碎石土滑坡变形解体破坏机理及稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了总结碎石土滑坡的一般发育规律,分析碎石土滑坡的稳定性,揭示碎石土滑坡变形解体破坏的机理、碎石土古滑坡复活破坏的主要机理和它们的主要诱发因素,通过资料搜集整理和分析、现场工程地质调查与勘探、现场测试与监测和室内外的物理力学试验,采用数理统计分析法、不平衡推力法、大变形弹塑性有限元算法、弹塑性有限元接触算法,运用非线性科学的尖点突变理论和碎石土边坡地下水管网状排泄系统的理论,系统研究了碎石土滑坡的发育规律,分析了滑坡体位移与降雨量以及滑坡稳定性系数与滑体饱水面积比、滑面岩土体抗剪强度参数之间的相关关系,建立了碎石土滑坡位移与降雨量的通用统计模型和强降雨作用下浅层滑坡的尖点突变模型,分析了降雨对碎石土滑坡稳定性的影响,揭示了碎石土滑坡变形解体破坏的机理以及碎石土古滑坡复活破坏的主要机理和主要诱发因素,并提出了碎石土滑坡稳定性分析的新方法。研究取得以下一些主要成果和认识。
     碎石土自然边坡地下水排泄的管网系统发育,地下水的渗流具有很大的不均匀性和集中渗流的特性;碎石土滑坡的变形破坏是一个缓慢的发展过程;降雨,特别是强降雨,是碎石土滑坡的主要触发因素。
     分别对典型浅层和中层松散土质滑坡坡体位移、降雨量进行指数模型和幂函数模型的非线性回归分析和比较,得出浅层和中层松散土质滑坡坡体位移与降雨量相关关系一般服从幂函数分布的规律,为降雨条件下浅中层碎石土滑坡的变形解体破坏机理及稳定性研究和预测预报提供科学的依据。滑坡稳定性系数与滑体饱水面积比的关系服从线性分布,滑坡稳定性系数随滑体的饱水面积比增大而减小。影响碎石土滑坡稳定性主要因素的敏感性分析结果表明,按因素敏感度从大到小排列,依次为滑面岩土体内摩擦角、地形坡度、滑体饱水面积比和滑面岩土体的内聚力。
     提出采用不分离接触弹塑性有限元强度折减法分析顺层滑坡的稳定性和计算滑坡稳定性系数的新方法,结合工程实例表明采用该方法分析顺层滑坡的稳定性可以更加逼真地反映滑坡变形、解体和破坏的实际情况。
     采用大变形弹塑性有限元极限塑性应变分析法确定碎石土滑坡的滑动面,并根据极限状态下塑性应变值的大小确定滑面不同抗剪强度取值段,提出全面考虑滑面上岩土体抗剪强度不同发挥程度的不平衡推力法,并通过实例分析表明该方法能更加精确地计算碎石土滑坡的稳定性系数和分析滑坡的稳定性,更加真实地
In order to summarize the general regular development pattern of debris landslide, analyze its stability, and reveal its mechanism of deformation, disintegration and failure, and the main reviving and failure mechanism of ancient debris landslide and their main induced factors, through the collection, arrangement and analysis of related datum, the site investigation and exploration of engineering geology, site test and monitoring, indoor and outdoor physical mechanics test, adopting the analytic means of mathematic statistics, unbalanced-thrust method, large deformation elastic-plastic FEM algorithm, elastic-plastic FEM contact algorithm, nonlinear science cusp-catastrophe theory, and the theory of groundwater pipe network drainage system, some studies were completed as follows: First, the general regular development pattern of debris landslide was researched systematically. Second, the relationship between slop-mass slide displacement and precipitation and the one among the landslide stability coefficient, the saturation-area ratio of slip-mass, and the shear-strength parameters of rock and soil of sliding surface were analyzed. Third, the general statistical model of slope-mass displacement and precipitation for debris landslide and the cusp-catastrophic model of shallow landslide under intensive rainfall were established. Fourth, the influence of rainfall on the stability of debris landslide was analyzed. Fifth, the mechanism of deformation, disintegration and failure of debris landslide, the main reviving and failure mechanism of ancient debris landslide, and their main induced factors were revealed. Furthermore, the new methods of the stability analysis of debris landslide were raised. Through these studies, some main results below are obtained.In the first place, the pipe network system of groundwater discharge in natural debris landslide is often developed. Furthermore, groundwater seepage has great inhomogeneity and characteristic of concentrating seepage. The deformation and failure of debris landslide is a slow-developing process. Rainfall, especially, intensive rainfall is the main induced factor of debris landslide.Secondly, by the nonlinear regression analysis and comparison of exponent model and power function one to the slope-mass slide displacement and precipitation of typical shallow and medium layer loose soil landslide separately, the distribution law of power function generally followed by the relationship between slope-mass slide displacement and precipitation is derived, which may provide the scientific basis for the study on the
    mechanism of deformation, disintegration and failure, the stability, and the forecast and prediction of this kind of loose soil landslide under rainfall. The linear distribution law followed by the relationship between the saturation-area ratio of debris landslide slip-mass and its stability coefficient is derived also. Furthermore, its stability coefficient decreases as the saturation-area ratio of slip-mass increases.Through the sensitivity analysis of main factors to influence on the stability of debris landslide, its order is internal friction angle of sliding surface, topographic grade, saturation-area ratio of slip-mass and cohesion of sliding surface by descending order of their sensitivity coefficients.Thirdly, the new method that is used to analyze the stability and compute the stability coefficient of bedding landslide by the non-separation contact elastic-plastic FEM strength reduction method is provided, furthermore, connected with the concrete engineering example, it is shown that to analyze the stability of bedding landslide may more clearly reflect actual state of landslide deformation, disintegration and failure.Fourthly, the sliding surface of debris landslide is determined by the method of limit plastic strain analysis of large deformation elastic-plastic FEM. The sections of different utilization degrees of shear strength are determined on the basis of plastic strain value under the limiting state of landslide. The unbalanced-thrust method comprehensively thinking over different utilization degrees of shear strength of rock and soil on sliding plane is provided, and it is shown by the analysis of concrete engineering example that it may be very well used to analyze the stability of debris landslide and calculate its stability coefficient by this new method, which can more really reflect actual locating state of debris landslide.Fifthly, three dimensional contact elastic-plastic FEM strength reduction method is used to compute the integral stability coefficient of debris landslide and analyze its stability and process of the deformation, disintegration and failure, which the mechanism of deformation, disintegration and failure is revealed. Furthermore, the research result shows that adopting the new method may think over the spatial effect of landslide mass and better reflect the actual locating state and sliding process of debris landslide. In addition, the new method to compute the stability coefficient by the contact elastic-plastic FEM algorithm is led on the basis of physical meaning of landslide stability coefficient, that is, the method to compute the two dimensional section stability coefficient of debris landslide by extracting the friction stress on sliding surface on the basis of the compute result by the three dimensional contact elastic-plastic FEM algorithm. Furthermore, that this new method is fitter to analyze the stability of debris landslide is derived from the comparison among it, the unbalanced-thrust method and the strength reduction method of two dimensional contact elastic-plastic FEM used to compute the stability coefficient of debris landslide.Sixthly, connected with concrete engineering practice, through site exploration and test and indoor physical-mechanics experiment of rock and soil, the process of
    deformation, disintegration and failure of debris landslide under rainfall is analyzed by the analytic means of mathematic statistics, the unbalanced-thrust method, two dimensional non-separation contact elastic-plastic FEM algorithm and three dimensional one, and the theory of debris slope groundwater pipe network drainage system, based on the characteristic analysis of debris general physical-mechanics and seepage. Furthermore, the main mechanism and general mechanics mechanism of deformation, disintegration and failure of debris landslide under rainfall are revealed. Meanwhile, the research result is shown that intensive rainfall and long time proper strength steady rain or intensive rainfall are separately the main induced factors of shallow debris landslide and medium and deep one taking place instability. Additionally, the rainfall influence on the stability of debris landslide is modeled and analyzed by coupling the unbalanced-thrust method adopting equivalent shear strength with the saturation-area ratio of slip-mass with two dimensional non-separation contact elastic-plastic FEM algorithm and three dimensional one.Seventhly, through site exploration and test, and indoor physical-mechanics experiment of rock and soil, adopting the analytic means of mathematic statistics, unbalanced-thrust method, three dimensional large deformation elastic-plastic FEM contact algorithm, and the theory of groundwater pipe network drainage system, the reviving and failure process of ancient debris landslide and its stability are analyzed. Furthermore, not only the main reviving and failure mechanism of ancient debris landslide under rainfall is revealed, but it is revealed also that long time proper strength steady rain or intensive rainfall is the main induced factor of its reviving instability and failure. Meanwhile, the research result is shown that adopting the three dimensional large deformation elastic-plastic FEM contact algorithm to analyze the stability of ancient debris landslide may think over the spatial effect of landslide mass, which makes compute result still more accurate.Eighthly, based on the correlation data of slope-mass sliding displacement and precipitation reported by documents and connected by engineering concrete example, one cusp-catastrophic model of shallow landslide is established by the analytic means of mathematic statistics, the unbalanced-thrust method and the means of nonlinear science cusp-catastrophe theory. Meanwhile, according to this model, the failure mechanism of sudden instability of shallow landslide under intensive rainfall is revealed. Furthermore, it is revealed also that intensive rainfall is the most decisive triggering factor of shallow landslide and the external main reason that influences the stability coefficient value of shallow landslide and its stability. In addition, the reason that few of shallow landslides sometimes come down after intensive rainfall taking place is revealed through the established cusp-catastrophic model of shallow landslide.
引文
[1] 孟晖,胡海涛.我国主要人类工程活动引起的滑坡崩塌和泥石流灾害[J].工程地质学报,1996,4(4):69-74.
    [2] 国土资源部地质环境司宣传教育中心.中国地质灾害与防治[M].地质出版社,2003.
    [3] 王发读.浅层堆积物滑坡特征及其与降雨的关系初探[J].水文地质工程地质,1995,(01):20-23.
    [4] 林卫烈,杨舜成.滑坡与降雨量相关性研究[J].福建水土保持,2003,15(1):28-33.
    [5] 吴金桂.319国道龙岩市新罗区龙门考塘滑坡监测分析[J].福建建筑,2000,70(S2):53-55.
    [6] Ng C W W. Influence of rainfall intensity and duration on slope stability in unsaturated soils [J]. Quarterly journal of engineering geology, 1998, 31(2): 105-113.
    [7] 贺健.降雨对蔗头山山体滑坡的影响及灰色理论灾变预测[J].有色金属(矿山部分),2000,(5):26-29.
    [8] 胡明鉴,汪稔,张平仓.斜坡稳定性及降雨条件下激发滑坡的试验研究[J].岩土工程学报,2001,23(4):454-457.
    [9] 林孝松,郭跃.滑坡与降雨的耦合关系研究[J].灾害学,2001,16(2):87-92.
    [10] 谢剑明,刘礼领,殷坤龙,等.浙江省滑坡灾害预警预报的降雨阀值研究[J].地质科技情报,2003,22(04):101-105.
    [11] Iseda, T; Tanabashi, Y. Mechanism of slope failure during heavy rainfall in Nagasaki July[J]. Natural Disaster Science, 1986, 8 (1): 55-84.
    [12] Cai, F; Ugai, K. Numerical analysis of rainfall effects on slope stability[J]. International Journal of Geomechanics, 2004, 4 (2): 69-78.
    [13] 高润德,彭良泉,王钊.雨水入渗作用下非饱和土边坡的稳定性分析[J].人民长江,2001,32(11):25-27.
    [14] 赵慧丽.降雨入渗对非饱和土体边坡稳定性影响规律研究[硕士学位论文][D].北京:北方交通大学,2001.
    [15] 王彦.降雨入渗对边坡稳定的影响[硕士学位论文][D].南京:河海大学,2001.
    [16] 谭新.考虑雨水入渗的边坡稳定性分析[硕士学位论文][D].武汉:中国科学院武汉岩土力学研究所,2002.
    [17] Cho S E, Lee S R. Evaluation of surficial stability for homogeneous slopes considering[J].Journal of geotechnical and geoenvironmental engineering, 2002, 128(9): 756-763.
    [18] 朱文彬,刘宝琛.降雨条件下土体滑坡的有限元数值分析[J].岩石力学与工程学报,2002,21(4):509-512.
    [19] 殷坤龙,汪洋,唐仲华.降雨对滑坡的作用机理及动态模拟研究[J].地质科技情报,2002,21(1):75-78.
    [20] Chen H; Lee C F. A dynamic model for rainfall-induced landslides on natural slopes[J]. Geomorphology, 2003, 51(4): 269-288.
    [21] 刘小伟,刘高,谌文武,等.降雨对边坡变形破坏影响的综合分析[J].岩石力学与工程学报,2003,22(S2):2715-2718.
    [22] 李爱国,岳中琦,谭国焕等.土体含水率和吸力量测及其对边坡稳定性的影响[J].岩土工程学报,2003,25(3):278-282.
    [23] 黎志恒.兰州黄土滑坡与地表水入渗变形关系分析—以皋兰山滑坡降雨入渗试验研究为例[J].甘肃科学学报,2003,15(S):131-134.
    [24] 王晓峰.降雨入渗对非饱和土边坡稳定性影响的研究[硕士学位论文][D].西安:西安建筑科技大学,2003.
    [25] 戚国庆,黄润秋.降雨引起的边坡位移研究[J].岩土力学,2004,25(3):383-386.
    [26] 姚裕春,姚令侃,袁碧玉.降雨条件下边坡破坏机理离心模型研究[J].中国铁道科学,2004,25(4):64-68.
    [27] 龙辉.降雨触发滑坡的非线性模型与斜坡演化的混沌效应[硕士学位论文][D].武汉:中国科学院地质与地球物理研究所,2001.
    [28] 龙辉,秦四清,万志清.降雨触发滑坡的尖点突变模型[J].岩石力学与工程学报,2002,21(4):502-508.
    [29] 李文广.考虑降雨入渗影响的非饱和土边坡突变失稳的研究[硕士学位论文][D].西安:西安建筑科技大学,2004.
    [30] Revilla J; Castillo E. Calculus of variations applied to stability of slopes[J]. Geotechnique, 1977, 27 (1) : 1-11.
    [31] 潘家铮.建筑物的抗滑稳定和滑坡分析[M].北京:水利出版社,1980.
    [32] 陈祖煜.建筑物抗滑稳定分析中“潘家铮最大最小原理”的证明[J].清华大学学报(自然科学版),1998,38(1):1-4.
    [33] Li, K S; White, W. Rapid evaluation of the critical slip surface in slope stability problems [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1987, 11 (5) :449-473.
    [34] Srbulov; Milutin M. Limit equilibrium method with local factors of safety for slope stability [J]. Canadian Geotechnical Journal, 1987, 24 (4) : 652-656.
    [35] Leshchinsky, Dov. Slope stability analysis-Generalized approach[J]. Journal of Geotechnical Engineering, 1990, 116(5): 851-867.
    [36] Enoki, Meiketsu; Yagi, Norio; Yatabe, Ryuichi. Generalized slice method for slope stability analysis[J]. Soils and Foundations, 1990, 30 (2) : 1-13.
    [37] Boutrup, E; Lovell, C W; Siegel, R A. Stabl 2 EM dash a computer program for general slope stability analysis[J]. SAE Prepdnts, 1979, 2: 747-757.
    [38] Baker, R. Determination of the critical slip surface in slope stability computations[J].International Journal for Numerical and Analytical Methods in Geomechanics, 1980, 4 (4) :333-359.
    [39] Celestino, T B; Duncan, J M. Simplified search for noncircular slip surfaces[J]. Proceedings of the International Conference on Soil Mechanics and Foundation Engineering, 1981, 3: 25-32.
    [40] 曹文贵,颜荣贵.排土场边坡稳定性分析方法研究与应用[J].湖南有色金属,1995,11(1):6-12.
    [41] 陈谦应.边坡稳定分析计算模式及其数值计算方法[J].华东公路,1995,94(3):71-75.
    [42] 陈善雄.陈守义.考虑降雨的非饱和土边坡稳定性分析方法[J].岩土力学,2001,22(4):447-450.
    [43] 程康.三维极限平衡法边坡稳定性分析研究[J].中国地质灾害与防治学报,2001,12(4):18-20.
    [44] 郑颖人,杨明成.边坡稳定安全系数求解格式的分类统一[J].岩石力学与工程学报,2004,23(16):2836-2841.
    [45] 张均锋.三维简化Janbu法分析边坡稳定性的扩展[J].岩石力学与工程学报,2004,23(17):2876-2881.
    [46] Day, Robert W. State of Art: Limited Equilibrium and Finite-Element Analysis of Slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(9): 894.
    [47] Osias, J R.; Swedlow, J L. Finite elasto-plastic deformation-Ⅰ: theory and numerical examples[J]. International Journal of Solids and Structures; 1974, 10 (3) : 321-339.
    [48] Snitbhan, Nimitchai; Chen, Wai-Fah. Finite element analysis of large deformation in slopes [J]. American Society of Mechanical Engineers, Applied Mechanics Division, AMD, 1976, (2): 744-756.
    [49] Jiang G L, Magnan J P. Stability analysis of embankments: comparison of limit analysis with methods of slices [J]. Geotechnique, 1997, 47(4): 857~872.
    [50] Griffiths D V, Lane P A. Slope Stability analysis by finite element[J]. Geotechnique, 1999, 49(3): 387~403.
    [51] Wiberg, N E; Koponen, M; Runesson, K. Finite element analysis of progressive failure in long slopes[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14 (9) : 599-612.
    [52] Shibata, T; Sekiguchi, H. Prediction of embankment failure on soft ground[J]. Proceedings of the International Conference on Soil Mechanics and Foundation Engineering, 1981, 1: 247-250.
    [53] Bergado, D T; Chai, J C; Miura, N. FE analysis of grid reinforced embankment system on soft Bangkok clay[J]. Computers and Geotechnics, 1995, 17 (4) : 447.
    [54] Meroi, E A; Schrefler, B A; Zienkiewicz, O C. Large strain static and dynamic semisaturated soil behaviour[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19 (2) : 81-106.
    [55] 张士兵.边坡稳定性大变形弹塑性有限元强度折减分析[硕士学位论文][D].西安:西安科技大学,2003.
    [56] 何伟.边坡稳定性弹-粘塑性大变形有限元分析[硕士学位论文][D].南京:南京大学,2001.
    [57] 周翠英,刘祚秋,董立国,等.边坡变形破坏过程的大变形有限元分析[J].岩土力学,2003,24(4):444-448.
    [58] Dawson, Ethan (Dames & Moore); You, Kwangho; Park, Yeonjun. Strength-reduction stability analysis of rock slopes using the Hock-Brown failure criterion[J]. Geotechnical Special Publication, 2000, 102: 65-77.
    [59] Calderon, Alex Ruben. The application of back-analysis and numerical modeling to design a large pushback in a deep open pit mine[Master's dissertation]. Colorado School of Mines, Golden, CO, United States, 2000.
    [60] Xiong J, et al. A New Slope Stability Analysis Method Based on FEM and Discussion on a Failure Mechanism of a Cut Slope[J]. Jisuberi(Landslides), 2001, 38(2): 129-135.
    [61] Cai F(Reprint); Ugai K. Reinforcing mechanism of anchors in slopes: a numerical comparison of results of LEM and FEM[J]. International Journal For Numerical And Analytical Methods In Geomechanics, 2003, 27(7): 549-564.
    [62] 赵尚毅,时卫民,郑颖人.边坡稳定性分析的有限元法[J].地下空间,2001,21(5):450-455.
    [63] 郑颖人,赵尚毅,张鲁渝.用有限元强度折减法进行边坡稳定分析[J].中国工程科学,2002,4(10):57-62.
    [64] 赵尚毅,郑颖人,邓卫东.用有限元强度折减法进行节理岩质边坡稳定性分析[J].岩石力学与工程学报,2003,22(2):254-260.
    [65] Ugai K. Static and dynamic analyses of slopes by the 3-D elasto-plastic FEM Landslides [J]. In: International Symposium on landslides, 1996: 1413-1416.
    [66] 连镇营,韩国城,孔宪京.强度折减有限元法研究开挖边坡的稳定性[J].岩土工程学报,2001,23(4):407-411.
    [67] 赵尚毅,郑颖人,时卫民,等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报,2002,24(3):343-346.
    [68] 孙伟,龚晓南.土坡稳定分析强度折减有限元法[J].科技通报,2003,19(4):319-322.
    [69] 张鲁渝,郑颖人,赵尚毅,等.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报,2003,(1):21-27.
    [70] 栾茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报,2003,23(3):1-8.
    [71] 戴自航,沈蒲生.莫尔-库仑等面积圆屈服准则的简化形式及应用[J].福州大学学报(自然科学版),2003,31(4):454-459.
    [72] 孙伟,龚晓南.弹塑性有限元法在土坡稳定分析中的应用[J].太原理工大学学报,2003,34(2):199-202.
    [73] 蔡庆娥,马建勋.某公路边坡稳定性的二维有限元分析[J].岩土工程界,2004,7(3):62-63.
    [74] 邓建辉,张嘉翔,闵弘,等.基于强度折减概念的滑坡稳定性三维分析方法(Ⅱ):加固安全系数计算[J].岩土力学,2004,25(6):871-875.
    [75] 马建勋,赖志生,蔡庆娥,等.基于强度折减法的边坡稳定性三维有限元分析[J].岩石力学与工程学报,2004,23(16):2690-2693.
    [76] 郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2004,23(19):3381-3388.
    [77] 谢明.福宁高速A15-2标段二埔塘2号路堑高边坡弹塑性有限元数值分析[J].公路交通技术,2004,(4):8-12.
    [78] 谢肖礼.双圆锥屈服准则理论及其工程应用[J].广西科学,2004,11(3):201-206.
    [79] 张建勋,陈福全.用强度折减有限元法分析土坡稳定问题[J].山东科技大学学报(自然科学版),2004,23(1):115-117.
    [80] 谢肖礼,赵国藩,许靖.一种新的弹塑性本构矩阵及应用[J].广西大学学报(自然科学版),2004,29(4):324-330.
    [81] 张永生,梁立孚,周健生.水位骤降对土质渠道边坡稳定性影响的弹塑性有限元分析[J].哈尔滨工程大学学报,2004,25(6):736-739.
    [82] 郑颖人,赵尚毅.岩土工程极限分析有限元法及其应用[J].土木工程学报,2005,38(1):91-99.
    [83] 刘文平,郑颖人,刘元雪.边坡稳定性理论及其局限性[J].后勤工程学院学报,2005,(1):15-19.
    [84] 黄润秋,许强.显式拉格朗日差分分析在岩石边坡工程中的应用[J].岩石力学与工程学报,1995,14(4):346-354.
    [85] V.K.辛格,M.普拉萨德,B.B.达尔,等.用数值模拟法进行露天矿边坡稳定性分析[J].国外金属矿山,1995,(2):7-14.
    [86] 寇晓东.周维垣.杨若琼,等.应用三维快速拉格朗日法进行三峡船闸高边坡锚固稳定与机理研究[J].土木工程学报,2002,35(1):68-74.
    [87] 高永涛,张友葩,吴顺川,等.滑移岩石边坡治理的稳定性分析[J].岩石力学与工程学报,2002,21(S1):2562-2569.
    [88] 邓辉,黄润秋.岩口滑坡的发育特征及运动过程研究[J].成都理工学院学报,1999,26(3):283~286.
    [89] Zettler A H, et al. Stability analysis using finite difference method[J]. Congres International de Mecanique des Roches, 1999, 1: 149-152.
    [90] 朱文彬,刘宝琛.公路边坡降雨引起的渗流分析[J].长沙铁道学院学报,2002,20(2):104-108.
    [91] 肖国峰,陈从新,林涛,等.考虑水位变动影响的粘土质缓坡稳定性分析[J].岩土力学,2004,25(11):1753-1756.
    [92] 谢定义.21世纪土力学的思考[J].岩土工程学报,1997,19(4):111-114.
    [93] 巨能攀,杨建国,黄润秋.108国道新店子滑坡稳定性评价及治理设计[J].地质灾害与环境保护,2001,12(1):54-57.
    [94] 孙陶,陈英.有限单元法在边坡稳定分析中的应用实例[J].四川水力发电,2001,20(1):28-31.
    [95] 谢谟文,江崎哲郎,周国云.基于边坡单元的三维滑坡灾害评价的GIS方法[J].岩石力学与工程学报,2003,22(6):969-976.
    [96] 方云,陈爱云,张涛,等.四川巫山县四道沟滑坡稳定性分析评价[J].现代地质,2002,16(3):327-330.
    [97] 钱家欢,殷宗泽.土工原理与计算(第二版)[M].水利电力出版社,1995.
    [98] 何满潮.软岩巷道工程概论[M].中国矿业大学出版社,1993.
    [99] Christian, John T; Urzua, Alfredo. Probabilistic evaluation of earthquake-induced slope failure [J]. Journal of Geotechnical and Geoenvironmental Engineering,, 1998, 124 (11):1140-1143.
    [100] 金晓媚,刘金韬.重庆市醪糟坪滑坡群危险性评价[J].岩石力学与工程学报,2000,19(1):47-49.
    [101] 吕杰堂,朱继永,李钟.边坡破坏概率分析及其在渔洞河古滑坡稳定评价中的应用[J].岩土工程技术,2000,(4):195-199.
    [102] 吴中如,潘卫平.应用李雅普诺夫函数分析岩土边坡体的稳定性[J].水利学报,1997,(8):29-33.
    [103] 史永胜,许东俊.时序分析在边坡位移预测中的应用[J].岩土力学,1995,16(4):1-7.
    [104] 崔学慧,王新民.山体滑坡致灾因子的定量评价[J].鞍山师范学院学报,2002,4(3):37-40.
    [105] 刘新喜,晏鄂川,王鹏飞,等.滑坡稳定性评价的非线性方法[J].中国安全科学学报,2003,13(1):34-36.
    [106] 汪华斌,徐瑞春.BP神经网络在鱼洞河滑坡稳定性评价中的应用[J].长江科学院院报,2002,19(4):62-64.
    [107] 段庆伟.确定边坡潜在滑动面的新方法——变形应力场法及其应用[J].岩石力学与工程学报,2004,23(3):530-530.
    [108] 张国祥,刘新华,魏伟.二维边坡滑动面及稳定性弹塑性有限元分析[J].铁道学报,2003,25(2):79-83.
    [109] 朱继伟,闫澍旺.边坡安全系数的研究[J].海岸工程,2004,23(2):38-44.
    [110] 时卫民,郑颖人,唐伯明,等.边坡稳定不平衡推力法的精度分析及其使用条件[J].岩土工程学报,2004,26(3):313-317.
    [111] 王汉辉.边坡稳定的有限元塑性极限分析法研究[硕士学位论文][D].武汉:武汉大学,2003.
    [112] 王均星,王汉辉,张优秀,等.非均质土坡的有限元塑性极限分析[J].岩土力学,2004,25(3):415-421.
    [113] 郑宏,王汉辉,张优秀,等.基于变形分析的边坡潜在滑面的确定[J].岩石力学与工程学报,2004,23(5):709-716.
    [114] 王琛.土流变性质研究与滑坡三维非线性有限元数值模拟[博士学位论文][D].成都:四川大学,2003.
    [115] 周资斌.基于极限平衡法和有限元法的边坡稳定分析研究[硕士学位论文][D].南京:河海大学,2004.
    [116] 胡敏萍.极限平衡法和有限单元法分析复杂边坡的稳定性[硕士学位论文][D].杭州:浙江大学,2004.
    [117] 黄志全.边坡演化的非线性机制及滑坡预测预报研究[博士学位论文][D].北京:中国科学院地质研究所,1999.
    [118] 黄志全,张长存,姜彤.滑坡预报的协同-分岔模型及其应用[J].岩石力学与工程学报,2002,21(4):498-501.
    [119] 刘军,秦四清,张倬元.边坡岩体系统的非线性演化和分岔研究[J].四川成都理工学院学报,2000,27(4):379-382.
    [120] Chau, K T. Landslides modeled as bifurcations of creeping slopes with nonlinear friction law[J]. International Journal of Solids and Structures, 1995, 32 (23) : 3451-3464.
    [121] Darve, F; Laouafa, F. Instabilities in granular materials and application to landslides[J]. Mechanics of Cohesive-Frictional Materials, 2000, 5 (8) : 627-652.
    [122] 易顺民,唐辉明.滑坡分维特征及其预测意义[J].工程地质学报,1994,2(2):48-53.
    [123] 秦四清,张倬元.滑坡灾害可预报时间尺度问题探讨[J].中国地质灾害与防治学报,1994,5(1):17-22.
    [124] 张子新,孙钧.分形块体理论及其在三峡高边坡稳定分析中的应用[J].自然灾害学报,1995,4(4):89-95.
    [125] 易顺民.滑坡滑动带土的分维特征及其意义[J].中国地质灾害与防治学报,1995,6(2):21-24.
    [126] 吴中如,潘卫平.分形几何理论在岩土边坡稳定性分析中的应用[J].水利学报,1996,(4):78-82.
    [127] Pelletier, Jon D; Malamud, Bruce D; B lodgett, Troy; et al. Scale-invariance of soil moisture variability and its implications for the frequency-size distribution of landslides[J]. Engineering Geology, 1997, 48 (3-4) : 255-268.
    [128] 郑明新,王恭先,王兰生.分形理论在滑坡预报中的应用研究[J].地质灾害与环境保护,1998,9(2):18-26.
    [129] 毛东明,张飞.分形几何在边坡失稳预测中的应用[J].包头钢铁学院学报,1999,18(4):407-410.
    [130] 吴树仁,石玲,谭成轩,等.长江三峡黄腊石和黄土坡滑坡分形分维分析[J].地球科学.中国地质大学学报,2000,25(1):61-65.
    [131] 李亮,傅鹤林.岩体节理裂隙特征的分形研究[J].铁道学报,2000,22(2):77-81.
    [132] 周萃英,汤连生,晏同珍.滑坡灾害系统的自组织[J].地球科学-中国地质大学学报,1996,21(6):604-607.
    [133] 曾开华,刘宇敏,吴九红.边坡变形破坏非线性动力学特征的分析与探讨[J].南昌水专学报,1998,17(4):16-20.
    [134] 张英,齐欢,王小平.新滩滑坡非线性动力学模型方法研究[J].长江科学院院报,2002,19(4):33-35.
    [135] 李凡,段建立,吴敏.采用混沌变异演化算法在边坡稳定分析中的应用[J].合肥工业大学学报(自然科学版),2002,25(1):109-112.
    [136] 付义祥,刘志强.边坡位移的混沌时间序列分析方法及应用研究[J].武汉理工大学学报(交通科学与工程版),2003,27(4):473-476.
    [137] 刘华明,齐欢,蔡志强.滑坡预测的非线性混沌模型[J].岩石力学与工程学报,2003,22(3):434-437.
    [138] 唐璐,齐欢.混沌和神经网络结合的滑坡预测方法[J].岩石力学与工程学报,2003,22(12):1984-1987.
    [139] 黄志全,崔江利,刘汉东.边坡稳定性预测的混沌神经网络方法[J].岩石力学与工程学报,2004,23(22):3808-3812.
    [140] 熊传祥,龚晓南,王成华.高速滑坡临滑变形能突变模型的研究[J].浙江大学学报(工学版),2000,34(4):443-447.
    [141] 钟铁.潘田矿区降雨-滑坡关系的突变性分析[J].金属矿山,2001,(5):16-18.
    [142] 龙辉,秦四清,朱世平,等.滑坡演化的非线性动力学与突变分析[J].工程地质学报,2001,9(3):331-335.
    [143] Qin, Siqing; Jiao, Jiujimmy; Wang, Sijing; et al. A nonlinear catastrophe model of instability of planar-slip slope and chaotic dynamical mechanisms of its evolutionary process[J]. International Journal of Solids and Structures, 2001, 38 (44-45) : 8093-8109.
    [144] Qin, Siqing; Jiao, Jiujimmy; Wang, Sijing. A cusp catastrophe model of instability of slip-buckling slope[J]. Rock Mechanics and Rock Engineering, 2001, 34 (2) : 119-134.
    [145] 李思平,孙连英.基于非线性理论的边坡稳定性评价模型[J].水文地质工程地质,2002,(2):11-14.
    [146] 李如忠,周敏.南芬露天铁矿下盘边坡失稳机理分析研究[J].有色矿山,2003,32(2):18-21.
    [147] 房营光.土质边坡失稳的突变性分析[J].力学与实践,2004,26(4):24-27.
    [148] 赵兵,李华锋,李如忠.船山集团石灰石露天采场边坡稳定性研究[J].金属矿山,2004,(12):15-18.
    [149] Tavenas, F; Leroueil, S. Creep and failure of slopes in clay[J]. Canadian Geotechnical Journal, 1981, 18 (1) : 106-120.
    [150] Hirata, Tokio; Chishaki, Takeshi; Mino, Sadamu; et al. Swelling and creep of clays in landslide[J]. Memoirs of the Faculty of Engineering, Kyushu University, 1986, 46 (2) : 131-147.
    [151] Savage, William Z; Chleborad, Alan F. Model for creeping flow in landslides[J]. Bulletin of the Association of Engineering Geologists, 1982, 19 (4) : 333-338.
    [152] Samtani, N C; Desai, C S; Vulliet, L. Viscoplastic model for creeping natural slopes[J]. Proc 8 Int Conf Comput Methods Adv Geomech, 1994, 3: 2483.
    [153] Desai, Chandra S; Samtani, Naresh C; Vulliet, Laurent. Constitutive modeling and analysis of creeping slopes[J]. Journal of Geotechnical Engineering, 1995, 121 (1): 43-56.
    [154] Davis, R O; Smith, N R; Salt, G. Pore fluid frictional heating and stability of creeping landslides[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14 (6): 427-443.
    [155] Zaretskii, Yu K; Vorob'ev; V N. Evaluation of the long-term stability of creep-prone slopes[J]. Soil Mechanics and Foundation Engineering (English translation of Osnovaniya, Fundamenty i Mekhanika Gruntov), 1990, 27 (3) : 43-47.
    [156] 宋克强,袁继国,崔中兴,等.西安地区滑坡特征及其预报研究[J].水土保持学报,1994,8(1):51-58.
    [157] 宋克强,崔中兴,袁继国,等.古刘滑坡的蠕变特征及其预报分析[J].岩土工程学报,1994,16(4):56-64.
    [158] 阳吉宝,贺可强.堆积层滑坡时间预报问题的讨论—以新滩滑坡为例[J].石家庄经济学院学报,1995,18(1):46-51.
    [159] 王文星,张继业.雾江滑坡滑动面粘土蠕变试验及积分蠕变方程[J].中南工业大学学报(自然科学版),1996,27(4):392-395.
    [160] 周创兵,张辉,彭玉环.蠕变.样条联合模型及其在滑坡时间预报中的应用[J].自然灾害学报,1996,5(4):60-67.
    [161] 郑孝玉,曹炳兰.滑坡时间预报的实验研究[J].长春科技大学学报,2000,30(2):170-173.
    [162] 翁其能.重庆库区松散土体吸水蠕变、强度衰减规律及应用[硕士学位论文][D].重庆:重庆交通学院,2001.
    [163] 王琛,胡德金,刘浩吾,等.三峡泄滩滑坡体滑动带土的蠕变试验研究[J].岩土力学,2003,24(6):1007-1010.
    [164] 王琛,唐明,刘浩吾,等.三峡泄滩滑坡滑动带土的Singh-mitchell蠕变方程[J].四川大学学报(工程科学版),2003,35(5):93-95.
    [165] 王琛,刘浩吾,许强.三峡泄滩滑坡滑动带土的改进Mesri蠕变模型[J].西南交通大学学报,2004,39(1):15-19.
    [166] 王建锋.两类经典滑坡发生时间预报模型的理论分析[J].地质力学学报,2004,10(1):40-50.
    [167] 陈晶晶,刘德富,王世梅.清江古树包滑坡滑带土的Mesri蠕变模型[J].三峡大学学报(自然科学版),2005,27(1):16-19.
    [168] 尚岳全,周建锋,童文德.含碎块石土质边坡的稳定性问题[J].地质灾害与环境保护,2002,13(1):41-43.
    [169] 尚岳全,孙红月,侯利国,等.管网渗流系统对含碎石土边坡的稳定作用[J].岩石力学与工程学报,2005,24(8):1371-1375.
    [170] 郑束宁,尚岳全,陈侃福,等.浙江省公路滑坡主要类型分析及防治对策研究[R].杭州:浙江省交通规划设计研究院,浙江大学防灾工程研究所,2004.
    [171] 陈允法,许建聪,俞伯汀,等.上三公路5号滑坡稳定性分析[J].岩石力学与工程学报,2004,23(S1):4509-4512.
    [172] 董夫钱,缪志顺,吕庆,等.公路堆载诱发型滑坡稳定性分析[J].岩石力学与工程学报,2004,(S1):4517-4520.
    [173] 宋雪琳,阳吉宝.堆积层滑坡稳定性评价及其时间预报[J].河北地质学院学报,1996,19(3-4):352-357.
    [174] 王仁山,谢长光.莆山浅层土体滑坡变形机理及稳定性评价[J].西部探矿工程,2003,(12):159-160.
    [175] 中国科学院冰川冻土研究所,甘肃省交通科学研究所.甘肃泥石流[M].北京:人民交通出版社,1982.
    [176] 单九生,刘修奋,魏丽,等.诱发江西滑坡的降水特征分析[J].气象,2004,30(1):13-15.
    [177] 林卫烈,肖方肇,董学颖,等.试述尤溪联合滑坡的典型性[J].福建水土保持,2000,12(4):23-26.
    [178] D.G弗雷德隆德,H.拉哈尔佐.陈仲颐译.非饱和土力学[M].北京:中国建筑工业出版社,1997.
    [179] 钟荫乾.滑坡与降雨关系及其预报[J].中国地质灾害与防治学报,1998,9(3):81-86.
    [180] 杜榕恒.长江三峡库区滑坡与泥石流研究[M].成都:四川科学技术出版社,1991.
    [181] 林卫烈,肖方肇,董学颖,等.尤溪县联东乡东山头滑坡险区综合治理效益初报[J].福建水土保持,1995,6(1):49-52.
    [182] 蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [183] 工程地质手册编委会.工程地质手册[M].北京:中国建筑工业出版社,1992.
    [184] 郑颖人,赵尚毅,时卫民.边坡稳定分析的一些进展[J].地下空间,2001,21(4):262-271.
    [185] 朱伯芳.有限元原理与基础[M].北京:中国水利出版社,1998.
    [186] 张国祥,刘宝琛.边坡滑动面三维空间有限元分析[J].中国公路学报,2003,16(4):25-29.
    [187] 张国祥,刘新华,魏伟.二维边坡滑动面及稳定性弹塑性有限元分析[J].铁道学报,2003,25(2):79-83.
    [188] 刘忠玉,陈少伟.应变软化土质边坡渐进破坏的演变模型[J].郑州大学学报(工学版),2002,23(2):37-40.
    [189] 胡云进,速宝玉,周维垣.有地表入渗的岩坡稳定性分析[J].岩石力学与工程学报,2003,22(7):1112-1116.
    [190] 时卫民,郑颖人,唐伯明.滑坡稳定性评价方法的探讨[J].岩土力学,2003,24(4):545-552.
    [191] 崔政权.边坡工程——理论与实际最新发展[M].北京:中国水利水电出版社,1999.
    [192] 邵龙潭,唐洪祥,韩国城.有限元边坡稳定分析方法及其应用[J].计算力学学报,2001,18(1):81-87.
    [193] Donald I, Chen Z Y. Slope stability analysis by the upper bound approach: fundamentals and methods[J]. Canadian Geotechnical Journal, 1997, 34: 853-862.
    [194] Chen Zuyu, Wang Xiaogan, Chris Harberfield, etal. A Three-Dimensional slope stability analysis method using upper bound theorem, Part Ⅰ: Theory and Methods[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38: 369-378.
    [195] 王丽娟,李敬梅,赵鹏.某码头工程滑坡的三维有限元分析[J].港工技术,2002,(4):41-43.
    [196] 潘亨永,何江达.天生桥一级水电站厂区岩质高边坡稳定性三维弹塑性有限元数值分析[J].红水河,1998,17(3):11-14.
    [197] 潘亨永,卫锐深,林忠.岩质高边坡三维弹塑性有限元数值分析[J].人民珠江,2000,(1):6-9.
    [198] 缪荣辉,刘光东,赵德志.某隧道进口段边坡三维弹塑性有限元分析[J].地下空间,2001,21(5):432-436.
    [199] 邓建辉,魏进兵,闵弘,等.基于强度折减概念的滑坡稳定性三维分析方法(Ⅰ):滑带土抗剪强度参数反演分析[J].岩土力学,2003,21(5):52-55.
    [200] 邓建辉,张嘉翔,闵弘,等.基于强度折减概念的滑坡稳定性三维分析方法(Ⅱ):加固安全系数计算[J].岩土力学,2004,25(6):871-875.
    [201] 甘孝清,李端有.清江杨家槽滑坡监测及三维有限元分析[J].长江科学院院报,2004,21(5):52-55.
    [202] 李同春,卢智灵,姚纬明.边坡抗滑稳定安全系数的有限元迭代解法[J].岩石力学与工程学报,2003,22(3):446-450.
    [203] 谭晓慧.平面滑动边坡的可靠度计算及敏感性分析[J].安徽地质,2001,11(1):49-53.
    [204] 张少宏.黄土边坡稳定计算中参数的敏感性分析[J].水利与建筑工程学报,2003,1(3):40-42.
    [205] 姚爱军,苏永华.复杂岩质边坡锚固工程地震敏感性分析[J].土木工程学报,2003,36(11):34-37.
    [206] 严春风,刘东燕,张建辉,等.岩土工程可靠度关于强度参数分布函数概型的敏感度分析[J].岩石力学与工程学报,1999,18(1):36-39.
    [207] 李守义,高辉,冯海波.基于模糊有限元的堆石坝材料参数敏感度分析[J].西安理工大学学报,2002,18(1):35-39.
    [208] 张治强,冯夏庭,祁宏伟,等.三峡工程永久船闸高边坡岩体力学参数的敏感度分析[J].东北大学学报(自然科学版),2000,21(6):637-640.
    [209] 南京大学水文地质工程地质教研室.工程地质学[M].北京:地质出版社,1982.
    [210] 凤家骥,郭爱国,汪洋,等.砂砾石垫层料渗透试验研究[J].中国农村水利水电,1999,(12):30-32.
    [211] 李雷,盛金保.沟后坝砂砾料的工程特性[J].水利水运科学研究,2000,(3):27-32.
    [212] 钱康.天生桥一级水电站F8断层破碎带渗透稳定的定性分析[J].红水河,1993,12(4):6-10.
    [213] 雍莉.沟后水库修复工程混凝土面板堆砂砾石坝垫层及层间关系渗透稳定试验研究[J].甘肃水利水电技术,2003,39(2):112-113.
    [214] 常中华,张二勇,柴建峰,等.应用主成分分析法研究渗透介质的渗透稳定问题[J].水文地质工程地质,2004,(5):15-20.
    [215] 吕衡.太平驿水电站闸基覆盖层渗透及渗透变形试验研究[J].水电站设计,1995,11(3):111-115.
    [216] 李小泉.冶勒现场渗透变形试验研究[J].水电工程研究,1991,(2):74-77.
    [217] 孙宪立.工程地质学[M].北京:中国建筑工业出版社,1997.
    [218] 张季如.边坡开挖的有限元模拟和稳定性评价[J].岩石力学与工程学报,2002,21(6):843-847.
    [219] 张鲁渝,时卫民,郑颖人.平面应变条件下土坡稳定有限元分析[J].岩土工程学报,2002,24(4):487-490.
    [220] 毛坚强.接触问题的一种有限元解法及其在岩土工程中的应用[J].土木工程学报,2004,37(4):70-75.
    [221] Kim, S K; Hong, W P; Kim, YM. Prediction of rainfall-triggered landslides In Korea[A]. In: Landslides[C]. Rotterdam: Balkema, 1991, 989-994.
    [222] Pierson, T C; Iverson R M; Ellen, S D. Spatial and temporal distribution of shallow landsliding during intense rainfall, southeastern Oshu, Hawaii[A]. In: Landslides[C]. Rotterdam: Balkema, 1991, 1393-1398.
    [223] Polloni, G; Ceriani, M; Lauzi, S; et al. Rainfall and soil slipping events in Valtelllna[A]. In: Landslides[C]. Rotterdam: Balkema, 1991, 183-188.
    [224] Henley S. Catastrophe theory model in geology [J]. Math Geo, 1976, 8(6): 649-655.
    [225] John M Cubitt, Brian Shaw. The geological implication of steady-state mechanisms in catastrophe theory [J]. Math Geo, 1976, 8(6): 657~662.
    [226] 秦四清,张倬元,王士天等.非线性工程地质学导引[M].成都:西南交通大学出版社,1993.
    [227] 刘军,秦四清,张倬元.缓倾角层状岩体失稳的尖点突变模型研究[J].岩土工程学报,2001,23(1):42-44.
    [228] 仪垂祥.非线性科学及其在地学中的应用[M].北京:气象出版社,1995.
    [229] Poston Tim; Smwart Ian. Catastrophe theory and its Application[M]. London: Pitman Publishing Limited, 1978.
    [230] 秦四清.斜坡失稳的突变模型与混沌机制[J].岩石力学与工程学报,2000,19(4):486-492.
    [231] 张萍,田斌.滑坡稳定性评价研究进展[J].三峡大学学报(自然科学版),2004,26(3):254-257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700