用户名: 密码: 验证码:
大孔α-Al_2O_3微滤膜的改性及含油废水处理应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜分离技术具有操作方便、节能、无相变、易实现规模化等优点,但是微滤、超滤膜在处理含油废水推广中依然存在着诸多的问题,如膜污染和浓差极化等引起的分离性能下降制约着无机膜大规模工业化应用。因此,为了克服上述问题,高亲水疏油性的膜材料的开发研制有着十分重要的理论和实际意义。
     本文利用硅溶胶浸渍提拉法对大孔α-Al2O3微滤膜进行修饰改性;通过在流动体系中用NaA沸石修饰大孔α-Al2O3微滤膜,制备出具有不同孔径的NaA改性微滤膜;分别将上述修饰改性的微滤膜应用到含油废水的处理。利用SEM、N2渗透测试、纯水通量测定和孔径分布分析等表征手段考察微滤膜形态结构和亲水性能,主要内容如下:
     (1)通过正交试验设计法,考察了硅溶胶浓度、浸渍时间和浸渍次数对SiO2改性微滤膜性能的影响。结果表明,合适改性条件为,硅溶胶浓度为5%,浸渍时间是30s,浸渍-焙烧不同的次数,可以制备出不同孔径的Si02改性微滤膜。
     (2)经Si02改性过的微滤膜亲水性能得到明显提高。孔径为1.65μm的Si02改性微滤膜处理含油废水的截留率为96%,而0.74μm和0.48μm的Si02改性微滤膜处理含油废水的截留率均可达99%以上;三者通量分别为110L/m-2h、47L/m-2h和32L/m-2h。
     (3)考察了改性条件对流动体系中在α-Al2O3微滤膜上进行NaA改性的影响。对于配方为56Na2O:1A12O3:5SiO2:xH2O的合成液体系,合适的NaA改性微滤膜的制备条件为:H2O:SiO2为500,流速为1mm/s,调节合成时间可制备出不同孔径的NaA改性微滤膜。
     (4)经NaA沸石修饰过的α-Al2O3微滤膜,其亲水性有明显提高,随着合成时间的延长,α-Al2O3微滤膜被NaA沸石覆盖率增加。NaA改性微滤膜在处理含油废水的过程中表现出很高的亲水疏油性,孔径为0.96μm和0.2μm的NaA改性微滤膜的截留率分别为98.6%和99.1%,且通量分别达到84L/m-2h和47L/m-2h。
Membrane technology has many advantages, such as convenient operation, low-energy requirements, no phase transformation, simple to device the scale, however, for microfiltration and ultrafiltration membranes in dealing oil wastewater there still are still many problems, such as membrane pollution and strong polarization which may cause separation performance degradation, limiting the inorganic membrane intensive industrial applications. Therefore, in order to overcome the above problems, the research of high water hydrophilic inorganic membrane materials has a very important theoretical and practical significance.
     In this article using silicon sol and dip-coating technique SiO2 modified microfiltration membranes were also prepared on the above supports;α-Al2O3 membrane was also modified by deposition of NaA zeolite under flowing synthesis condition and the NaA modified microfiltration membranes with different pore diameter were prepared; the as-prepared ultrafiltration membranes were applied to the treatment of wastewater with oil, respectively. Moreover, morphology and structure of these membranes were characterized by SEM, N2 permeation test, water flux and pore size distribution analysis. And some novel findings in this work are as follows:
     (1) By the orthogonal design method, some parameters such as the concentration of silicon sol and, dip-coating time and impregnation times for the preparation of SiO2 modified microfiltration membrane were investigated. It's found that the as-prepared membrane has well morphology and structure at the concentration of silicon sol of 5% and dip-coating time of 30 s.
     (2) The SiO2 modified microfiltration membrane shows favorable hydrophilic performance compared with the original support. In the treatment of oil wastewater, the interception rates for SiO2 modified microfiltration membranes with pore diameters of 1.65μm,0.74μm and 0.48μm were 95% ,>99% and>99%. And the corresponding fluxes were up to 110 L/m-2h,47 L/m-2h and 32 L/m-2h.
     (3) The effects of operation conditions in the flow system on the membrane performance were investigated. For the synthesis solution of 56Na2O:1Al2O3:5SiO2:XH2O, when the was 500, the flow velocity was 1mm/s, the as-prepared membrane has good performance. By adjusting the synthesis time membranes with different pore diameters can be prepared.
     (4) The hydrophilic performance of zeolite modified Al2O3 support was enhanced significantly. With the extension of synthesis time, the coverage of NaA zeolite on the Al2O3 support was increased. In the treatment of oil wastewater the NaA modified support exhibited high performance, such as interception rates for membranes with 0.96 and 0.23μm were up to 98.6% and 99.1%, and the fluxes were up to 84L/m-2h and 47L/m-2h.
引文
[1]曹洪勋,刘秋欣.轧钢废水全循环综合利用经济效益分析[J].辽宁城乡环境科技.2001,21(3):30-32.
    [2]俞建峰,袁惠新.含油污水处理[J].过滤与分离.1999(4):20-24.
    [3]周刚.乳化液废水处理浅议[J].有色金属加工.2001,163(1):16-19.
    [4]崔志橙,何为庆.工业废水处理[M].北京:冶金出版社,1989.
    [5]THE M. T. et al. Development and Performance of oil-water hydroeyelone separators [J].The Institution of Mining and Metallurgy.1998,77-83.
    [6]徐根良,曾静,翁建庆.含油废水处理技术综述[J].水处理技术.1991,17(1):1-12.
    [7]刘蓉,张大年.粗粒化法处理乳化食用油脂废水的研究[J].环境科学.2002,20(7):331-334.
    [8]周锐久.焦炭处理含油废水效果研究[J].贵州师范大学学报.1999,17(2):17-19.
    [9]袁惠民.含油废水处理方法[J].化工环保.1998,18(3):146-149.
    [10]曲远辉,雷鹏举,栾兆坤.预氧化加复合混凝剂处理高温石油废水[J].环境工程.1997,15(4):3-6.
    [11]张海燕,王宝辉,陈颖.光催化氧化处理含油污水的研究[J].化工进展.2003,22(1):67-70.
    [12]吴早春等.新型混凝剂聚磷氯化铝在污水处理中的特性[J].工业水处理.1996,6(5):15-17.
    [13]陈凡忠.废水净化的电化学技术进展[J].重庆环境科学.1997,19(6):19-32.
    [14]TENNAKNOON C L K. Electrochemical treatment of human wastes in a packed bed reactor [J]. Journal of Applied Electrochemistry.1996,26(2):99-104.
    [15]陈洪斌,庞晓东.悬浮填料生物接触氧化处理炼油废水[J].中国给水排水.2002,18(9):42-44.
    [16]严应政.含油污水的处理[J].西北建筑工程学院学报.1997,2:43-47.
    [17]郑领英,袁权.展望21世纪的膜分离技术[J].水处理技术.2000,11:13-4.
    [18]刘茉娥等.膜分离技术[M].北京:化学工业出版社,1998.
    [19]BAILEY P A. The treatment of waste emulsified oil by ultrafitration [J]. Separation and Purification Technology,1985,20:213-230.
    [20]BELKACEM M et al. New results in mental working wastewater treatment using membrane technology [J].Journal of Membrane Science.1995,106:195-205.
    [21]LIN L et al. Bench-scale membrane degumming of crude vegetable oil:Process optimization [J]. Journal of Membrane Science.1997,304:101-108.
    [22]李发永,李阳初,孙亮等.含油污水的超滤法处理[J].水处理技术.1995,21(3):145-148.
    [23]王静荣,吴光夏,吴开芬等.中空纤维超滤膜处理油田含油污水的研究[J].膜科学与技术.1998,18(2):25-27.
    [24]SOOBOK L et al. Concentration polarization, membrane fouling and cleaning in ultrafiltration of soluble oil [J]. Journal of Membrane Science,1984,19:23-38.
    [25]PLALIP et al. A fundamental study of the ultrafiltration of oil-water emulsions [J]. Journal of Membrane Science,1988,36:161-177.
    [26]OEHOA N et al. Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes. [J]. Journal of Membrane Science,2003,226:203-211.
    [27]YOUNG W, Jae-Hong Kim, et al. Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization [J]. Journal of Membrane Science,2000,169:269-276.
    [28]KHAYET M. Membrane surface modification and characterization by X-ray photoelectron spectroscopy, atomic force microscopy and contact angle measurements [J]. Applied Surface science,2004,238:269-272.
    [29]GILORN J. Effects of surface modification on antifouling and erformance properties of reverse osmosis membranes [J]. Desalination,2001,140:167-179.
    [30]王金渠.无机膜分离.[J].化工进展1993,5:4-10.
    [31]徐南平,刑卫红,赵宜江.无机膜分离技术与应用[M].北京:化学工业出版社,2003.
    [32]BHAVE R P, et al. Remmovel of oily contaminants in wastewater with microporous alumina membranes. [J]. Aiche symp,1988,84(261):19-27.
    [33]VILLARROEL L R et al. Cross-flow ultra-filtration of hydroearbon emulsion.[J]. Journal of Membrane Science,1995,23(102):55-64.
    [34]LAHIERE R J et al. Ceramie membrane treatment of Petroehemical wastewater. Environmental Progress.1993 12 (2):86-96.
    [35]张国胜,谷和平,邢卫红等.无机陶瓷膜处理冷轧乳化液废水工艺研究[J].高校化学工程学报.1998,12(3):28-29.
    [36]樊栓狮,王金渠.无机膜处理含油废水.大连理工大学学报.2000,40(1):61-63.
    [37]王婷婷.动态膜在油水乳化液分离中的应用研究[D].大连:大连理工大学,2009.
    [38]韦奇,王大为,张术根.无机陶瓷膜表面改性技术的研究进展[J].功能材料.1999,30(6):28-29.
    [39]LIN Y S et al. Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method [J]. Journal of Membrane Science,2009,337(1-2): 257-265.
    [40]HUANG P, Xu N, et el. Recovery of Volatile Organic Solvent Compounds from Air by Ceramic Membranes [J]. Industrial and Engineering Chemistry Research,1997,36(9): 3815-3820
    [41]周丽萍,Ag对Pd/A1203催化分解N0反应的促进作用[J].工业催化.2004,8:42-49.
    [42]LEJA.J著,何伯泉,陈祥勇等译.泡沫浮选表面化学[M],北京:冶金出版社,1987.84-85.
    [43]FAIBISH R S. Fouling-resistant ceramic-supported polymer membranes for ultrafiltration of oil-in-water microemulsions, Journal of Membrane Science, [J].2001,185:129-143.
    [44]汪力等.改性沸石预涂层改善超滤膜通量研究[J].中国给水排水,2005,21(12):5-9.
    [45]CASTRO R P, et al. Treatment of oil in water emulsions by ceramic-supported polymeric membranes, National Conference on Environmental Engineering [J].1994, Jul 11-13:82-89.
    [46]SZYMCZYK A, et al. Electrokinetic characterization of mixed alumina-titania--silica MF membranes by streaming potential measurements, Desalination [J]. 1998,115:129-134.
    [47]杨斌,吴文标,黄威.二氧化硅超滤与纳滤膜的研究进展[J].食品工业科技,2010,31(12):50-53.
    [48]KIM J K, Lee Y M. Poly(ethylene oxide coepichlorohyrein)membranes for carbon dioxide separtion [J]. Journal of Membrane Science,2001,193:209-225.
    [49]李玉亭,张尼尼.改性二氧化硅溶胶的制备及成膜过程[J].稀有金属材料与工程.2008,37(2).204-206.
    [50]樊栓狮,史小农,李春华等.超细孔二氧化硅膜的制备研究[J].无机材料学报.1995,10(1).90-94.
    [51]ZHONG S H, et al. Supported mesoporous SiO2 membrane synthesized by sol-gel-template technology [J]. Separation and Purification Technology,2003,32(1-3):17-22.
    [52]月桂琴,张伟清等.多孔SiO2增透膜溶液的工艺研究[J].硅酸盐学报,1998,(5):48-51.
    [53]WIJNEN et al. The molecular basis of aging of aqueous silica gel [J]. Journal of Colloid and Interface Science[J].1991,145(1):17-32
    [54]闫继娜,金江,刘敏.载体对无机膜完整性影响的研究[J].硅酸盐通报,1999,(1):62-66.
    [55]DE L. K Keizer and A J Burggraaf. Analysis and theory of gas transport in microporous sol-gel derived ceramic membranes [J]. Journal of Membrane Science,1995,104(1-2): 81-100.
    [56]姜云鹏,王榕树.纳米二氧化硅-聚乙烯醇复合超滤膜的制备与表征[J].化学工程,2003,31(2):38-41.
    [57]MAURITZ K A, Payne J T. [Perfluorosulfonate ionomer]/silicate hybrid membnanes via base-catalyzed in situ sol-gel processes for tetraethlortho silicate [J]. Journal of membrane science.1999,157:219-226.
    [58]JOLY C, et al. Sol-gel polyimide silica composite membrane:gas transport properties[J]. Journal of membrane science.1997,130:63-74.
    [59]张雄福等.澄清溶液体系二次生长发NaA型沸石膜的生长机制及膜厚的控制合成[J].高等化学学报,2005,26(5)806-810.
    [60]KITA H, Fuchita K, Horita T, et al. Preparation of Faujasite membranes and their permeation properties [J]. Separation and Purification Technology, 2001,25(1-3):261-268.
    [61]MORIGAMI Y, Kondo M, ABE J, et al. The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane [J]. Separation and Purification Technology,2001,25(1-3):251-260.
    [62]RICHTER, et al. Preparation of zeolite membranes on the inner surface of ceramic tubes and capillaries [J]. Separation and Purification Technology,2003,32: 133-138.
    [63]PINA M P, et al. A semi-continuous method for the synthesis of NaA zeolite membranes on tubular supports [J]. Journal of Membrane Science,2004,244:141-150.
    [64]SONIA Aguado, et al. Continuous synthesis of NaA zeolite membranes [J]. Microporous and Mesoporous Materials,2009,120:170-176.
    [65]张小明,吕高孟等.流动体系中NaA分子筛膜的制备及渗透汽化分离性能研究[J].膜科学与技术,2010,30(1):50-53.
    [66]李亚治.提高工业废水中矿物油测定结果准确度的方法讨论[J].环境工程.2000,18(2):53-55.
    [67]麦伟清,谷巍.重量法测定污水中矿物油含量的改进[J].石油化工.1999,28(6):402-404.
    [68]庞艳华,丁永生,公维民.紫外分光光度法测定水中油含量[J].大连海事大学学报.2002,28(4):68-71.
    [69]黄培,邢卫红,徐南平等.气体泡压法测定无机微滤膜孔径分布研究[J].水处理技术.1996,22(2):80-84.
    [70]徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学[M].北京:科学出版社,2004.
    [71]VAN den berg A W C, GORA L, JANSEN J C, et al. Zeolite A membranes synthesized on a UV-irradiated Ti02 coated metal support:the high pervaporation performance [J]. Journal of Membrane Science,2003,224(1-2):29-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700