~430
    69. Southam E, Charles S L, Garthwaite J. The nitric oxidecyclic GMP pathway and synaptic plasticity in the rat superior cervical ganglion. Br J Pharmacol, 1996, 119: 527~532
    70. Arancio O, Kandel ER, Hawkins RD. Activity-dependent long-term enhancement of transmitter release by presynaptic 3%~5% cGMP in cultured hippocampal neurons. Nature, 1995, 376:74~80
    71. Jurado S, Sanchez-Prieto J, Torres M. Expression of cGMPdependent protein kinases (I and II) and neuronal nitric oxide synthase in the developing rat cerebellum. Brain Res Bull, 2005, 65:111~115
    72. Schlossmann J, Hofmann F. cGMP-dependent protein kinases in drug discovery. Drug Discov, 2005, 10:627~634
    73. Wood P L, Emmett M R, Rao T S, et al. Nitric oxide mediates N-methyl-D -aspartate-quisqualate and kainate-dependent increases in cerebellar cyclic GMP in vivo. J Neurochem, 1990, 55:346~348
    74. Ledo A, Barbosa R M, Gerhardt G A, et al. Concentration dynamics of nitric oxide in rat hippocampal subregions evoked by stimulation of the NMDA glutamate receptor. Proc Natl Acad Sci, 2005, 102: 17483~17488
    75. Samama B, Boehm N. Inhibition of nitric oxide synthase impairs early olfactory associative learning in newborn rats. Neurobiol Learn Mem, 1999,71:219~231
    76.钟慈声,孙安阳.一氧化氮的生物医学.上海:上海医科大学出版社,1997:39~40
    77. Fo¨rstermann U, Kleinert H. Nitric oxide synthase: expression and expressional control of the three isoforms. Naunyn-Schmiedeberg’s Arch. Pharmacol, 1995, 352:351~364
    78.刘辉,陈俊抛,田时雨,等. nNOS在学习记忆过程中的变化和作用.中国神经免疫学和神经病学杂志,2000,7(2):116
    79. Kirchner L, Weitzdoerfer R, Hoeger H, et al. Impaired cognitive performance in neuronal nitric oxide synthase knockout mice is associated with hippocampal protein derangements. Nitric Oxide, 2004, 11(4):316~330
    80.刘辉,陈俊抛,田时雨,等. ?-淀粉样蛋白海马注射对大鼠一氧化氮合酶表达的影响.中华神经科杂志,2001,34(2):71
    81.韩太真,吴馥梅.学习与记忆的神经生物学.北京:北京医科大学中国协和医科大学联合出版社,1998,265~266
    82. Holscher C. Nitric oxide, the enigmatic neuronal messenger:its role in synaptic plasticity. Trends Neurosci, 1997, 20(7):298~303
    83. Chen J, Zhang S, Zuo P, et al. Memory-related changes of nitric oxide synthase activity and nitrite level in rat brain. Neuroreport, 1997, 8(7): 1771
    84.简葵欢,陈明,冯文龙,等.一氧化氮合成酶在培养海马神经细胞上的分布及其激活对细胞兴奋性的影响.中国临床解剖学杂志,2006,24(3)308~310
    85. Mayer B, Andrew P. Nitric oxide synthases: catalytic function and progress towards selective inhibition. Naunyn-Schmiedeberg’s Arch Pharmacol, 1998, 358:127~133
    86.王家有,潘三强,韩辉.大鼠在学习记忆时海马和颞叶内nNOS免疫阳性神经元表达的变化.广东医学,2003,24(11):1179~1180
    87.郭洪志,杜万良,屈传强.一氧化氮合酶抑制剂对大鼠学习记忆能力的影响及尼莫地平的作用研究.临床神经病学杂志,2003,16(2):71~73
    88.宿宝贵,许鹿希.大鼠海马内NOS阳性神经元在学习记忆时的形态学观察.暨南大学学报(自然科学与医学版),1997,18(5):105~110
    89. Blottner DZ, Grozdanovic RG. Histochemistry of nitric oxide synthase in the nervous system. Histochem J, 1995, 27:785~797
    90. Meyer RC, Spangler EL, Patel N, et al. Impaired learning in rats in a 14-unit T-maze by 7-nitroin-dazole, a neuronal nitric oxide synthase inhibitor, is attenuated by the nitric oxide donor, molsidomine. Eur J Pharmacol, 1998, 341(1):17~30
    91. Okada T, Yamada N, Tsuzuki, et al. Long-term potentiation in the hippocampal CA1 area and dentate gyrus plays different roles in spatial learning. Eur J N, 2003, 17(2):341~353
    92. Bernabeu R, de Stein M L, Fin C, et al. Role of hippocampal NO in the acquisition and consolidation of inhibitory avoidance learning. NeuroReport, 1995,~6: 1498–1500
    93. Wilmarth KR,Viana ME,Abou-Donia MB. Carbon disulfide inhalation increases Ca2+/calmodulin-dependent kinase phosphorylation of cytoskeletal proteins in the ratcentral nervous system. Brain Res.,1993, 628(1-2):293~300
    94. De Fruyt, Thiery E, De Bacquer D, et al. Neuropsychological effects of occupational exposures to carbon disulfide and hydrogen sulfide. Int J Occup Environ Health, 1998, 4(3):139~146
    95. Gilbert ME, Mack CM, Lasley SM. Chronic development lead exposure increase the threshold for longterm potentiation in rat dentate gyrus in vivo. Brain Res, 1996, 736(1-2):118~124
    96.张寿林.二硫化碳神经毒性的临床研究.中国工业医学杂志,2001,14(6):365~368
    1. 1韩太真,吴馥梅,主编.学习记忆的神经生物学.北京:北京医科大学协和医科大学联合出版社,1998,161
    2. McGaugh JL. Memory-a century of consolidation. Science, 2000,287: 248~261
    3. Smith EE, Jonides J. Storge and executive process in the frontal lobes. Science, 1999, 283: 1657~1675
    4. Fo¨rstermann U, Kleinert H. Nitric oxide synthase: expression and expressional control of the three isoforms. Naunyn-Schmiedeberg’s Arch. Pharmacol, 1995, 352: 351~364
    5. Mayer B, Andrew P. Nitric oxide synthases: catalytic function and progress towards selective inhibition. Naunyn-Schmiedeberg’s Arch Pharmacol, 1998, 358: 127~133
    6.凌亦凌,黄善生,谷振勇.过氧亚硝基阳离子的细胞代谢及病理损伤作用.生理学进展,1997,30(1):70
    7. Eli Gilad, Salvatore Cuzzocrea, Basilia Zingarelli, et al. Melatonin is a scavenger of peroxynitrite. Life Sciences, 1997, 60:169~174
    8. Rubbo H, Radi R, Trujillo M, et al. Nitric oxide regulation of superoxide and peroxynitrite dependent lipid peroxidation. J Biol Che m, 1994, 269:260~266
    9. Doyle C, Holscher C, Rowan MJ, et al. The selective neuronal NO synthase inhibitor 7-nitroindazole blocks both longterm potentiation and depotentiation of field EPSPs in rat hippocampal CA1 in vivo. J Neurosci, 1996, 16: 418~424
    10. Schuman EM, Madison DV. A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science, 1991, 254: 1503~1506
    11. Southam E, Charles S L, Garthwaite J. The nitric oxide cyclic GMP pathway and synaptic plasticity in the rat superior cervical ganglion. Br J Pharmacol, 1996, 119: 527~532
    12. Arancio O, Kandel ER, Hawkins RD. Activity-dependent long-term enhancement oftransmitter release by presynaptic 3%~5% cGMP in cultured hippocampal neurons. Nature, 1995, 376: 74~80
    13. Arancio O, Kiebler M, Lee CJ, et al. Nitric oxide acts directly in the presynaptic neuron to produce long-term potentiation in cultured hippocampal neurons. Cell, 1996, 87: 1025~1035
    14. Calabresi P, Gubellini P, Centonze D, et al. A critical role of the nitric oxide: cGMP pathway in corticostriatal long-term depression. J Neurosci, 1999, 19: 2489~2499
    15. Boxall A R, Garthwaite J. Long-term depression in rat cerebellum requires both NO synthase and NO-sensitive guanylyl cyclase. Eur J Neurosci, 1996, 8: 2209~2212
    16. Dinerman J L, Dawson T M, Schell M J, et al. Endothelial nitric oxide synthase localized to hippocampal pyramidal cells: implications for synaptic plasticity. Proc Natl Acad Sci, 1994, 91: 4214~4218
    17. Haul S, Godecke A, Schrader J, et al. Impairment of neocortical long-term potentiation in mice deficient of endothelial nitric oxide synthase. J Neurophysiol, 1999, 81: 494~497
    18. Ho¨lscher C. Nitric oxide is required for expression of LTP that is induced by stimulation phase-locked with theta rhythm Eur. J Neurosc, 1999, 11: 335~343
    19. Kantor DB, Lanzrein M, Stary SJ, et al. A role for endothelial NO synthase in LTP revealed by adenovirus-mediated inhibition and rescue. Science, 1996, 274: 1744~1748
    20. Jurado S, Sanchez-Prieto J, Torres M. Expression of cGMPdependent protein kinases (I and II) and neuronal nitric oxide synthase in the developing rat cerebellum. Brain Res Bull, 2005, 65: 111~115
    21. Schlossmann J, Hofmann F. CGMP-dependent protein kinases in drug discovery. Drug Discov, 2005, 10: 627~634
    22. Wood PL, Emmett MR, Rao TS, et al. Nitric oxide mediates N-methyl-D- aspartate-quisqualate and kainate-dependent increases in cerebellar cyclic GMP invivo. J Neurochem, 1990, 55: 346~348
    23. Ledo A, Barbosa R M, Gerhardt G A, et al. Concentration dynamics of nitric oxide in rat hippocampal subregions evoked by stimulation of the NMDA glutamate receptor. Proc Natl Acad Sci, 2005, 102: 17483~17488
    24. Samama B, Boehm N. Inhibition of nitric oxide synthase impairs early olfactory associative learning in newborn rats. Neurobiol. Learn Mem, 1999, 71: 219~231
    25. Bernabeu R, de Stein M L, Fin C, et al. Role of hippocampal NO in the acquisition and consolidation of inhibitory avoidance learning. NeuroReport, 1995, 6: 1498~1500
    26. Zhang S, Chen J, Wang S. Spatial learning and memory induce up-regulation of nitric oxide-producing neurons in rat brain. Brain Res, 1998, 801: 101~106
    27. Prast H, Tran M H, Fischer H, et al. Nitric oxideinduced release of acetylcholine in the nucleus accumbens: role of cyclic GMP, glutamate and GABA. J Neurochem, 1998, 71: 266~273
    28. Morot Gaudry-Talarmain, Y Moulian, N Meunier, et al. Nitric oxide and peroxynitrite affect differently acetylcholine release, choline acetyltransferase activity, synthesis, and compartmentation of newly formed acetylcholine in Torpedo marmorata synaptosomes. Nitric Oxide, 1997, 1: 330~345
    29. Prast H, Philippu A. Nitric oxide as modulator of neuronal function. Prog Neurobiol, 2001, 64(1): 51~68
    30. Hance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev, 1979, 59: 527~605
    31. Loyd RA, Carney JM. Free radical damage to protein and DNA: Mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol, 1992, 32: S22~S27
    32. Arklund SL, Westman NG, Lundgren E, Roos G. Copper- and zinc-containing superoxide dismutase, manganese-containing superoxide dismutase, catalase, andglutathione peroxidase in normal and neoplastic human cell lines and normal human tissues. Cancer Res, 1982, 42:1955~1961
    33. Aleska MM, Nagy K, Floyd RA. Iron-induced lipid peroxidation and inhibition of dopamine synthesis in striatum synaptosomes. Neurochemistry, 1989, 14:597~605
    34. Dawson VL, Dawson TM. Free radicals and neuronal cell death. Cell Death Differ, 1996, 3: 47~51
    35. Cazevielle C, Muller A, Meynier F, et al. Superoxide and nitric oxide cooperation in hypoxia/reoxygenation-induced neuron injury. Free Radic Biol Med, 1993, 14(4):389~395
    36. Kumar M, Liu GJ, Floyd RA, et al. Anoxic injury of endothelial cells increases production of nitric oxide and hydroxy1 radicals. Biochem Biophys Res Commun, 1996, 49:497~501
    37. Bonfoco E, Krainc C, Ankarcrona M, et al. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci. 1995, 92: 7162~7166
    38. Sultana R, Poon HF, Cai J, et al. Identification of nitrated proteins in Alzheimer’s disease brain using a redox proteomics approach. Neurobiol Dis, 2006, 22: 76~87
    39. Brorson JR, Schumacker PT, Zhang H. Nitric oxide acutely inhibits neuronal energy metabolism. J Neurosci, 1999, 19: 147~158
    40. Moncada S, Erusalimsky JD. Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nature Rev, 2002, 3: 214~220
    41. Cassina A, Radi R. Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys, 1996, 328: 309~316
    42. Palacios-Callender M, Quintero M, Hollis V S, et al. Endogenous NO regulates superoxide production at low oxygen concentrations by modifying the redox state of cytochrome c oxidase. Proc Natl Acad Sci, 2004, 101: 7630~7635
    43. Tatton WH, Olanow CW. Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochim Biophys Acta, 1999, 1410: 195~213
    44. Olney JW. Brain lesion, obesity and other disturbances in mice treated with monosodium glutamate. Science, 1969, 164: 719~721
    45. Segieth J, Getting SJ, Biggs CS, et al. Nitric oxide regulates excitatory amino acid release in a biphasic manner in freely moving rats. Neurosci Lett, 1995, 200: 101~104
    46. Sequeira SM, Ambrosio AF, Malva JO, et al. Modulation of glutamate release from rat hippocampal synaptosomes by nitric oxide. Nitric Oxide, 1997, 1: 315~329
    47. Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl Med, 1994, 330: 613~622
    48. Yun HY, Dawson VL. Neurobiology of nitric oxide. Rev Neurobiol, 1996, 10: 291~316
    49. Adams JM, Lorys. The bcl-2 protein family: arbiters of cell survival. Science, 1998, 281:1322~1326
    1. 1 Wisniewski HM,Wegiel J,Wang KC,et al. Ultrastructural studies of the cells orming amyloid in the cortical vessel wall in Alzheimer’s disease. Acta Neuropathol,1992,84:117~127
    2. 2 Gatan E, Overmier BJ. Inflammatory pathogenesis in Alzheimer’s disease: biological mechanisms and cognitive sequeli. Neurosci Biobehav Rev, 1999, 23:615~633
    3. Wilcock DM, Munireddy SK, Rosenthal A, et al. Microglial activation facilitates Abeta plaque removal following intracranial anti-Abeta antibody administration. Neurobiol Dis, 2004, 15(1):11~20
    4. Veerhuis R, Van Breemen MJ, Hoozemans JM, et al. Amyloid beta plaque-associated proteins C1q and SAP enhance the Abeta1-42 peptide-induced cytokine secretion by adult human microglia in vitro. Acta Neuropathol, 2003, 105(2):135~144
    5. Loitto VM, Rasmusson B, Magnusson KE. Assessment of neutrophil N-formyl peptide receptors by using antibodies and fluorescent peptides. J Leuk Biol, 2001, 69:762~771
    6. Verdier Y, Zarandi M, Penke B. Amyloid beta-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer's disease. J Pept Sci, 2004, 10(5):229~248
    7. DiCarlo G, Wilcock D, Henderson D, et al. Intrahippocampal LPS injections reduce Abeta load in APP + PS1 transgenic mice. Neurobiol Aging, 2001 ,22:1007~1012
    8. Wyss-Coray T, McConlogue L, Kindy M, et al. Key signaling pathways regulate the biological activities and accumulation of amyloid-β. Neurobiol Aging, 2001, 22:967~973
    9. Bacskai BJ, Kajdasz ST, Christie RH, et al. Imaging of amyloid-βdeposits in brains of living mice permits direct observation of clearance of plaques withimmunotherapy. Nat Med, 2001, 7:369~372
    10. Nicoll JA, Wilkinson D, Holmes C, et al. Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med, 2003, 9:448~452
    11. Schenk D, Barbour R, Dunn W, et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature, 1999, 400:173~177
    12. Munch G, Robinson SR. Potential neurotoxic inflammatory responses to Abeta vaccination in humans. J Neural Transm, 2002, 109:1081~1087
    13. Nicoll JA, Wilkinson D, Holmes C, et al. Neuropathology of human Alzheimer disease after immunization with amyloid-βpeptide: a case report. Nat Med, 2003, 9:448~452
    14. Yan Q, Zhang J, Liu H, et al. Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer’s disease. J Neurosci, 2003, 23: 7504~7509
    15. Jantzen PT, Connor KE, DiCarlo G, et al. Microglial activation andβ-amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-inflammatory drug in amyloid precursor protein plus presenilin-1 transgenic mice. J Neurosci, 2002, 22(6):2246~2254
    16. Finch CE. Developmental origins of aging in brain and blood vessels: an overview. Neurobiol Aging, 2005, 26(3):281~291
    17. Wyss-Coray T, Lin C, Yan F, et al. TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med, 2002 ,7:612~618
    18. Flanary BE, Streit WJ. Progressive telomere shortening occurs in cultured rat microglia, but not astrocytes. Glia, 2004,45:75~88
    19. Streit WJ, Sammons NW, Kuhns AJ, et al. Dystrophic microglia in the aging human brain. Glia, 2004,45:208~212
    20. Rogers J, Strohmeyer R, Kovelowski CJ, et al. Microglia and inflammatory mechanisms in the clearance of amyloidβpeptide. Glia, 2002,40:260~269
    21. Paresce DM, Chung HY, Maxfield FR. Slow degradation of aggregates of the Alzheimer’s disease amyloidβprotein by microglial cells. J Biol Chem, 1997,272:29390~29397
    22. Jellinger KA, Stadelmann CH. The enigma of cell death in neurodegenerative disorders. J Neural Transm Suppl, 2000, 60:21~36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700