爆轰纳米金刚石在水中稳定分散研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
爆轰纳米金刚石具有超硬特性和良好的化学稳定性、生物兼容性,具有很广阔的应用前景,但是由于团聚问题没有得到解决,始终制约其应用进展。因此,推动爆轰纳米金刚石应用研究和产业发展必须对爆轰纳米金刚石进行解团聚处理。
     本文选用爆轰纳米金刚石黑粉(DND-B);高纯度爆轰纳米金刚石灰粉(UFDND-A);爆轰纳米金刚灰粉(DND-A)。采用酸处理氧化、气相热处理氧化对DND-B进行表面改性,机械化学改性对DND-A和UFDND-A进行表面改性调节其表面官能团构成来实现在不同溶剂中稳定分散。采用红外光谱、激光粒度仪、透射电镜对改性后的纳米金刚石(MDND-A、MUFDND-A)的官能团、粒度分布和形貌进行评估。对MDND-A和一定比例的表面活性剂、助表面活性剂、油相、蒸馏水制成的微乳液的形成机理、机械改性加入的表面活性剂的表面吸附机理进行研究和归纳。
     氧化性酸氧化处理DND-B,实验表明:颗粒表面的烃类等基团被氧化成羧酸官能团,离解使得颗粒负电性最强。红外光谱表明:高温热处理可以氧化DND-B和UFDND-A表面的含碳官能团变成羧酸官能团,具有明显的解团聚作用,使颗粒减小,再加上表面含氧官能团羧基的增多,有利于DND-B和UFDND-A在水中实现较好的分散。X射线衍射分析表明空气中热处理对DND-B和UFDND-A表面的非金刚石相具有氧化作用,同时还可以对金刚石晶形貌有所改善。
     对UFDND-A进行机械化学改性,激光粒度仪表明:所得到的MUFDND-A粒度分布为评判标准,得到最佳的研磨改性工艺条件为:研磨介质氧化锆为250g,分散介质水为100g,吐温为分散剂,UFDND-A与吐温质量比q为1左右,研磨转速为2000n/min,研磨时间为1.5h。
     DND-A经过油相机械化学改性后的,油相非极性官能团C-H在DND-A表面发生了很好的吸附,油相的基团和DND-A表面的亲水基团-OH、-COOH发生了键合,使得MDND-A表面羟基-OH,羧基-COOH较DND-A有所减少。机械化学改性后的(MDND-A),形成的MDND-A O/W微乳液体系稳定,微乳液静置期间,DND-A纳米粒子存在逐渐长大的现象,但是粒子长大的速度很慢,七周后粒子平均粒径由原来的13.04nm增大到26.14nm,仅仅长大13.1nm。在静置过程期间,未发生沉淀和分层现象。
     MDND-A表面的非极性官能团C-H增加,极性官能团-OH、-COOH的减少对MDND-A形成稳定的MDND-A O/W微乳液有很重要的意义。
     DND-A经过吐温机械化学改性后,DND-A表面吸附了大量亲油性官能团烃基。tween-80在DND-A表面吸附,形成了很好的覆盖层,DND-A表面官能团几乎为tween-80的官能团。
     通过本文研究,可以工程化的解决纳米金刚石硬团聚问题,实现纳米金刚石在水中的稳定分散,有利于推动这种优良性能的纳米材料的应用。
Because of possessing the characteristics of superhardness, excellent chemical stability and biocompatibility, detonation nano-diamond is a proming and valuable powder material and has broad application prospects. The problem of deagglomeration which has not been resovled restrict its application.therefore, the deagglomeration processing of nano-diamond have impromtant significance for the promotion of applied research and industrial development.
     The paper choose detonation nano-diamond black power (DND-B), ultra-fine detonation nano-diamond ash power (UFDND-A), and detonation nano-diamond ash power (DND-A) as samples. Measures such as tacid oxidation,gas heat oxidation are used to modify DND-B, Mechanical and Chemical Modification(MCM) is used to modify the surface functional groups of DND-A and UFDND-A which make MDND-A and MUFDND-A disperse stably in diffrenet solvents.Fourier Transform Infrared Spectroscopy(FTIR), laser particle size analyzer,Ttransmission Eelectron Mmicroscope(TEM) are used to assess the functional groups,particle size distribution and morphology of modified nano-diamond.the paper study and summary the formation mechanism of micro-emulsion which made by a certain proportion of modified nano-diamond, surfactant, cosurfactant, oil, distilled water and surfactant surface adsorption of MCM.
     Oxidizing acid oxidate DND-B, experiments show that:hydrocarbon groups of particles surface are oxidized to carboxylic acid functional groups, dissociation make negatively charged particles become stronger. FTIR indicates that:high-temperature heat treatment can oxidize the carbon functional groups of DND-A and UFDND-A surface into carboxylic acid functional groups and have deagglomeration, the increase of oxygen-containing carboxyl functional groups is conducive to achieve nano-diamond disperse stably in water. X-ray diffraction analysis show that the air heat treatment can oxidate non-diamond phase of detonation nano-diamond surface, at the same time, can improve the diamond crystal.
     UFDND-A are modified by MCM, laser particle size analyzer show that:making the particle size distribution of MUFDND-A as evaluation criteria, the best grinding conditions are determined:the weight of grinding media zirconia is 250g, dispersion medium water is 100g, mass ratio q of UFDND-A and dispersant Tween-80 is about 1, grinding speed is 2000n/min, grinding time is 1.5h.
     DND-A are modified by the oil phase MCM, the non-polar functional groups C-H of oil phase have good adsorption on the surface of DND-A, the functional groups of oil phase and surface ydrophilic groups-OH,-COOH of the DND-A bond together, which make surface hydroxyl groups -OH, carboxyl group -COOH of MDND-A decrease compared with DND-A. MDND-AO/W micro-emulsion system is stable, MDND-A grow up during standing, but the particles grow slowly, seven weeks later, the average particle size increase from the original 13.04nm to 26.14nm, just grow up 13.1nm. Sedimentation and stratification did not occur.
     The increase of non-polar functional groups C-H and the reduction of polar functional groups-OH,-COOH of MDND-A have important significance to form stable MDND-A O/W micro-emulsion
     DND-A are modified by tween MCM, the surface of DND-A adsorb a large number of hydrophobic alkyl functional groups. tween-80 have good adsorption on the DND-A surface and form a good cover, the surface of DND-A are almost the functional groups of tween-80.
     The study can solve the hard agglomeration of nano diamond to achieve nano-diamond disperse stably in water, which help promote the application properties of excellent nanomaterials.
引文
[1]毛剑锋.纳米金刚石分散及应用现状[D].太原:中北大学:2005.
    [2]邹芹,王明智,王艳辉.纳米金刚石的性能与应用前景[J].金刚石与磨料磨具工程.2003,134(2):54-58.
    [3]袁公煜.人造金刚石合成与金刚石工具制造[M].中南工业大学出版社,1992:15-18.
    [4]谢有赞.金刚石理论与合成技术[M].湖南科学技术出版社,1993.
    [5]蔡建岩.纳米科技发展现状及趋势[J].长春大学学报.2005,15(4):71-75.
    [6]Johns on S M. Optimal Two and Three Stage Production Schedule with setup time included [J]. Naval Res. Logist,1954, (1):61-68.
    [7]谢柏林.最小系数法[J].管理现代化.1983,(1):17-21.
    [8]马天超.机械工业企业生产管理学[M].北京:机械工业出版社,1986:1-168.
    [9]任红轩.世界纳米科技发展趋势分析[J].新材料产业.2007,(6):14-17.
    [10]Bundy F P, Hall H T, Strong H M, etal. Man-made diamond, nature,1955.176:51-54.
    [11]Bovenkerk H P, Bundy F P,Hall H T, etal. Preparation of diamond, Nature,1959,184: 1094-1098.
    [12]Bovenkerk H P, Bundy F P, Chrenko R M, etal. Errors in diamond synthesis. Nature,1993, 365:19.
    [13]Pierson H O. Handbook of earbon, graPhite, diamond, and, fullerenees:ProPerties, Proeessing and applications. New Jersey, USA:Noyes Publieation,1993.278-301.
    [14]Kazuhisa Miyoshi, Struetures and mechanical properties of natural andsynthetic diamond. In:NASA/TM-1998-107249, Chapter-8. ohio, USA:NASALEWISResearehCenter,1998 :1-21.
    [15]文潮,孙镇玉,刘晓新等.用纳米石墨作碳源在Fe粉作用下合成金刚石的研究[J].材料科学与工程.2002,20(2):177-179.
    [16]Carli P S De, Jamieson J C. Formation of Diamond by Explosive Shock [J]. Seience,1961, 133:1821-1822.
    [17]李晓杰,张凯,董守华.高转化率冲击合成金刚石微粉[J].大连理工大学学报.1994,34(6):743-744.
    [18]Hirai H, Kukino S, Kondo K. Predominant parameters in the shock-induced transition from graphite to diamond [J]. Journal of Applied Physics,1995,78(5):3052-3059.
    [19]Bogatyreva G P,Voloshin M N. Characterization and some properties ofshock-wave diamond powders[J]. Superhard materials,1998,4:82-86.
    [20]Regueiro M N, Moneeau P, Hodeau J L. Crushing C60 to diamond at room temperature[J]. Nature,1992,355:237-239.
    [21]Frenklaeh M, Kematiek R, Huang D, etal. Homogeneous nucleationcof diamond Powder in the gas phase[J]. Journal of Applied physics,1989,66:395-399.
    [22]Frenklaeh M, Howard W, Huang D,etal. Induced nucleation of diamond powder. Applied Physies letters,1991,59:546-548.
    [23]Banhart F, Ajayan P M. Carbon onionsas nanoscopic pressure cells fordiamond formation. Nature,1996,382:433-435.
    [24]Sun L T, Gong J L, Zhu Z Y, etal. Nanocrystalline diamond from carbon nanotubes. Applied physiesLetters,2004,84(15):2901-2903.
    [25]Szymanski A, Abgarowiez E, Bakon A, etal. Diamond formed at low pressures and temperatures through liquid-phase hydrothermal synthesis. Diamond and Related Materials,1995,4(3):234-235.
    [26]Roy,R, Ravindranathan P,Raviehandran D,etal. Evidence for hydrothermal growth of diamond in the C-H-O- and C-H-O-halogen system. Journal of Materials Researeh,1996,11(5):1164-1168.
    [27]LiY-D, Qian Y-T, Liao H-W, etal. A reduetion-pyrolysis-catalysis synthesis of diamond. Seience,1998,281:246-247.
    [28]Shenderova O A, Zhirnov V V, Brenner D W, Carbon Nanostructures, Critical Reviews in Solid State and Materials Sciences,2002,27(3-4):227-356.
    [29]许向阳.纳米金刚石解团聚与稳定分散[D].2007,中南大学.
    [30]王光祖,张运生,郭留希等.纳米金刚石的应用[J].金刚石与磨料磨具工程.2003,4:41-44
    [31]Sakovich G V, Brylyakov P M, Verestehagin A L, etal. Produetion of diamond cluster by explosion and their application. Zhyrnal Vsesojuznogo Khimicheskogo Obsehestva,1990,35(5):600-602.
    [32]金增寿,徐康.炸药爆轰法制备纳米金刚石[J].含能材料.1999,7(1):38-44.
    [33]李富生.纳米材料及技术的应用现状[J].西南石油学院学报.2002,24(4):56-59.
    [34]张家玺,刘现,胡献国.纳米金刚石颗粒对发动机润滑油摩擦学性能的影响[J].摩擦学学报.2002,22(1):44-48.
    [35]王光祖,张运生,金增寿.纳米金刚石应用的潜在发展前景[C].2002年全国超硬材料及制品发展与技术研讨会.2002,6:68-71.
    [36]Kuznetsov V L, Aleksandrov M N, Zagoruiko L V, et al. Study of ultradispersed diamnd powders obtained using explosion energy. Carbon,1991,29(4/5):665-668.
    [37]L. S. LYSYUK, V. M. OGENKO, S. V. VOLKOV, A. P. SHPAK. Nano carbon nanostructures produced by electrochemical method. Hydrogen materials sciences and chemistry of caron nanomaterials,2007,2006(3):297-302.
    [38]Mironov E, Koretz A, Petrov E. Detonaion synthesis ultradispersed diamond structural propertise investigation by infrared absorption, diamond and Related Materiala, 2002,11:872-876.
    [39]Jiang T, Xu K. FTIR study of ultradispersed diamond powder synthesized by explosive detonation. Carbon,1995,33 (12):1663-1671.
    [40]Jiang T L, Ji S F, Xu K. FITR studies on the specttral changes of surface functional groups of ultrdispersed diamond powder synthesized by exlosive detonation after treatmen in hydrogen, nitrogen,methane and air at differennt temperature. Journal of Chemical Society Faraday Transactions,1996,92(18):3401-3406.
    [41]Kuznetsov V L, Chuvilin A L, Butenko Y V, et al. Onion-like carbon from ultra-disperse diamond. Chemical Physics Letters,1994,222:343-348.
    [42]高宏刚,王建明.应用纳米级金刚石抛光亚纳米级光滑表面,光学精密工程.1999,5:80-84.
    [43]符崖.纳米Ti0<,2>复合Ag<’+>抗菌材料制备[D].广州:华南理工大学:2005.
    [44]咸才军.纳米建材[M]北京:化学工业出版社.2003:51-52.
    [45]崔陇兰.反相微乳液分散金属纳米粒子和原位聚合制备金属粒子/聚苯胺复合材料[D].青岛:青岛科技大学:2003.
    [46]张家新.纳米ZnO/TiO<,2>广谱防晒剂的研制[D].武汉:华中科技大学:2005.
    [47]邹孔标.纳米碳酸钙的制备、表面改性及界面行为研究[D].南京:南京师范大学:2007.
    [48]陈海燕.分散方法对环氧树脂基纳米复合材料摩擦性能影响的研究[D].南昌:华东理工大学:2007.
    [49]毋伟,助磊等.机械力化学在高分子合成中的应用[M].化工新型材料.2000,2:10.
    [50]武岚.纳米NiFe<,2>0<,4>矿物冷冻油粘度特性的实验研究[D].2008,北京建筑工程学院.
    [51]翁云宣,牛丽洁,许国志.国内外生物分解塑料产业现状与发展趋势[J].中国塑料.2008,22(12):1-5.
    [52]蒋字铎.全国胶体与界面化学学术会议论文单印本(第五届),1991.
    [53]陈云华,林安等.纳米颗粒的团聚机理与改性分散[C].第五届全国表面工程学术会议论文集.190-196.
    [54]张立德,牟季美.纳米材料和纳米结构[M].北京科学出版社.2002:141.
    [55]Fekete F, Pukanszky B, et al,J. Colloid Interface Science,1990.135:200.
    [56]余双平,邓淑华等.超微粉体的表面改性技术进展[J].广东工业大学学报,2003,2:70-76.
    [57]许胜,李洪彬,林秋宁等.茂金属催化乙酸与丁醇酯化反应[J].催化学报.2009.30(4):365-369.
    [58]马文有,田秋,曹茂盛等.纳米颗粒分散技术研究进展—分散方法与机理(1)[J].中国粉体技术.2002,(3):28-31.
    [59]天津大学物理化学实验室.物理化学[M].上册.北京:高等教育出版社,1992.
    [60]王瑞刚,吴厚政,陈玉如等.陶瓷料浆稳定分散进展[J].陶瓷学报,1999,1:35-361.
    [61]Palla B J, Shah D O. Stabilization of hign ionic strength slurries using surfactant mixtures:molecular faceors that setermine optimal stability[J]. Journal of Colloid and Interface Science,2002,256:143-152.
    [62]马有文,田秋,曹茂盛等.纳米颗粒分散技术研究进展[J].中国粉体技术,2002,8(3):28-31.
    [63]宋晓岚,王海波,吴雪兰等.纳米颗粒分散技术的研究与发展[J].化工进展,2005,24(1):47-52.
    [64]陈云华,林安,甘复兴.纳米颗粒的解团聚机理与改性分散[C].第五届全国表面工程学术会议论文集.190-196.
    [65]赵振国,顾惕人.聚乙二醇,聚丙二醇和环氧乙烷—环氧丙烷嵌段共聚物在固液上的吸附[J].物理化学学报.1989,5(3):279-284.
    [66]王兰芬.粉体工程研究中粉体的润湿与分散之间的关系[J].无机盐工业.1996,(6):16-18.
    [67]孙加林.纳米金刚石粉微粒在镀铬液中的分散与稳定.经济技术协作中心.2007,934(23):62.
    [68]聂福德,李凤生.超细粉体在液相中的分散性研究进展[J].化工进展.1996(4):24-28.
    [69]王希玲.疏松砂岩油适度出砂开采的防砂管优选技术[D].北京:中国石油大学:2008.
    [70]焦淑红,邹若飞,李文化等.氢氧化铝粉体粒度测量技术.计量与测试技术.2004,(3):19.
    [71]杨道媛,马成良,孙宏魏等.马尔文激光粒度分析仪粒度检测方法及其优化研究[J].中国粉体技术.2002,8(5):27-30.
    [72]张炳花,唐太平,杨正.马尔文激光粒度分析技术及其在石化行业中的应用优势.现代科学仪器.2000,2:68-71.
    [73]王振新,钱彦虎.激光粒度仪测定PTA粒径分布Ⅲ.聚酯工业.2004,17(3):50-52.
    [74]Staver A M, Lyamkin A I, Gubareva N A, etal Ultradisperse diamond powders produced by explosion. Fizika Gorenija i Vzryva,1984,20(5):100-10.
    [75]Tomita S, Burian A, Dore J C, etal. Diamond nanoparticles to carbon oinions transformation:X-ray diffraction studies. Carbon,2002,40:1469-1574.
    [76]shenderova O A, Gruen D. Ultrananocrystalline diamond:synthesis, properties and applications. Norwich N Y:Willian-Andrew Publishing,2006.1-47.
    [77]P. Badziag, W. P. ELLis, N. R.Greiner. Nature.1990,343:244-245.
    [78]Gubarevich T M, DolmatovV Yu, PjaterikovV F. et al. Synthetic hydrocarbon diamond containing material[P]. RU2046094,1995.
    [79]徐康,金增寿,魏发学等.炸药爆炸法制备超细金刚石粉[J].含能材料.1993,1(3):19-21.
    [80]文潮,金志浩等.炸药爆轰合成纳米金刚石的拉曼光谱和红外光谱研究[J].光谱学与光谱分析.2005,25(5):681-684.
    [81]徐康,金增寿,饶玉山.纳米金刚石粉制备方法的改进—水下连续爆炸法[J].含能材料.1996,4(4):175-181.
    [82]李颖,李焕锋等.爆轰法制备纳米金刚石表面化学与热性能研究[J].金刚石与磨料磨具工程.2008,163(1):12-15.
    [83]付晓光.轴承钢表面复合电沉积纳米金刚石镀层的制备工艺研究[D].南昌:南昌大学:2008.
    [84]Kulomijchuk V N, Mal'kov T Yu. Synthesis of ultradisperse diamond by detonation of a blend charge[J]. Fizika Goreija i Vzryva,1993.29(1):120-128.
    [85]Savvakin G I, Trefilov V I. Structure ad properties of ultradisperses diamnd formed during detonaion in various media of codensed carbon-contaiing explosives with negative oxygen balance[J]. Doklady Akademii Nauk USSR,1991,36(11):785-787.
    [86]Vereshchagin A L, Yur'ev G S. Structure of Detonation Diamond Nanoparticles[J]. Inorganic Materials,2003,39(3):247-253.
    [87]陈权,马峰,陈鹏万等.保护介质对爆轰固相产物生成的影响[J].高压物理学报.1998,12(2):129-133.
    [88]胡卓林.中性墨水触变体系建立及触变性对中性笔书写性能影响的研究[D].太原:太原理工大学:2010.
    [89]戈尔罗洛夫斯基等.涂料工厂设备.化学工业出版社,385.
    [90]张万胜.影响球磨机效率的主要因素[J].江苏陶瓷.2001,34(2):35-36.
    [91]吴萍华.粉石英超细研磨及其影响因素分析[J]:非金属矿.2001,24(6):43-44.
    [92]李君.PZT基压电纤维/环氧树脂1-3复合材料结构及性能研究[D].武汉:武汉理工大学:2007.
    [93]Xu K. Xue Q. Anew method for deaggregation of nanodiamond from explosive detonation: graphitization-oxidation methond. Physics Solid State,2004,46(4):649-650.
    [94]Agibalova L V, Voznyakovskii A P, Dolmatov V Yu. Structure of suspensions of explosion —synthesized ultradispersed diamonds[J] Sverkhtv.Mater.1998(4):87-89.
    [95]陈鹏万.爆炸合成超微金刚石的机理及特性研究[D].北京:北京理工大学:1999.
    [96]Chiganova G A, Boonger V A, Chiganov A S. Electrophoretic technology of hydrosols of ultradispersed diamond and modification of its surface [J]. Colloid J.1993,55(5): 774-775.
    [97]Jung-Hoon Yang, Yoshikazu Nakano, Yasunori Murakami. Functionalization of ultradispersed diamond for DNA detection[J]. Chemistry and materials science, 2008,10(1):69-75.
    [98]马文有.热固化铜粉导电胶研究[D].哈尔滨:哈尔滨工程大学:2003.
    [99]邱冠周,胡岳华,王淀佐.颗粒相互作用与细粒浮选[M].长沙:中南工业大学出版社,1993.238-245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700