纤维爆炸索水下爆炸特性与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着军用和民用爆破技术的迅速发展,低能量导爆索的应用受到了广泛的重视。纤维爆炸索作为一种新型低能量导爆索,由金属外壳作为强约束,具有很强的侧向约束力,药芯密度高,装药均匀,线装药密度低,爆速稳定,质量有保证,同时金属外壳具有良好的防水性能。本文采用构建的水下爆炸试验塔和水下爆炸测试系统对纤维爆炸索水下爆炸特性进行了全面分析,揭示了其水下爆炸冲击波和气泡脉动运动规律,并对纤维爆炸索的水下应用进行了研究。将希尔伯特-黄变换引入到纤维爆炸索水下爆炸压力信号分析中,研究纤维爆炸索水下爆炸压力信号特征;采用水下爆炸光测系统研究纤维爆炸索水下爆炸气泡脉动规律;以水下爆炸理论为基础对纤维爆炸索水下爆炸水声特性进行研究,得到了有效连续的水声干扰源,有望为水下水声对抗提供新的手段;提出采用纤维爆炸索水下爆炸产生的气泡构成气泡帷幕进行水下爆炸能量衰减达到以“爆”制“爆”的目的,并研究了其衰减水中爆炸能量的效果;利用有限水域水下爆炸能量测试方法,对纤维爆炸索水下爆炸参数进行测量,获得了纤维爆炸索的能量分布情况,为推动纤维爆炸索的发展提供了基础性工作。本文具体研究内容如下:
     第一,在对目前水下爆炸压力信号分析中存在的问题进行分析的基础上,将希尔伯特-黄变换引入到水下爆炸压力信号分析中,并对其适用性进行评判;构建了水下爆炸测试装置,对纤维爆炸索和纤维爆炸索网栅结构的水下爆炸压力特性进行研究,发现纤维爆炸索冲击波压力在3μs从零上升到峰值压力5.21MPa,随后成指数近似衰减,在特征时间后衰减缓慢,冲击波压力信号能量主要集中在40KHz以下,尤以5KHz以下频带能量最高,能量主要集中在前80μs内;构建的纤维爆炸索网栅结构相当于水中爆炸冲击波发生器,可灵活选择布置方式以形成有规律的间断的多条冲击波压力;纤维爆炸索网栅结构水下爆炸压力信号频率主要集中在100KHz以下,尤以50KHz以下的最为明显,能量值较集中,波动能量集中在频率为100KHz范围以内,尤以50KHz以下的低频能量最大。
     第二,采用高速摄影对单根和两根纤维爆炸索水下爆炸气泡脉动规律进行了研究,获得纤维爆炸索水下爆炸的气泡脉动规律:单根纤维爆炸索第一次气泡脉动形状基本保持圆柱形,从第二次气泡脉动开始,气泡脉动的形状变为不规则圆柱形,首次气泡脉动周期为21.5ms,第二次脉动周期为15.5ms,气泡脉动最大半径为5.6cm;两根纤维爆炸索同时起爆后,首次气泡脉动周期为27.5ms,由于两个气泡相互抑制了对方气泡的运动,导致气泡的脉动周期增大;两根纤维爆炸索间距10cm布设,形成的两个气泡慢慢逐渐融合在一起,最后形成一近似规则的气泡帷幕,持续时间很长,能显著增加水下爆炸混响效应。
     第三,为了探求高功率、宽频带、连续性的水声干扰源,以水下爆炸理论为基础对纤维爆炸索水下爆炸水声特性进行研究,主要通过水下爆炸压力测试和气泡脉动实验,研究了纤维爆炸索水下爆炸的声压级、声持续时间、混响效应和功率谱特性,发现纤维爆炸索具有声压级高、频率范围广、混响效应强和声持续时间长的特点。提出的纤维爆炸索网栅结构水下爆炸产生多个水下爆炸脉冲,各脉冲信号能很好地衔接起来,使得爆炸声压级波形近似为一平稳、连续波,提高了其水下爆炸脉冲压力波的宽度,同时还产生气泡脉动和混响效应,显著增加了水下爆炸声的持续时间,可作为连续水下爆炸声源。
     第四,基于水下爆破工程防护安全的迫切需要,对提出的空气隔层衰减水下爆炸能量的设想进行了研究,发现空气隔层能有效衰减冲击波峰值压力,且衰减效果随空气隔层厚度增加有明显提高;空气隔层对水下爆炸冲击波各频率段的能量都有很好的衰减作用,对绝大部分频率段的冲击波能量衰减都在50%以上。
     第五,在借鉴国内外爆炸削能与安全防护措施与技术的基础上,利用纤维爆炸索水下爆炸产生气泡脉动的特性,构建纤维爆炸索网栅结构,通过纤维爆炸索网栅结构爆炸产生气泡帷幕,达到削减水下爆炸能量的作用,提出了爆炸气泡帷幕削能的新理念。爆炸气泡帷幕对冲击波峰值压力的衰减高达60%,对冲击波冲量的衰减高达62.2%;对冲击波能量的衰减效果十分明显,衰减效果高达57.7%;对各频段冲击波能量都有很好的衰减效果,特别是能有效消除高频成分。提出了爆炸气泡帷幕衰减水中冲击波能量的设置原则,以保证其能够达到最佳衰减效果。
     第六,对条形药包水下爆炸能量计算方法进行了分析,提出了纤维爆炸索水下爆炸能量计算方法,并对纤维爆炸索水下爆炸能量进行了测试,对其水下爆炸能量分布进行了系统研究,获得了能量分布的确切比例:冲击波能约占总能量的85%左右,气泡能占总能量的15%左右。纤维爆炸索总能量趋于一致,偏差不大,冲击波能量基本上在2.20MJ/kg上下。对纤维爆炸索的能量分布情况的研究,将推动纤维爆炸索的发展。
With the rapid development of aviation, military and civil blasting technique, the development of low-energy detonating fuse has been widely appreciated. As a new low-energy detonating fuse, fiber detonating fuse has these characteristics: the metal shell as a strong constraint, with strong lateral binding; high density cored; uniform charged dynamite; density of linear charged dynamite is low and detonation occurs steadily with quality assurance; at the same time, the metal shell has a good waterproof performance. In this paper, the author has conducted a comprehensive analysis on the characteristics of underwater explosion with fiber detonating fuse by building an underwater explosion test tower and underwater explosion test system, which reveals its underwater explosion shock wave and the law of bubble pulsation. The author also has studied the application of fiber underwater detonating fuse explosion. In the test, the Hilbert - Huang transform was introduced to analyze the fiber fuse underwater explosion pressure signals and characteristics of the signals. Meanwhile, the underwater explosion optical fiber measurement system was used to explore the law of underwater explosion bubble pulsation. Also, based on the theory of underwater explosions, underwater explosion acoustic characteristics have been studied. And from the study an effective continuous source of acoustic interferencehas been found. The finding is expected to provide a new means of the underwater sound confrontation. The author has put forward that the attenuation produced through underwater explosion of the curtain constituted of fiber fuse underwater explosion bubbles can reach a critical system explosion in the end. Meantime, the explosion energy attenuation effect has been studied. In this paper, within limited water underwater energy test method for fiber fuse underwater explosion was used to measure the explosion parameters, to obtain the energy distribution of fiber fuse explosion, which provides a basis work for the development of fiber detonating fuse. The specific studies have been done as follows:
     First, based on the analysis of the current problems in the underwater explosion pressure signals, the Hilbert - Huang transform was introduced into the underwater explosion pressure signal analysis, and its applicability was evaluated. Through theunderwater explosive test device, the fiber fuse and fiber explosion explosive fusegrid structure of underwater explosion pressure characteristics have been studied, andthe findings like that the shock wave pressure in the fiber fuse explosion 3μs goesfrom zero to peak pressure 5.21MPa, followed by approximately exponential decay,in the characteristic time decay slowly, and the shock wave pressure signal energy ismainly concentrated in 40KHz, the highest energy is concentrated especially in thefollowing band energy 5KHz and within the first 80μs. The fiber fuse mesh structureis equal to an underwater explosion shock wave generator, the flexibility of which iseasy to select the layout way to form a number of discontinuous shock wave pressure.The signal frequency of the fiber fuse grid structure of the underwater explosionpressure is concentrated within 100KHz, and the signal is particularly obvious whenit is below 50KHz. That is to say, the energy value is much focused which isconcentrated within 100 KHz, and when it is lower than 50 KHz the low energyfrequency is maximum.
     Second, high-speed photography is used to study the law of explosion bubblesproduced by single or two fiber fuses underwater explosion. The findings is like this:single fiber fuse’s first time bubble pulsation remains cylinder-shape, but from thesecond bubble pulsation the shape becomes irregular cylinder; and the first bubblepulsation period is 21.5ms, the second pulsation period of 15.5ms; the maximumradius of bubble pulsation is 5.6cm. However, when two fiber explosion fusesdetonate at the same time, the first bubble pulsation period is 27.5ms, because the twobubbles each inhibit the movement of other bubbles, resulting in the increase ofbubble pulsation period. When the two fuses are laid with 10cm space, the bubblesgradually blend in and finally form a bubble curtain, the duration is very long, whichcan significantly increase the reverberation effect of underwater explosion.
     Third, to explore the high power, broadband, continuous interference sources ofwater sound, acoustic characteristics based on the theory of fiber fuse underwaterexplosion were studied. Primarily by stress testing and underwater explosion bubblepulsation experiment, the author has studied the fiber cable underwater explosionsound pressure level, sound duration, reverberation effects and characteristics of power spectral. It is found that fiber fuse is of high sound pressure level, of widerange of frequencies, of strong sound reverberation effect and of long duration. Basedon the findings, the author has proposed that the underwater explosion of fiber fusegrid can generate multiple underwater explosion pulses, each pulse can link up well tomake the blast wave a smooth, continuous one. Therefore, the width of underwaterexplosion pulse’s pressure wave is increased, and bubble pulsation and reverb effectsis also significantly increased, the duration of underwater explosions is increased, too,which can be used as a continuous sound source of underwater explosions.
     Fourth, to meet the urgent safety protection needs of underwater blasting, theauthor have studied the attenuation of the compartment air of underwater explosionenergy and found that compartment air can attenuate the peak shock wave pressureeffectively, and the effect of the attenuation can be significantly improved with theincrease of the interlayer air thickness; meantime, the air compartment can attenuatethe underwater explosion shock wave energy of each frequency band and theattenuation effect on most are above 50%.
     Fifth, drawing lessons from home and abroad in the security measures andtechnologies, based on the bubbles’characteristics of fiber fuse underwater explosion,building fiber fuse grid structure and making full use of the bubble curtain producedby the underwater explosion of the fiber fuse grid structure to reduce the underwaterexplosion energy, the author has proposed the new concept to attenuate explosionenergy through the explosion bubble curtain. Bubble curtain can attenuate the shockwave’s peak pressure up to 60%, and attenuate the shock wave impulse as high as62.2%; bubble curtain is also of great attenuation effect to the shock wave energy, upto 57.7%; and bubble curtain has a very good attenuation effect of each band of shockwave energy, in particular, can effectively eliminate the high frequency components.The author has set the principles in bubble curtain attenuating the water shock waveenergy to ensure its ability to achieve the best attenuation.
     Sixth, the author has analyzed the calculation method of Linear Chargeddynamite’s underwater explosion energy, offered calculation method of the fiber fuseunderwater explosion energy, tested the energy of fiber fuse underwater explosion,conducted the systematic research on the energy distribution of underwater explosion, and obtained the exact distribution of the total energy: shock wave energy is about 85%, the bubble is about 15% of total energy. The total energy of explosion fiber fuse conforms; the deviation is just a bit, and shock wave energy is basically about 2.20MJ/kg. The research on the distribution of the fiber fuse explosion energy will promote the development of fiber cable explosion.
引文
[1]梅群.低能量导爆索关键技术及应用研究[D].合肥:中国科学技术大学,2007.
    [2]张立.爆破器材性能与爆炸效应测试[M].合肥:中国科学技术大学出版社,2006.
    [3]库尔.水下爆炸[M].北京:国防工业出版社,1960.
    [4] Zamyshlyayev B V,Yakovlev Y S. Dynamic Loads in Under Water Explosion[R].AD-757183,1973.
    [5] Kirkwood.J.G,Bethe.H. The pressure wave produced by an underwater explosion Part I[R].OSRD 588,1942.
    [6] Coles.J.S,Christian.E.A. Shock wave parameters from spherical TNT charges detonatedunderwater[R]. Underwater Explosion Research Volume 2:1085-1105,Office of Naval Research,Washington, D.C. 1950.
    [7] Snay H G.. Hydrodynamic of underwater explosions[R]. Symposium on NavalHydrodynamics,Washington D C,1956.
    [8] Keil A H. Underwater explosion research.V1[R]. Office of NANAL Research,1950.
    [9] Blatstein I M. Refraction of underwater explosion shock wavers: Calculations of pressurehistories in a convergence zone[R]. AD728746,1971.
    [10] H. M. Sternberg,H. Hurwitz. Calculated Spherical Shock Waves Produced by CondensedExplosives in Air and Water[C]. 6th International Detonation Symposium,NSWC,White Oak,528-539,1971.
    [11] Mader C. L. Numerical Modeling of Detonation[M]. Berkeley: University of CaliforniaPress,1979.
    [12] Chapman R B,Plesset M S. Nonlinear effects in the collapse of a nearly spherical cavity in aliquid[J]. Journal of Basic Engineering,1972.
    [13] S.Itoh. On Underwater Shock Wave Generated by Underwater Explosion of High ExplosivesI: Equation of State of Detonating Products and Underwater Shock Wave[J]. Journal of the JapanExplosives Society,1994,Vol.55:202-208.
    [14]伊东等.高能炸药水下爆炸的光测研究[J].[日]火药学会志,1995,Vo l .5:181-187.
    [15]颜事龙.集中药包与条形药包水下爆炸能量测试[J].爆破器材,2003,32(5):23-27.
    [16]李金河,赵继波,谭多望,等.炸药水中爆炸冲击波性能[J].爆炸与冲击,2009,29(2):172-176.
    [17]李澎,徐更光.水下爆炸冲击波传播的近似计算[J].火炸药学报,2006,29(4):21-24.
    [18]梅群,侯中华,朱俊峰,等.水下爆炸冲击波压力时程的数值模拟[J].河南科技大学学报,2010,31(4):57-59.
    [19]姚熊亮,陈娟,张阿漫,等.基于SPH方法的二维水下爆炸冲击载荷计算[J].哈尔滨工程大学学报,2010,31(10):1303-1311.
    [20] D E Weston.Underwater explosions as acoustic source[J]. Proceedings of the PhysicalSociety (S0370-1328), 1960, 76(2):233-249.
    [21]潘正伟,焦善武,顾晓辉.水下爆炸-高功率宽频带的水声干扰源[J].南京理工大学学报,1999,23(6):507-509.
    [22]吴成,廖莎莎,李华新,等.3种炸药水下爆炸的声波特性测试及其对比分析[J].北京理工大学学报,2009,29(1):1-4.
    [23]牟金磊,朱锡,李海涛,黄晓明.炸药水下爆炸能量输出特性试验研究[J].高压物理学报,2010,24(2):88-92.
    [24]方斌,朱锡,黄晓明.水下爆炸作用下箱形梁模型响应试验研究[J].船海工程,2008,37(1):1-5.
    [25] Boyce P, Debono S. Report of underwater explosion tests[R]. Centre Technique Des SystemeNavals,France,2003.
    [26] John.M.Brett. An experimental facility for imaging of medium scale underwaterexplosions[R]. DSTO-TR-1432,2003.
    [27] Klaseboer E,Hung K C,Wang C,et al. Experimental and numerical investigation of thedynamics of an underwater explosion bubble near a resilient/rigid structure[J]. Journal of FluidMechanics,2005,537:387-413.
    [28]张立,章桥龙,郭进,赵守辉.装药浅水下爆炸的气泡脉动参数研究[J].煤矿爆破,2005,12(2):5-8.
    [29]朱锡,牟金磊,洪江涛,黄晓明,等.水下爆炸气泡脉动特性的试验研究[J].哈尔滨工程大学学报,2007,28(4):365-368.
    [30]金辉,张庆明,高春生,赵鹏远.不同边界条件水下爆炸气泡脉动对比的试验研究[J].兵工学报,2009,30(s2):213-217.
    [31]汪斌,张远平,王彦平.一种水中爆炸气泡脉动实验研究方法[J].高压物理学报,2009,23(5):332-337.
    [32] Chahine G L,Frederick G S,Lambrecht C J,et al. SAVIAC Proceedings 66th Shock andVibrations Symposium. Biloxi,MS,1995,2:65-276.
    [33] Prosperetti A. Bubble related ambient noise in the ocean[J]. Journal of acoustical society ofAmerica,1998,84:1042-1054.
    [34] Gilmore F R. The growth and collapse of a spherical bubble in a viscous compressibleliquid[J]. Hydro Lab Calif inst Technical Report.,1952,26(4):117-125.
    [35] Plesset M S,Chapman R B. Collapse of an initially spherical vapor cavity in theneighborhood of a solid boundary[J]. Journal of Fluid Mechanics,1971,47:283-290.
    [36] Mitchell T M,Hammitt F G. Asymmetric cavitation bubble collapse[J]. Journal of FluidsEngineering-Transactions of the ASME,1973,195:29-37.
    [37] Wang C,Khoo B C. An indirect boundary element method for three-dimensional explosionbubbles[J]. Journal of Computational Physics,2004,194:451-480.
    [38]李玉节,张效慈,吴有生,陈起富.水下爆炸气泡激起的船体鞭状运动[J].中国造船,2001,42(3):1-7.
    [39]姚熊亮,陈建平.水下爆炸二次脉动压力下舰船抗爆性能研究[J].中国造船,2001,42(2):48-55.
    [40]刘建湖.舰船非接触水下爆炸动力学理论与应用[D].无锡:中国船舶科学技术研究所,2002:89-112.
    [41] Mader C. L. Numerical Modeling of Detonation[M]. Berkeley:University of CaliforniaPress,1979.
    [42] Wilkerson S A. Boundary integral technique for explosion bubble collapse analysis[R].AD-A267369,1993.
    [43]李玉民,倪芝芳.水中爆炸气泡脉动流场的数值计算[J].爆炸与冲击,1996,16(4):377-381.
    [44]鲁传敬.三维水下爆炸气泡的数值模拟[J].航空学报,1996,17(1):92-95.
    [45] Matsumoto. Boundary Curvature Effects on Gas Bubble Oscillations in UnderwaterExplosion[R].AD-A308087,1996.
    [46] Fedkiw R,Aslam T,Merriman B,Osher S. A Non-oscillatory Eulerian Approach toInterfaces inMultimaterial Flows[J]. Journal of Computational Physics,1999,152(2):457-492.
    [47]梁龙河,曹菊珍,王元书.水下爆炸特性的一维球对称数值研究[J].高压物理学报,2002,16(3):199-203.
    [48]田中克己,吉田正典,等.用水下爆炸法进行炸药能量的精密测定[J]. [日]工业火药,1982,31(4).
    [49] Stromsoe,S.W.Eriksen. Perfomance of High Explosives in Underwater Application. Part I:CHNO Explosives[J]. Propellants,Explosives and Pyrotechnics,1990,15(48-51):48-53.
    [50] Bjarnholt G. Suggestion on standards for measurement and evaluation in the underwaterexplosion test[J]. Propellants and Explosive,1980,5(2-3):67-74.
    [51] W.Chistmann, P.Lingens. Left Bracket Contribution to the Standardization of the EnergyMeasurement of Underwater Explosions Right Bracket[J]. Propellants and Explosive,1980,5(2-3):56-61.
    [52]唐斌,池家春.水中爆炸法评估炸药能量可行性研究[J].爆轰波与冲击波,1998,1(2):41-46.
    [53]颜事龙,张金城.小水池黑索金水下爆炸能量测试影响因素的研究[J].爆破器材,1991,20(3):1-4.
    [54]牛余雷,王晓峰,余然.双元复合炸药装药水下爆炸能量输出特性[J].含能材料,2009,17(4):415-418.
    [55]李泽华,蒲加顺.胶质炸药无限水域爆炸能量分布试验研究[J].中国水运,2009,9(3):266-268.
    [56] Lang L C,Albert P. Underwater plug-blast at Manic-5hydro-electric project[C]. Proceedingsof the Conference on Explosives and Blasting Technique,1984.
    [57] Sheynina S I. Effectiveness of the response of an air fence to application of body of water[J].Fluid Mechanics,1986,15 (5):115-125.
    [58]张文煊,刘美山.大型水电站围堰及岩坎爆破拆除中的安全防护问题研究[J].工程爆破,2008,14(4):76-81.
    [59]李泽华,白春华,刘庆明,张奇,等.气泡帷幕减弱水中冲击波强度的研究[J].中国安全科学学报,1996,9(5):69-73.
    [60]周睿,冯顺山.气泡帷幕对水中冲击波峰值压力衰减特性的研究[J].工程爆破,2001,7(2):13-17.
    [61]朱安周,张可玉,詹发民,孟涛.气泡帷幕衰减水中冲击波频谱特性实验研究[J].爆破,2004,21(4):12-14.
    [62] Jia Hu,Shen zhaowu,Ma Honghao,Fan Zijian. Study on the Effects of the WaveletTransform-based Air Compartment on the Decay Pattern of Underwater ExplosionSignal[C].Progress in Safety Science and Technology Vol VIII,Hangzhou,2010:1118-1123.
    [1]俞统昌,王晓峰,王建灵.炸药的水下爆炸冲击波性能[J].含能材料,2003,11(4):182-186.
    [2]温华兵,张健,尹群,等.水下爆炸船舱冲击响应时频特征的小波包分析[J].工程力学,2008,25(6):199-203.
    [3]李夕兵,张义平,刘志祥,等.爆破震动信号的小波分析与HHT变换[J].爆炸与冲击,2005,25(6):528-535.
    [4]杜志鹏,汪玉,杨洋,等.舰艇水下爆炸冲击信号拟合及应用[J].振动与冲击,2010,29(3):182-184.
    [5]晏俊伟,龙源,方向,等.基于小波包变换的爆破地震波时频特征提取及分析[J].振动与冲击,2007,26(4):25-29.
    [6] Huang N E,Zheng S,Long S R,et al. The empirical mode decomposition and the Hilbertspectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the EoyalSociety of Londong,Series A,1998,454:903-995.
    [7] Daubechies I. The wavelet transform,time-frequency localization and signal analysis. IEEETransactions on Information Theory,1990,36(5):961-1005.
    [8]李夕兵,凌同华,张义平.爆破震动信号分析理论与技术[M].北京:科学出版社,2009.
    [9]胡昌华,张军波,夏军.基于MATLAB的系统分析与设—小波分析[M].西安:西安电子科技大学出版社,2004.
    [10]崔翔.信号分析与处理[M].北京:中国电力出版社,2005.
    [11]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社,1998.
    [12]张德丰. MATLAB小波分析[M].北京:机械工业出版社,2009.
    [13]张义平,李夕兵,赵国彦,等.爆破震动信号的时频分析[J].岩土工程学报,2005,27(12):1472-1477.
    [14] Semion K,Thomas P,Flatley,et al. On the Hilbert-Huang transform data processing systemdevelopment. National Aeronautics and Space Administration Goddard Space Flight Center,Darrell Smith Orbital Sciences Corporation,2001.
    [15]廖学燕,沈兆武,马宏昊,等.新型复合炸药KD-1的能量输出特性和力学性能[J].火炸药学报,2008,31(4):14-17.
    [16]冯志鹏,褚福磊.基于Hilbert-Huang变换的水轮机非平稳压力脉动信号分析[J].中国电机工程学报,2005,25(10):111-115.
    [1]库尔.水下爆炸[M].北京:国防工业出版社,1960.
    [2]方斌,朱锡,黄晓明.水下爆炸作用下箱形梁模型响应试验研究[J].船海工程,2008,37(1):1-5.
    [3]张立,章桥龙,郭进,等.装药浅水下爆炸的气泡脉动参数研究[J].煤矿爆破,2005,23(2):5-8.
    [4]汪斌,王彦平,张远平.有限水域气泡脉动实验方法研究[J].火炸药学报,2008,31(3):32-35.
    [5]汪斌,张远平,王彦平.水中爆炸气泡脉动现象的实验研究[J].爆炸与冲击,2008,28(6):572-576.
    [6]朱锡,牟金磊,洪江波,等.水下爆炸气泡脉动特性的试验研究[J].哈尔滨工程大学学报,2007,28(4):365-368.
    [7]細谷文夫,和田有司等.棒状装薬の水中爆発の性質と伝爆性の推定[J].工業火薬,1989,50(7).
    [8]中山良男,坂田光明.薬長薬径比の大きい円柱形爆薬の水中爆発[J].工業火薬,1991,50(5).
    [9]田中克己,吉田正典等.工业火药,1982,31(4).
    [10]梅群.低能量导爆索关键技术及应用研究[D].合肥:中国科学技术大学,2007.
    [1]库尔.水下爆炸[M].北京:国防工业出版社,1960.
    [2]赵媛媛.水下爆炸对鱼雷声纳换能器作用与干扰的研究[D].北京:北京理工大学,2006.
    [3] D E Weston.Underwater explosions as acoustic source[J]. Proceedings of the Physical Society(S0370-1328),1960,76(2):233-249.
    [4]潘正伟,焦善武,顾晓辉.水下爆炸-高功率宽频带的水声干扰源[J].南京理工大学学报,1999,23(6):507-509.
    [5]吴成,廖莎莎,李华新,等.3种炸药水下爆炸的声波特性测试及其对比分析[J].北京理工大学学报,2009,29(1):1-4.
    [6] A. V. Adushkin, B. D. Khristoforov. Seismic, Hydroacoustic,and acoustic action ofunderwater explosion[J]. Combustion explosion and shock waves,2004,40(6):707-713.
    [7] A. V. Adushkin, B. D. Khristoforov. Hydroacoustic disturbance in nuclear explosion[J].Combustion explosion and shock waves, 2004,40(6):694-698.
    [8]顾金海,叶学千.水声学基础[M].北京:国防工业出版社,1981.
    [9]赵生伟,周刚,王占江,等.小当量水中爆炸气泡的脉动现象[J].爆炸与冲击,2009,29(2):213-216.
    [10]汪斌,张远平,王彦平.水中爆炸气泡脉动现象的实验研究[J].爆炸与冲击,2008,28(6):572-576.
    [11]康春玉,章新华,张安清.一种基于谱估计的被动声纳目标识别方法[J].哈尔滨工程大学学报,2003,24(6):627-631.
    [12]伊鑫,曲爱华.基于Welch算法的经典功率谱估计的Matlab分析[J].现代电子技术,2010,17(3):7-9.
    [1] Jepson P D,Arbelo M,Deaville R,et al. Gas-bubble Lesions in Stranded Cetaceans[J].Nature,2003,425:575-576.
    [2]苏欣.厦门海域水下爆破冲击波监测与传播特性分析[D].厦门大学,2007.
    [3]张志波,李春军,李红勇,等.气泡帷幕在水下爆破减震工程中的应用[J].爆破,2003,20(2):75-76.
    [4]周睿,冯顺山.气泡帷幕对水中冲击波峰值压力衰减特性的研究[J].工程爆破,2001,7(2):13-17.
    [5]王礼立.应力波基础[M].北京:国防工业出版社(第2版),2005.
    [6]温华兵,张健,尹群,等.水下爆炸船舱冲击响应时频特征的小波包分析[J].工程力学,2008,25(6):199-203.
    [7]李夕兵,张义平,刘志祥.爆破震动信号的小波分析与HHT变换[J].爆炸与冲击,2005,25(6):528-535.
    [8]凌同华,李夕兵.多段微差爆破振动信号频带能量分布特征的小波包分析[J].岩石力学与工程学报,2005,24(7):1117-1122.
    [9]胡昌华,张军波,夏军.基于MATLAB的系统分析与设计—小波分析[M].西安:西安电子科技大学出版社,2004.
    [10]张远平,池家春,龚晏青,王广军,含铝炸药水下爆炸性能的实验研究[J].高压物理学报,2010,24(4):316-320.
    [1]史瑞,徐更光,刘德润,秦健.炸药爆炸能量的水中测试与分析[J].火炸药学报,2008,31(4):1-5.
    [2]库尔.水下爆炸[M].北京:国防工业出版社,1960.
    [3]陈正衡等译.工业炸药测试新技术[M].北京:煤炭工业出版社,1982.
    [4] John M.Brett,Michael Buckland,Terry Turner,Charles G.Killoh,Peter Kiernan.Anexperimental facility for imaging of medium scale underwater explosions[R]. DSTO-TR-1432.
    [5] Gerry Rude,John E. Slater, small-scaled tank facility for studing underwater explosionphenomena [R]. DRES SOP NO.34,Defence Research Establishment Suffield,March 1993.
    [6]李光华.水下爆炸及冲击伤的研究[D].上海:复旦大学,2004.
    [7]梅群.低能量导爆索关键技术及应用研究[D].合肥:中国科学技术大学,2007.
    [8]颜事龙.集中药包与条形药包爆破能量分布的研究[D].北京:铁道部科学研究院,1994.
    [9]李泽华,蒲加顺.胶质炸药无限水域爆炸能量分布试验研究[J].中国水运,2009,9(3):266-268.
    [10]温华兵,张健,尹群.基于小波变换的水下爆炸压力时频特征分析[J].振动、测试与诊断,2008,28(2):155-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700