射频等离子体放电及材料处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子体技术可以产生具有化学活性的基团,已被广泛用于材料特性的改变;可以制造出具有特殊结构和表面特性的材料,这种效果往往是无法用其他商业技术手段实现的。对世界主要的制造工业来说,等离子体处理技术起着极其重要的作用。低温等离子体应用已经成为一项具有全球影响力的重要科学工程,对高科技经济的发展及传统工业的改造有着巨大的影响。
     工业上低温等离子体放电大都由电磁场激发产生,如射频(RF)放电、微波放电等。RF(频率在1-500MHz)放电与直流放电相比,能够在较低的气压下工作(等离子体的阻抗随频率的增大而减小),有效的电离机制(电子能够在整个周期里获得能量),空间分布很均匀;与微波放电相比,RF电源价格更便宜且电源功率更大以上这些特点使得RF等离子体成为工业应用最普遍的选择。
     本论文依托现有等离子体放电系统,通过调研和材料表面处理特殊要求,分析,设计、搭建研制了新型RF等离子体放电系统,相关放电系统的研制,实现了设计思想,达到了预期目标。主要表现在:
     (1)搭建研制了中等磁场(~6300G)的螺旋波等离子体(HWP)放电系统,实现了连续稳态的HWP放电;通过等离子体诊断开展等离子体特性研究,推进了新型诊断技术——磁绝缘折流探针的研制,并取得了初步的实验结果;在此基础上,首次提出强磁场EAST的放电方案,成功实现EAST壁清洗实验。为具有自主知识产权的Tokamak壁处理提供了有价值的科学参考。
     (2)首次搭建研制了多频电感耦合/电容耦合等离子体(ICP/CCP)放电系统,实现了离子能量,离子通量以及等离子体均匀性的独立控制;通过碳氟等离子体对SiC材料的刻蚀/沉积研究,找到了刻蚀/沉积的动态平衡参数,为具有自主知识产权的可控半导体刻蚀/沉积技术发展提供借鉴。
     针对不同放电系统特性及材料处理特殊要求,分别选择对应于不同放电系统的材料,开展RF等离子体与材料相互作用的研究。得到一系列研究结果:
     1)开展新型磁化RF等离子体放电与处理材料研究:针对Tokamak上石墨(Ⅳ族)壁材料开展清洗实验,结果表明未经等离子体处理的样品表面疏松多孔,平均颗粒尺寸较大,且吸附有大量微小的颗粒状杂质,而经过HWP处理的样品的表面更加致密紧实,平均尺寸减小,颗粒状杂质吸附去除明显。
     在中科院等离子体物理研究所EAST装置上实现RF电源、真空电极、匹配网络和天线连接。在不同形状尺寸的5类天线、电源频率、功率、磁场和放电气压的条件下开展HWP放电实验。通过朗缪尔探针测量系统对HWP参数进行诊断分析,发现放电阈值功率较低(<50W),反射功率很小。5号天线比其他天线激发的等离子体亮度更高,更加均匀;增加极向场后,等离子体沿着磁力线更加容易到达壁,有望实现更高效率的清洗
     2)利用RF磁控等离子体技术,制备了具有c轴择优取向的、有序的Cr/Cu掺杂ZnO纳米棒阵列,纳米棒垂直于Si衬底并有序地排列。对于Zno.94Cro.06O纳米棒阵列,光致发光和X射线吸收近边结构(XANES)结果表明样品中存在大量的Zn空位。且样品在XANES和高分辨率电子透射显微镜的测量范围内没有发现二次相的存在。样品在650℃时的饱和磁化强度为1.16μB/Cr,且随着衬底温度的降低而减小。Zn0.94Cr0.06O纳米棒阵列表现出明显的稳定的铁磁性,认为这来源于以Zn空位为媒介的束缚磁极化子模型。从第一性原理计算中得出,可以通过控制Zn空位来调控Zn0.94Cr0.06O纳米棒阵列的铁磁性,与实验结果相吻合。
     对于Zn0.92Cu0.08O纳米棒阵列,实验结果表明样品中存在大量的O空位,且没有发现其它任何二次相的存在。样品在600℃时的饱和磁化强度为0.12μB/Cr,且随着衬底温度的降低而减小。Zn0.92Cu0.08O纳米棒阵列表现出明显而稳定的铁磁性,其来源于以O空位为媒介束缚磁极化子模型。
     3)开展复杂电磁场条件下非磁化等离子体处理材料研究:利用多频ICP/CCP氮等离子体对超薄Hf02薄膜掺氮处理,改善了薄膜的表面结构,使漏电流特性改善(从4.6×104降到2.1×10-7A cm-2),而其与表面形貌没有关联。通过改变ICP功率,调节电子能量概率分布函数,控制等离子体中N的性质,使得更多的N原子掺入HfO2薄膜中。通过增加ICP功率,获得较低的有效电子温度和离子能量,从而降低薄膜表面的损伤。N原子的掺杂减少了相关能隙的O空位,从而降低了通过HfO2电介质的漏电流。
     利用多频ICP/CCP碳氟等离子体处理SiC材料,通过改变多频功率,调制等离子体中各活性基团的浓度,从而调控碳氟等离子体的刻蚀/沉积过程。主要研究了不同等离子体参数对SiC材料表面质量的影响。同时研究了C4F8/Ar多频ICP/CCP对SiC基片表面粗糙度和化学成分的影响,并建立模型分析了多频ICP/CCP处理能有效抑制基片表面碳氟残留物的原因。
     4)低能离子束辅助沉积纳米薄膜材料,在石英衬底上制备了透明导电的AZO薄膜。AZO薄膜的结构、电学及光学性质和辅源离子束能量密切相关。在辅源离子束能量为200eV下得到的AZO薄膜,其电阻率最低,为4.9×10-3Ω cm,且可见光透光率最高,为85%以上,并且获得了绒面结构。
     利用N2/Ar离子束辅助溅射沉积高品质较厚的Hf1-xZrxO1-yNy栅极绝缘层薄膜。详细研究了低能离子束辅助轰击对Hf1-xZrxO1-yNy薄膜的化学组分,热稳定性,表面形貌和光学特性的影响。通过能谱分析,证实利用物理气相沉积法,成功将N掺入了Hf1-xZrxO2薄膜,使得其结晶温度超过1100℃
Plasma technology has been widely used to modify the characteristics of materials asit can produce chemically active radicals. By means of plasma technology, materials withunique structures and surface characteristics can be fabricated, which can not be achievedby any other commercial technology. Plasma processing technology plays an extremelyimportant role in the world’s leading manufacturing industries. Application of lowtemperature plasmas has become one of the important scientific projects with globalinfluence, and has a huge impact on the development of high-tech economy as well as thetransformation of traditional industries.
     The low temperature plasma discharges used in industry are mostly produced by theelectromagnetic field excitation, such as Radio frequency (RF) discharge, microwavedischarge, etc. RF plasma discharges (frequency of1-500MHz) have the advantages overDC discharges of being able to work under low pressure (The plasma impedance decreaseswith the increase of frequency), effective ionization mechanism (The electrons can gainenergy in the whole cycle) and uniform spatial distribution. Meanwhile, RF plasmadischarges have the advantage over microwave discharges of possessing a cheap RF powersupply with a large power. The above characteristics make RF plasma become the mostpopular choice in industrial applications.
     In this thesis, depending on the existing plasma discharge systems, novel RF plasmadischarge system has been analyzed, designed and constructed. Meanwhile, relevantdischarge systems have been developed. The design concept has been realized and theexpected objectives have been achieved mainly in the following areas.
     (1) We have constructed and studied the Helicon Wave Plasma (HWP) dischargesystem with moderate magnetic fields (6300G), by which continuous and steady HWP discharge has been realized. The research of plasma characteristics has been carried outthrough diagnostic analysis, and further promotes the development of a novel plasmadiagnostic technique (magnetically insulated baffled probe). Preliminary experimentalresults have been obtained. Based on these researches, the discharge scheme on EAST withstrong magnetic field has been proposed, and the wall cleaning experiment on EAST hasbeen successfully carried out. Our research can provide valuable scientific reference forTokamak wall treatment with independent intellectual property rights.
     (2) For the first time, we have constructed and studied the multi-frequencycapacitively-combined inductively-coupled plasmas (ICP/CCP) discharge system, bywhich the ion energy, ionic flux and uniformity of the plasma can be manipulatedindependently. Parameters of dynamic balance in etching/deposition have been acquiredthrough research on fluorocarbon plasma etching/deposition on SiC, thus providingreference for the development of controllable etching/deposition techniques insemiconductors.
     Research on interactions between RF plasma and materials has been carried out, byselecting the materials corresponding to different discharge systems according to thecharacteristics of different discharge systems as well as particular requirements of materialprocessing. A series of research results has been obtained.
     1) Research on plasma discharge and material processing of novel magnetization RFplasmas has been carried out. Cleaning experiments aimed at wall materials graphite IVgroup has been conducted. The results show that the sruface of the samples withoutplasma treatment is of porous structure, large average size, and is adsorbed by a largenumber of small granular impurities. However, the sruface of the samples with HWPtreatment is of compact and tight structure, smaller average size, and is obvious inelimination of adsorbed granular impurities.
     The RF power supply, vacuum electrodes, matching network and antenna have beensuccessfully connected on EAST in Institute of Plasma Physics, Chinese Academy ofSciences. HWP discharge experiment has been carried out with antennas in various shapesand sizes, under different frequencies, powers, magnetic field and discharge pressures. Parameters of HWP have been diagnostic analyzed by Langmuir probe measurementsystem. The results show that the discharge threshold power is very low (<50W), andreflection power is zero. The plasmas excited by antenna5is of higher brightness anduniformity than the plasmas excited by other antennas. Moreover, the plasmas arrive thewall along the lines of magnetic force more easily after adding the poloidal field.
     2) Well-aligned Cr/Cu doped ZnO nanorod arrays were synthesized by the RF plasmadeposition method. The Zn0.94Cr0.06O nanorod arrays were aligned perpendicular to the Sisubstrate. The PL and O K-edge XANES analyses indicate the existence of numerous Znvacancies. No secondary phase in the sample is found within the XANES and HRTEMdetection limits. The saturated magnetization is1.16μBper Cr ion at650oC and decreaseswith decreasing substrate temperature. The Zn0.94Cr0.06O nanorod arrays exhibit obviousstable RT ferromagnetic ordering, which is believed to originate from the Zn vacancymediated BMP model. From first-principles calculations, we conclude that the Zn vacancycan be controlled to tune the ferromagnetism of the Zn0.94Cr0.06O nanorod arrays.
     The experimental results indicate the existence of numerous O vacancies and provideevidence for absence of any secondary phase or nanoclusters in Zn0.92Cu0.08O nanorods.The saturated magnetization was0.12μB/Cu at600oC and de-creases with decreasing thesubstrate temperature. Our results revealed that the interactions between substitutionalCuZnin a divalent charge and oxygen vacacy played an important role in the ferromagneticorigin of Zn0.92Cu0.08O nanorods.
     3) ICP/CCP nitrogen (N) plasma discharges were investigated to nitridize ultrathinHfO2films for leakage improvement. In terms of the plasma chemical and surfaceprocesses, nitridation samples show great improvements in surface structure and theleakage current property (it decreases from4.6×104to2.1×107A cm2), while theleakage current is independent of the morphology. By modulating the EEPFs depending onthe power levels of CCP and ICP, the radical concentration of the N atom increases by theelectron–neutrals collision dependence on the high-energy electron, resulting in more Natoms incorporated in HfO2films. The lower effective electron temperature and ion energywere obtained with ICP power, causing less film surface damage. Therefore, N atoms possess intrinsic effects that drastically reduce the electron leakage current through HfO2dielectrics by deactivating the oxygen vacancy related gap states.
     C4F8-based ICP/CCP was used to process6H-SiC substrates. By modulating themulti-frequency powers, the concentrations of F and fluorocarbon radicals are increased bythe collisions of electron-neutrals, which depend on high-energy electrons, resulting in ahigh Si selectively etching rate and a low fluorocarbon film deposition rate. The effects ofplasma parameters on the chemical compositions, and surface morphology properties ofSiC substrates are discussed in detail.
     4) Transparent conductive AZO films are prepared on quartz substrates bydual-ion-beam sputtering deposition at room temperature. The structural, electrical andoptical properties of AZO films are closely related to the assisting-ion beam energy. Withincreasing assisting-ion beam bombardment, AZO films have a strong improved crystallinequality and increased radiation damage such as oxygen vacancies and zinc interstitials. Thelowest resistivity of4.9×103Ω cm and highest transmittance of above85%in the visibleregion were obtained under the assisting-ion beam energy200eV.
     High-quality Hf1-xZrxO1-yNygate dielectric thin films are deposited by ion beamassisted deposition. The chemical compositions, thermal stability, surface morphology andoptical properties of Hf1-xZrxO1-yNyfilms are discussed in detail. EDS analyses confirmthat nitrogen is incorporated into Hf1-xZrxO1-yNyfilms effectively, the crystallizationtemperature of Hf1-xZrxO1-yNyfilms is above1100oC.
引文
[1] Boswell R W, Porteous R K, Prytz A and Bouchoule A. Some Features of R.F.Excited Fully Ionized Low Pressure Argon Plasma. Phys. Letts. A198291163
    [2] Chen F F. Australian National University Report ANU-PRLIR19858512.
    [3] Komori A, Shoji T.et al. Helicon waves and efficient plasma production. Phys. FluidsB19913893
    [4] Ellingboe A R and Boswell R W. Capacitive, inductive and helicon-wave modes ofoperation of a helicon plasma source. Phys. Plasma199632797
    [5] Chabert P, Proust N, Perrin J, Boswell R W. High rate etching of4H-SiC using a SF6/O2helicon plasma. Appl. Phys. Lett.20007616
    [6] Toki K, Shinohara S, Tanikawa T and Shamrai K P. Small helicon plasma source forelectric propulsion. Thin Solid Films2006597506
    [7] Shinohara S. Characteristics of a large volume, helicon plasma source. Phys. Plasma200512044502
    [8] Cluggish B P, Anderegg F A, Freeman R L, Gilleland J, Hilsabeck T J. et al. Densityprofile control in a large diameter, helicon plasma. Phys. Plasma200512057101
    [9] Shinohara S and Mizokoshi H. Development of a strong field helicon plasma source.Rev. Sci. Instrum200677036108
    [10] Vahedi V, Birdsall C K and Lieberman M A. Verification of frequency scaling lawsfor capacitive radio-requency discharges using two-dimensional simulations. Phys.Fluids B199352719
    [11] Lieberman M A. APCPST2008, Huanshang, China.2008
    [12] Lieberman M A. et al. SEMICON Korea etching Symposium. Korea2003
    [13] Kim H E. et al. Analytic model for a dual frequency capacitive discharge. Phys.Plasma2003104545
    [14] Tetsuya Tatsumi. Control of reactive plasmas for low-k/Cu integration. Appl. Sur. Sci.20072536716
    [15]Booth ean-Paul et al. Fluorine negative ion density measurement in a dual frequency capacitive plasma etch reactor by cavity ring-down spectroscopy. Appl. Phys. Lett.200688151502
    [16]Yen T F. et al. Microelectronic Engineering.200582129
    [17]Park J H. et al. A comparative study on the structure and hardness enhancement of a-BON/nc-TiN films prepared by low and high RF frequency PAMOCVD. Tribology International.200740345
    [18]Hou L J, Miskovic Z L, Jiang K and Wang Y N. Energy loss of a charged particle moving over a2D strongly coupled dusty plasma. Phys. Rev. Letts.200696255005
    [19]Ding Z F, Chen L W and Wang Y N. Numerical studies on the transition of tuned substrate self-bias in a radio-frequency inductively coupled plasma. Phys. Plasma.200613043504
    [20]Wang L, Cui L, Zhu X D and Wen X H. Coupling effect of electron cyclotron resonance hydrogen plasma and dc biasing in fabricating diamond nanotips. Phys. Plasma.200714123501
    [21]Kan P Y.28th International Conference on Phenomena in Ionized Gases.2007Prague Czech Republic
    [22]Jiang N, Zhao N and Liu H F et al. Mass-resolved retarding field energy analyzer and its measurement of ion energy distribution in helicon plasma. Nuclear Instruments and Methods in Physics Research B.2005229508
    [23]Sun M, Yang S Z and Li B. New method of tubular material inner surface modification by plasma source ion implantation. J. Vac. Sci. Technol. A.199614367
    [24]张菁,冯祥芬,谢涵坤,脉冲射频等离子体聚合沉积乙烯基乙酸.物理学报200352(7)1707
    [25]童洪辉,陈庆川,全方位离子注入及增强沉积工业机和应用.核技术200225(9)684
    [26]Ning Z Y, Guo S Y, Cheng S H. Numerical simulation of plasma flow downstream in an ECR plasma deposition apparatus Original Research Article. Vacuum199952219
    [27] Ning Z Y, Cheng S H and Yan S D. Influence of thermal annealing on bondingstructure and dielectric properties of fluorinated amorphous carbon film. CurrentApplied physics.20022439
    [28] Huang S, Ning Z Y, Xin Y and Di X L. Langmuir probe measurements in inductivelycoupled CF4plasmas. Surf.and Coat.Technol.200612-133963
    [29] Yuan Q H, Ye C, Xin Y, X.Huang J, Ning Z Y and Yin G Q.Control of the dischargechemistry of CHF3in dual-frequency capacitively coupled plasmas. Appl. Phys. Lett.200893071503
    [30] Huang X J, Xin Y, Yuan Q H and Ning Z Y. Influence of exciting frequency on gasand ion rotational temperatures of nitrogen capacitively coupled plasma. Phys. Plasma.200815073501
    [31] Federici G. et al. Plasma-material interactions in current tokamaks and theirimplications for next step fusion reactors, Nucl. Fusion2001411967
    [32] Samit K Ray, Samaresh Das. et al. Structural and optical properties of germaniumnanostructures on Si(100) and embedded in high-k oxide, Nanoscale Research Letters20116224
    [33] Ragnarsson L, Chiarella T, Togo M. et al. Ultrathin EOT high-k/metal gate devicesfor future technologies: Challenges, achievements and perspectives (invited),Microelectronic Engineering2011881317
    [34] Lee Jae-Woong, Ham Moon-Ho and Myoung Jae-Min. Gate-controlled transport inGaN nanowire devices with high-k Si3N4gate dielectrics. Solid State Communications2008145327
    [35] Byoungjun Park, Kyoungah Cho and Sangsig Kim. Electrical characteristics ofpolycrystalline Si layers embedded into high-k Al2O3gate layers. Applied SurfaceScience20082547905
    [36] Green M L, Schenck P K. et al.“Higher-k” dielectrics for advanced siliconmicroelectronic devices: A combinatorial research study. Microelectronic Engineering.2009861662
    [37] Atanassova E and Spassov D. Influence of the metal electrode on the characteristics ofthermal Ta2O5capacitors. Microelectronic Engineering2006831918
    [38] Zhu W J, Tamaga Wa T. et al. Effect of Al inclusion in HfO2on the physical andelectrical properties of the dielectrics. IEEE Electron Dev. Lett.200223649
    [39] Hiroaki Arimura, Naomu Kitano, et al. Excellent electrical properties of TiO2/HfSiO/SiO2layered higher-k gate dielectrics with sub-1nm equivalent oxide thickness. Appl.Phys. Lett.200892212902-1
    [40] Yu Xiongfei, Zhu Chunxiang, Li M F. Electrical characteristics and suppressed boronpenetration behavior of thermally stable HfTaO gate dielectrics with polycrystalline-silicon gate. Appl. Phys. Lett.2004852893
    [41] Zhang M H, Rhee S J. et al. Improved electrical and material characteristics of HfTaOgate dielectrics with high crystallization temperature. Appl. Phys. Lett.200587232901
    [42] Uedono A, Ikeuchi K. et al. Impact of nitridation on open volumes in HfSiOx studiedusing monoenergetic positron beams. Appl. Phys. Lett.200688171912-1.
    [43] Xu Gaobo and Xu Qiuxia. Thermal stability of HfON, HfSiON and HfTaON gatedielectrics. IEEE.20081284
    [44] Vellianitis G, Rittersma Z M. et al. Charge trapping in nitrided HfSiO gate dielectriclayers. Appl. Phys. Lett.200689092902
    [45] Kamada H, Tanimura T. et al. Control of oxidation and reduction reactions at HfSiO/Si interfaces through N exposure or incorporation. Appl. Phys. Lett.200893212903
    [46] Dietl T, Ohno H., Matsukura F. et al. Zener Model Description of Ferromagnetism inZinc-Blende Magnetic Semiconductors. Scienc.20002871019
    [47] Ueda K, Tabata H and Kawai T. Magnetic and electric properties oftransition-metal-doped ZnO films. Appl. Phys. Lett.200179988
    [48] Liu H, Zhang X, Li L Y. et al. Role of point defects in room-temperatureferromagnetism of Cr-doped ZnO. Appl. Phys. Lett.200791072511
    [49] Li L, Liu H, Luo X. et al. Ferromagnetism in polycrystalline Cr-doped ZnO films: Experiment and theory. Solid State Communications2008146420
    [50]Fukumura T, Jin Z and Kawasaki M. Magnetic properties of Mn-doped ZnO. Appl. Phys. Lett.200178958
    [51]Sharma P, Gupta A, Rao K V. et al. Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater.20032673
    [52]Kim Y M, Yoon M, Park I W. et al. Synthesis and magnetic properties of Zn1-xMnxO films prepared by the sol-gel method. Solid State Communications.2004129175
    [53]Buchholz D B, Chang R P H, Song J H. et al. Room-temperature ferromagnetism in Cu-doped ZnO thin films. Appl. Phys. Lett.200587082504
    [54]Sudakar C, Thakur J S, Lawes G. et al. Ferromagnetism induced by planar nanoscale CuO inclusions in Cu-doped ZnO thin films. Phys. Rev. B.200775054423
    [55]腾晓云.ZnO和ZnO基稀磁半导体薄膜的PLD法制备及其特性研究:[学位论文].天津:河北工业大学,2007
    [56]Yu X H, Ma J, Ji F. et al. Thickness dependence of properties of ZnO:Ga films deposited by rf magnetron sputtering. Applied Surface Science2005245310
    [57]Banerjee P, Lee W J, Bae K R et.al. Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films. Journal of Applied Physics2010108043504
    [58]Seomoon K, Kim J, Ju S et al. Inductively coupled plasma post-treatment of Al-doped ZnO thin flms. Current Applied Physics20111130
    [59]Tark S J, Kang G M, Park S. et al. Development of surface textured hydrogenated ZnO:Al thin films for μc-Si solar cells. Current Applied Physics200991318
    [60]Oh B Y, Jeong M C, Kim D S. et al. Post-annealing of Al-doped ZnO films in hydrogen atmosphere. Journal of Crystal Growth2005281475
    [61]Yen W T, Lin Y C, Ke J H. et.al. Surface textured ZnO:Al thin films by pulsed DC magnetron sputtering for thin films solar cells application. Applied Surface Science2010257960
    [62]Wang F H, Chang H P, Tseng C C. et al. Effects of H2plasma treatment on properties of ZnO:Al thin films prepared by RF magnetron sputtering. Surface&Coatings Technology20112055269
    [63]S.Flickyngerova, M.Netrvalova, et al. Modification of AZO thin-film properties by annealing and ion etching. Vacuum201084215
    [64]王文娜,张大伟,陶春先,等.绒面AZO干法制备及性能研究.光电工程201039147
    [65]Zhang Wendi, Bunte Eerke, Ruske Florian. et al. As-grown textured zinc oxide films by ion beam treatment and magnetron sputtering. Thin Solid Films20115204208
    [1]马腾才,胡希伟,陈银华.《等离子体物理原理》,中国科学技术大学出版社,合肥,1988.
    [2]Katz I, Anderson J, Polk J and Brophy J. One Dimensional Hollow Cathode Model. Journal of Propulsion and Power200319595
    [3]D. L. Book, NRL Plasma Formulary, Washington, D.C.:Naval Research Laboratory,1987.
    [1]Orlando Auciello, Daniel L Flamm编著,郑少白,胡建芳,郭淑静,洪明苑译,《等离子体诊断》(第一卷,放电参量和化学),电子工业出版社,北京,1994.
    [2]叶超,宁兆元,江美福,吴雪梅,辛煜编著《低气压低温等离子体诊断原理与技术》科学出版社,北京,2010.
    [3]Chen F F in Plasma Diagnostic Techniques, edited by Huddlestone R H and Leonard S L (New York:Academic)1965
    [4]甄汉生,《等离子体加工技术》,清华大学出版社,北京,1990.
    [5]黄松,《感应耦合碳氟等离子体放电行为及其薄膜生长机理》,苏州大学博士学位论文,2005.
    [6]袁强华,《双频容性耦合等离子体特性的实验研究》,苏州大学博士学位论文,2009.
    [7]Godyak V A and Demidov V I. Probe measurements of electron-energy distributions in plasmas:what can we measure and how can we achieve reliable results? J. Phys. D:Appl. Phys.201144233001.
    [8]Sudit I D and Chen F F, Plasma Sources Sci. Technol.3,162(1994).
    [9]Demidov V I, Ratynskaia S V and Rypdal K. Electric probes for plasmas:The link between theory and instrument. Rev. Sci. Instrum.200273103409.
    [10]Katsumata I and Okazaki M. Ion Sensitive Probe-A New Diagnostic Method for Plasma in Magnetic Fields. Jpn. J. Appl. Phys.19676123.
    [11]赵化侨,《等离子体化学与工艺》,中国科学技术大学出版社,合肥,1993.
    [12]Griem H R. Plasma spectroscopy (New York:McGraw-Hill)1964.
    [13]林美荣,张包铮编著.《原子光谱学导论》,科学出版社,北京,1990.
    [14]Fantz U. Basics of plasma spectroscopy. Plasma Sources Sci. Technol.200615S137.
    [15]Coburn J W and Chen M. Optical emission spectroscopy of reactive plasmas:A method for correlating emission intensities to reactive particle density. J. Appl.Phys. 1980513134.
    [16]谷亦杰,宫声凯.材料分析检测技术.中南大学出版社,2009.
    [17]喻敏.原子力显微镜的原理及应用.
    [18]吴雪梅,诸葛兰剑,吴兆丰,叶春暖,葛水兵.《材料物理与检测》.北京:科学出版社,2012.
    [19]杜希文,原续波.材料分析方法.天津大学出版社,2006.
    [20]邓芹英,刘岚,邓慧敏,编著.《波普分析教程》.科学出版社.
    [1] Chen F F and Chevalier G. Experiments on helicon plasma sources. J. Vac. Sci.Technol. A1992101389
    [2] Cho S. Dependence of plasma density on the magnetic field and power absorption inhelicon discharges. Phys. Lett. A1996216137
    [3] Okamura S, Adati K, Aoki T, Baker D R, Fujita H, Garner H R, Hattori K, HidekumaS, Kawamoto T, Kumazawa R, Okubo Y, and Sato T. Plasma production with rotatingion cyclotron waves excited by Nagoya Type-III antennas in RFC-XX. Nuclear Fusion1986261491
    [4] Boswell R W. Very efficient plasma generation by whistler waves near the lowerhybrid frequency. Plasma Phys. Control Fusion1984261147
    [5] Federici G et al., Plasma-material interactions in current tokamaks and theirimplications for next step fusion reactors, Nucl. Fusion2001411967-2137
    [6] MCCRACKEN G M and Stott P E. Plasma-Surface Interactions in Tokamaks. Nucl.Fusion.197919889
    [1] Ohno H. Making Nonmagnetic Semiconductors Ferromagnetic. Science1998281951
    [2] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnar S V and Roukes ML. Spintronics: A Spin-Based Electronics Vision for the Future. Science20012941488
    [3] Furdyna J K. Diluted magnetic semiconductors: An interface of semiconductorphysics and magnetism (invited). J Appl. Phys.198253,7637
    [4] Gurzhi R N, Kalinenko A N, Kopeliovich A I, Yanovsky A V, Bogachek E N andLandman U. Spin-guide source for the generation of highly spin-polarized currents.Phys. Rev. B.200368125113
    [5] Diel T, Ohno H, Matsukura F, Cibert J and Ferrand D. Zener Model Description ofFerromagnetism in Zinc-Blende Magnetic Semiconductors. Science20002871019
    [6] Wu Y, Xiang J, Yang C, Lu W and Lieber C M. Single-crystal metallic nanowires andmetal/semiconductor nanowire heterostructures. Nature200443061
    [7] Jian W B, Wu Z Y, Huang R T, Chen F R, Kai J J, Wu C Y, Chiang S J, Lan M D andLin J J. Direct observation of structure effect on ferromagnetism in Zn1xCoxOnanowires. Phys. Rev. B200673233308
    [8] Vanmaekelbergh D and van Vugt L K. ZnO nanowire lasers. Nanoscale201132783
    [9] Jun Y, Jung Y and Cheon J. Architectural Control of Magnetic SemiconductorNanocrystals. J Am Chem Soc.2002124615
    [10] Liu C, Yun F and Morkoc H. Ferromagnetism of ZnO and GaN: A Review. J MaterSci: Mater Electron200516555
    [11] Roberts B K, Pakhomov A B, Shutthanandan V S and Krishnan K M, FerromagneticCr-doped ZnO for spin electronics via magnetron sputtering. J. Appl. Phys.20059710D310
    [12] Jin C G, Yu T, Yang Y, Wu Z F, Zhuge L J and Wu X M. Ferromagnetic andphotoluminescence properties of Cu-doped ZnO nanorods by radio frequencymagnetron sputtering. Materials Chemistry and Physics2013139506
    [13] Hu Y M, Li S S and Chia C H, Enhanced extraordinary magnetoresistance in thesemiconductor-metal hybrid structure with three current leads. Appl. Phys. Lett.201198052503
    [14] MacManus-Driscoll J L, Khare N, Liu Y and Vickers M E, Structural evidence for Znintersititials in ferromagnetic Zn1-xCoxO films. Adv. Mater.2007192925
    [15] Brauer G, Anwand W, Skorupa W, Kuriplach J, Melikhova O, and Moisson C.Defects in virgin and N+-implanted ZnO single crystals studied by positronannihilation, Hall effect, and deep-level transient spectroscopy. Phys. Rev. B200674045208
    [16] Huang J, Zhu L, Hu L, Liu S, Zhang J, Zhang H, Yang X, Sun L, Li D and Ye Z.Island nucleation, optical and ferromagnetic properties of vertically aligned secondarygrowth ZnO: Cu nanorod array. Nanoscale201241627
    [17] Patterson C H. Role of defects in ferromagnetism in Zn1-xCoxO: A hybrid density-functional study. Phys. Rev. B200674144432
    [18] Galland D and Herve A. ESR spectra of the zinc vacancy in ZnO. Phys. Lett. A1970331
    [19] Wang Q, Sun Q, Chen G, Kawazoe Y and Jena P. Vacancy-induced magnetism inZnO thin films and nanowires. Phys. Rev. B200877205411
    [20] Ando K. Seeking Room-Temperature Ferromagnetic Semiconductors. Science20063121883
    [21] Coey J M D, Venkatesan M and Fitzgerald C B. Donor impurity band exchange indilute ferromagnetic oxides. Nat Mater20054173
    [22] Bl chl P E. Projector augmented-wave method. Phys. Rev. B19945017953
    [23] Perdew J P and Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B19924513244
    [24] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J and Refson K. Z. Crystalstructure, electron density and chemical bonding in inorganic compounds studied bythe Electric Field Gradient. Kristallogr2005220567
    [25] Cullity B D. Elements of X-ray Diffraction,2nded, Addison-Wesley, Massachusetts,1978
    [26] Hu Y M, Li S S and Chia C H. Correlation between saturation magnetization andsurface morphological features in Zn1-xCrxO thin films. Appl. Phys. Lett.201198052503
    [27] Scott J F, Damen T C, Silfvast W T, Leite R C C and Cheesman L E. ResonantRaman scattering in ZnS and ZnSe with the cadmium laser. Opt Commun19701397
    [28] Yan W S, Sun Z H, Liu Q H, Li Z R, Shi T F, Wang F, Qi Z M, Zhang G B, Wei S Q,Zhang H W and Chen Z Z. Resonant Raman scattering in ZnS and ZnSe with thecadmium laser. Appl. Phys. Lett.200791062113
    [29] Wong J, Lytle F W, Messmer R P and Maylotte D H, K-edge absorption spectra ofselected vanadium compounds. Phys. Rev. B1984305596
    [30] Hu Y M, Li S S and Chia C H. Correlation between saturation magnetization andsurface morphological features in Zn1-xCrxO thin films. Appl. Phys. Lett.201198052503
    [31] Hong N H, Ruyter A, Prellier W and Sakai J. Room temperature ferromagnetism inanatase Ti0.95Cr0.05O2thin films: Clusters or not? Appl. Phys. Lett.2004856212
    [32] Song C, Geng K W, Zeng F, Wang X B, Shen Y X, Pan F, Xie Y N, Liu T, Zhou H Tand Fan Z. Giant magnetic moment in an anomalous ferromagnetic insulator:Co-doped ZnO. Phys. Rev. B200673024405
    [33] Khara N, Kappers M J, Wei M, Blamire M G and MacManus-Dridcoll J L. Kineticneutron diffraction study of Nb3Sn phase formation in superconducting wires. Adv.Mater.2006181449
    [34] Karmakar D, Mandal S, Kadam R, Paulose P, Rajarajan A, Nath T, Das A, Dasgupta Iand Das G. Ferromagnetism in Fe-doped ZnO nanocrystals: Experiment and theory.Phys. Rev. B200775144404
    [35] Kaminski A and Sarma S D. Polaron Percolation in Diluted Magnetic Semiconductors.Phys. Rev. Lett.200288247202
    [36] Hartnagel H, Semiconducting Transparent Thin Films (IOP Pub-lishing, Bristol,1995)
    [37] Ito N, Sato Y, Song P K, Kaijio A, Inoue K, Shigesato Y. Electrical and opticalproperties of amorphous indium zinc oxide films. Thin Solid Films200649699
    [38] Yek CY, Zhang S B, Zunger A. Confinement, surface, and chemisorption effects onthe optical properties of Si quantum wires. Phys. Rev. B19945014405
    [39] Lany S, Zunger A. Dopability, Intrinsic Conductivity, and Nonstoichiometry ofTransparent Conducting Oxides. Phys. Rev. Lett.200798045501
    [40] Carrasco J, Lopez N, Illas F. First Principles Analysis of the Stability and Diffusion ofOxygen Vacancies in Metal Oxides. Phys. Rev. Lett.200493225502
    [41] Krishnamurthy S, McGuinness C, Dorneles L S, Venkatesan M, Coey J M D, LunneyJ G, Patterson C H, Smith K E, Learmonth T, Glans P A, Guo J H. Soft-x-rayspectroscopic investigation of ferromagnetic Co-doped ZnO. J. Appl. Phys.20069908M111
    [42] Moulder J F, Stickle W F, Sobol P E, et al. in: J.Chastain (Ed.), Handbook of X-rayPhotoelectron Spectroscopy, Perkin-Elmer, Eden Prairie, MN,1992, p.87
    [1] Tunet M M. et al. Collisionless Heating in Capacitive Discharges Enhanced byDual-Frequency Excitation. Phys. Rev. Lett.200696205001
    [2] Lieberman M A. et al. Standing wave and skin effects in large-area, high-frequencycapacitive discharges. Plasma Sources Sci. Technol.200211283
    [3] Raul S. et al. Self-consistent simulation of very high frequency capacitively coupledplasmas. Plasma Sources Sci. Technol.200717035003
    [4] Zhao C, Witters T, Brijs B, H Bender, O Richard, M Caymax. Ternary rare-earthmetal oxide high-k layers on silicon oxide. Appl. Phys. Lett.200586132903
    [5] Bohr M T, Chau R S, Ghaniand T and Mistry K. The High-k Solution. IEEE Spectrum20074429
    [6] Kirsch P D, Quevedo-Lopez M A, Li H J, Senzaki Y and Peterson J J. Nucleation andgrowth study of atomic layer deposited gate dielectrics resulting in improved scalingand electron mobility. J. Appl. Phys.2005990235081
    [7] Choi C H, Rhee S J, Jeon T S, Lu N, Sim J H, Clark R, Niwa M and Kwong D L.Thermally stable CVD HfO/sub x/N/sub y/advanced gate dielectrics with poly-Si gateelectrode. Tech. Dig.-Int. Electron Devices Meet8572002
    [8] Koyama M, Kaneko A, Ino T, Koike M, Kamata Y and Iijima R. Effects of nitrogen inHfSiON gate dielectric on the electrical and thermal characteristics. Tech. Dig.-Int.Electron Devices Meet8492002
    [9] Gopalan S, Choi R, Onishi K, Nieh R, Kang C S and Cho H J, High-performanceTaN/HfSiON/Si metal-oxide-semiconductor structures prepared by NH3post-deposition anneal. IEEE Device Research Conference Digest1952002
    [10] Cho H J, Kang C S, Onishi K, Gopalan S, Nieh R and Choi R. Bonding states andelectrical properties of ultrathin HfOxNy gate dielectrics. Tech. Dig.-Int. ElectronDevices Meet6552001
    [11] Kang C S, Cho H J, Onishi K, Choi R, Nieh R, Gopalan S, Krishnan S and Lee J C.Improvement of surface carrier mobility of HfO2MOSFETs by high-temperatureforming gas annealing. Tech. Dig. VLSI Symp2002146
    [12] Park J H, Hyun J S, Kang B C and Boo J H. Electrical properties of HfOxNythin filmsdeposited by PECVD. Surf. Coat. Technol.20072015336
    [13] Liu M, Zhang L D, Fang Q, Zhang J P, Wang X J and He G. Effects of post-depositionannealing on the structure and optical properties of Y2O3thin films. J. Phys. D: Appl.Phys.200742195304
    [14] Cho M H, Chung K B, Whang C N, Ko D H, Lee J H and Lee N I. Nitridation forHfO2high-k films on Si by an NH3annealing treatment. Appl. Phys. Lett.200688202902
    [15] Rauf S and Kushner M J. Dynamics of a coplanar-electrode plasma display panel cell.I. Basic operation. IEEE Trans. Plasma Sci.1999271329
    [16] Zhang G F, Reuter S and Buck V, Deposition of hard carbon coatings using combinedinductively and capacitively coupled plasma sources. Surf. Coat. Technol.20059054
    [17] Aanesland A, Berdin J, Chabert P and Godyak V. Electron energy distributionfunction and plasma parameters across magnetic filters. Appl. Phys. Lett.2012100044102
    [18] Kremmer S, Wurmbauer H, Teichert C, Tallarida G, Spiga S and Wiemer C. J.Nanoscale morphological and electrical homogeneity of HfO2and ZrO2thin filmsstudied by conducting atomic-force microscopy. Appl. Phys.2005977
    [19] Itagaki, Iwata S, Muta K, Yonesu A, Kawakami S, Ishii N and Kawai Y. Electron-temperature dependence of nitrogen dissociation in915MHz ECR plasma. Thin SolidFilms2003435259
    [20] Henriques J, Villeger S, Levaton J, Nagai J, Santana S, Amorim J and Ricard A.Densities of N-and O-atoms in N2O2flowing glow discharges by actinometry. Surf.Coat. Technol.2005200814
    [21] Coburn J W and Chen M. Optical emission spectroscopy of reactive plasmas: Amethod for correlating emission intensities to reactive particle density. J. Appl. Phys.1980513134
    [22] Lieberman M A and Lichtenberg A J. Principles of Plasma Discharges and MaterialsProcessing (Wiley New York)1994
    [23] Handbook of Plasma Diagnostics Hiden Analytical, Ltd. Warrington,(England, U.K)
    [24] Herman D.2005Ph.D. Thesis, Univ. of Michigan Ann Arbor, MI
    [25] Kang J F, Yu H Y, Ren C, Li M F, Chan D S H, H Hu, H F Lim, W D Wang, D Guiand D L Kwong. Thermal stability of nitrogen incorporated in HfNxOygate dielectricsprepared by reactive sputtering. Appl. Phys. Lett.2004841588
    [26] Park T J, Kim J H, Jang J H, Na K D, Hwang C S and Yoo J H. Reduction ofElectrical Defects in Atomic Layer Deposited HfO2Films by Al Doping. J. Appl. Phys.2008104054101
    [27] Henriques J, Tatarova E, Dias F M and Ferreira C M. Effect of gas heating on thespatial structure of a traveling wave sustained Ar discharge. J. Appl. Phys.2002915622
    [28] M H Cho, K B Chung, C N Whang, D H Ko, J H Lee and N I Lee. Nitridation forHfO2high-k films on Si by an NH3annealing treatment. Appl. Phys. Lett.200688202902
    [29] Zhen Xu, Michel Houssa, Richard Carter, Mohamed Naili, Stefan De Gendt and MarcHeyns. Constant voltage stress induced degradation in HfO2/SiO2gate dielectric stacks.J. Appl. Phys.20029110127
    [30] Iglesias V, Porti M, Nafría M, Aymerich X, Dudek P, Schroeder T and Bersuker G.Correlation between the nanoscale electrical and morphological properties ofcrystallized hafnium oxide-based metal oxide semiconductor structures. Appl. Phys.Lett.201097262906
    [31] Umezawa N, Shiraishi K, Ohno T, Watanabe H, Chikyow T, Torii K, Yamada K,Kitajima H and Arikado T. Unique Behavior of F-Centers in High-k Hf-Based Oxides.Appl. Phys. Lett.200586143507
    [32] Godyak V A and Piejak. R B. Abnormally low electron energy and heating-modetransition in a low-pressure argon rf discharge at13.56MHz. Phys. Rev. Lett.199065996
    [33] Lee H C, Lee M H and Chung C W. Effects of rf-bias power on plasma parameters ina low gas pressure inductively coupled plasma. Appl. Phys. Lett.201096041503
    [34] Goto H, Sasaki M, Lowe H-D, Ohmi T, Shibata T, Yamagami A, Okura N andKamiya O. A low damage, low contaminant plasma processing system utilizing energyclean technology. Appl. Phys.199029L2395
    [35] L we H.-D. Control of ion energy and flux in a dual radio frequency excitationmagnetron sputtering discharge. J. Vac. Sci. Technol. A199193090
    [36] Clark T. The modification, degradation,&synthesis of polymer surfaces studied byESCA. American Chemical Society: Washington D.C.198124791
    [37] Stinespring C D, Wormhoudt J C. Surface studies relevant to silicon carbide chemicalvapour deposition. J. Appl. Phys.1989651733
    [38] Wagner C D, Riggs W M, Davis L E, Moulder J F, Muilenberg G E, Handbook ofX-ray Photoelectron Spectroscopy.1979, Perkin-Elmer Corporation: PhysicalElectronics
    [39] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S,Jiang D, Novoselov K S, Roth S and Geim A K. Raman Spectrum of Graphene andGraphene Layers. Phys. Rev. Lett.200697187401
    [40] Tuinstra F J. Raman Spectrum of Graphite. Chem. Phys.1970531126
    [41] Can ado L G, Takai K, Enoki T, Endo M, Kim Y A, Mizusaki H, Jorio A, Coelho L N,Magalh es-Paniago R and Pimenta M A. General equation for the determination of thecrystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett.200688163106
    [42] Koh A, Foong Y. M, Chua D. H. Cooling rate and energy dependence of pulsed laserfabricated graphene on nickel at reduced temperature. Appl. Phys. Lett.201097114102
    [43] Lee D S, Riedl C, Krauss B, Klitzing von K, Starke U and Smet J. H. Raman Spectraof Epitaxial Graphene on SiC and of Epitaxial Graphene Transferred to SiO2. NanoLett.200884320
    [44] Kokkoris G, Goodyear A, Cooke M, Gogolides E. J. A global model for C4F8plasmascoupling gas phase and wall surface reaction kinetics. Phys. D: Appl. Phys.2008,41,195211
    [45] Bauschlicher C W, Ricca A J. Heats of Formation for Cyclic C4Fn, n=48, and TheirCations Phys. Chem. A20001049026
    [46] Bauschlicher C W, Ricca A J. Heats of Formation for CnFm, CnFm+, CHFm, and CHFm+.Phys. Chem. A20001044581
    [47] Malyshev M V, Donnelly V M, Kornblit A, Ciampa N A, Colonell J I and Lee J T C.Langmuir probe studies of a transformer-coupled plasma, aluminum etcher. J. Vac. Sci.Technol. A199917480
    [48] Caughman J B O. The effects of substrate bias on plasma parameters in an electroncyclotron resonance plasma reactor. J. Vac. Sci. Technol. A199193113
    [49] Brian S. Fundamentals of Fourier Transform Infrared spectroscopy1996CRC prss:Boca Raton
    [50] Goeckner M J and Goeckner N A. Fourier-transform infrared measurements ofCHF3/O2discharges in an electron cyclotron resonance reactor. J. Vac. Sci. Technol. A1999172586
    [51] White J U. Long optical paths of large aperture. J. Opt. Soc. Am194232285
    [52] Nielsen J R, Claassen H H and Smith D C J. ACP Atmospheric Chemistry and PhysicsACP Atmos. Chem. Phys.195018812
    [1] Huang C Y, Sun J H and Wu T T. A two-port ZnO/silicon Lamb wave resonator usingphononic crystals. Appl. Phys. Lett.201097031913
    [2] Gupta T K. Application of zinc oxide varistors. J.Am.Ceram.Soc.1990731817–1840
    [3] Szyszka B.Transparent and conductive aluminum doped zinc oxide films prepared bymid-frequency reactive magnetron sputtering. ThinSolidFilms.1999351164–169
    [4] Fortunato E M C, Barquinha P M C, Pimentel A C M B G, Gon alves A M F,Marques A J S, Martins R F P and Pereira L M N. Wide-band gap high-mobility ZnOthin film transistors produced at room temperature. Appl. Phys. Lett.200485254113
    [5] Ellmer K, Klein A and Rech B. in Transparent Conductive Zinc Oxide, ed. by R. Hullet al. Springer Series in Materials Science, vol.104(Springer, Heidelberg,2008)
    [6] Tun C J, Sheu J K, Pong B J, Lee M L, Lee M Y, Hsieh C K, Hu C C and Chi G C.Enhanced light output of GaN-based power LEDs with transparent Al-doped ZnOcurrent spreading layer. IEEE Photonics Technol. Lett.200618274
    [7] Carcia P F, Mclean R S, Reilly M H, Li Z G, Pillione L J and Messier R F. Low-stressindium–tin–oxide thin films rf magnetron sputtered on polyester substrates. Appl.Phys. Lett.2002811800
    [8] Kelley T W, Baude P F, Gerlach C, Ender D E, Muyres D, Haase M A, Vogel D E andTheiss S D. Recent progress in organic electronics materials devices and process.Chem. Mater.2004164413
    [9] Petrov I, Batma P B, Hultman L and Greene J E. Microstructural evolution during filmgrowth,J. Vac. Sci. Technol. A.200321S117
    [10] Hong R J, Jiang X, Heide G, Szyszka B, Sittinger V and Werner W. Growthbehaviours and properties of the ZnO:Al films prepared by reactive mid-frequencymagnetron sputtering. J. Cryst. Growth.2003249461
    [11] Schmidt N W, Totushek T S, Kimes W A, Callender D R and Doyle J R. Effects ofsubstrate temperature and near-substrate plasma density on the properties of dcmagnetron sputtered aluminum doped zinc oxide. J. Appl. Phys.2003945514
    [12] Kim K H, Park K C and Ma D Y. Structural, electrical and optical properties ofaluminum doped zinc oxide films prepared by radio frequency magnetron sputtering.J.Appl.Phys.1997817764
    [13] Park S M, Ikegami T, Ebihara K and Shin P K. Structure and properties of transparentconductive doped ZnO films by pulsed laser deposition Appl. Surf. Sci.20062531522
    [14] Lim S J, Lee S K, Jo M, Lee C S, Kwon S and Kim H. J. Korean Phys. Soc.200853253
    [15] Hu J and Gordon R G.Texture aluminum-doped zinc oxide thin films fromatmospheric pressure chemical-vapor deposition. J.Appl.Phys.199271880
    [16] Oda S, Tokunaga H, Kitajima N, Hanna J I, Shimizu I and Kokado H. Highly OrientedZnO Films Prepared by MOCVD from Diethylzinc and Alcohols. Jpn. J. Appl. Phys.1985241607
    [17] Tzolov M, Tzenov N, Dimova-Malinovska D, Kalizova M, Pizzuto C, Vitali G, ZolloG, Ivanov I. Vibrational properties and structure of undoped and Al-doped ZnO filmsdeposited by RF magnetron sputtering. Thin Solid Films.200037928
    [18] Alim K A, Fonoberov V A and Balandin A.A. Origin of the optical phonon frequencyshifts in ZnO quantum dots. Appl. Phys. Lett.200586053103
    [19] Youn C J, Jeong T S, Han M S and Kim J H. Optical properties of Zn-terminated ZnObulkJ. Cryst. Growth.2004261526
    [20] Zeng J N, Low J K, Ren Z M, Liew T and Lu Y F. Effect of deposition conditions onoptical and electrical properties of ZnO films prepared by pulsedlaser deposition. Appl.Surf. Sci.2002197362
    [21] Asmar R A, Atanas J P, Ajaka M, Zaatar Y, Ferblantier G, Sauvajol J L, Jabbour J,Juillaget S and Foucaran A. Characterization and Raman investigations on high-quality ZnO thin films fabricated by reactive electron beam evaporation technique. J.Cryst. Growth2005279394
    [22] Exarhos G J and Sharma S K. Influence of processing variables on the structure andproperties of ZnO films.ThinSolidFilms.199527027
    [23] Ruppin R. Thermal fluctuations and Raman scattering in small spherical crystals. J.Phys. C197581969
    [24] Knipp P A and Reinecke T L. Interface phonons of quantum wires. Phys. Rev. B199245
    [25] Gregorio J Di and Furtak T. Raman scattering by surface phonon-polaritons in largeSiC microcrystals. Solid State Commun.199489163
    [26] Islam M N, Ghosh T B, Chopra K L and Acharya H N. XPS and X-ray diffractionstudies of aluminum-doped zinc oxide transparent conducting films. Thin SolidFilms.199628020
    [27] Cebulla R, Werndt R and Ellmer K. Al-doped zinc oxide films deposited bysimultaneous rf and dc excitation of a magnetron plasma: Relationships betweenplasma parameters and structural and electrical film properties. J. Appl. Phys.1998831087
    [28] Rao L K and Vinni V. Novel mechanism for high speed growth of transparent andconducting tin oxide thin films by spray pyrolysis. Appl. Phys. Lett.199363608
    [29] Fan J C C, Goodenough J B. X-ray photoemission spectroscopy studies of Sn-dopedindium-oxide films. J. Appl. Phys.1977483524
    [30] Weller H C, Mauch R H and Bauer G H. Themechanisms of negative oxygen ionformationform Al-doped ZnO target and theimprovements in electrical andopticalproperties of thin films using off-axis dcmagnetron sputtering at lowtemperature. Sol. Energy Mater. Sol. Cells.199227217
    [31] Wagner C D, Riggs W M, Davis L E, Moulder J F and G.E. Muilenberg, in: Handbookof X-ray Photoelectron Spectoscopy, PerkinElmer Corporation, Eden Prairie, MN,1979, p.50
    [32] Kuroyanagi A. Crystallographic characteristics and electrical properties of AldopedZnO thin films prepared by ionized deposition. J. Appl. Phys.1989665492
    [33] Seto J Y.The electrical properties of polycrystalline silicon films. J. Appl. Phys.1975465247
    [34] Ito N, Sato Y, Song P K, Kaijio A, Inoue K and Shigesato Y. Electrical and opticalproperties of amorphous indium zinc oxide films. Thin Solid Films200649699!
    [35] Hartnagel H. Semiconducting Transparent Thin Films (Institute of Physics Pub.,Bristol [England],1995)
    [36] Yek C Y, Zhang S B and Zunger A. Phys. Rev. B19945014405
    [37] Lany S and Zunger A. Dopability, Intrinsic Conductivity, and Nonstoichiometry ofTransparent Conducting Oxides. Phys. Rev. Lett.200798045501
    [38] Carrasco J, Lopez N and Illas F. First Principles Analysis of the Stability andDiffusion of Oxygen Vacancies in Metal Oxides. Phys. Rev. Lett.200493225502
    [39] Hegde R I, Triyoso D H, Samavedam S B and White B E.Hafnium zirconate gatedielectric for advanced gate stack applications. J. Appl. Phys.2007101074113!
    [40] Triyoso DH, Hegde a_R I, Schaeffer JK, Gregory R, Wang X-D and Canonico M, etal. Characteristics of atomic-layer-deposited thin HfxZr1xO2gate dielectrics. J. Vac.Sci Technol.B200725(3)1071
    [41] Kang C S, Cho H J, Choi R, Kim Y H, Kang C Y and Rhee S J, et al. IEEE TransElectron Devices.20045122!
    [42] Visokay M R, Chambers J J, Rotondaro A L P, Shanware A and Colombo L.Application of HfSiON as a gate dielectric material. Appl Phys Lett.2002803183
    [43] Cho M, Park J, Park H B, Hwang C S, Jeong J and Hyun K S, etal. Chemicalinteraction between atomic-layer-deposited HfO2thin films and the Si substrate.ApplPhysLett.2002813630!
    [44] Choi K J, Kim J H, Yoon S G and Shin WC. J Vac Sci Technol B2004221755e8.
    [45] Koyama M, Satake H, Koike M, Ino T, Suzuki M, Iijima R, et al. Tech Dig–IntElectron Devices Meet.2003931!
    [46] Quevedo-Lopez M A, Visokay M R, Chambers J J, Bevan M J, LiFatou A andColombo L, et al. J Appl Phys2005970435308!
    [47] Sivasubramani P, Kim MJ, Gnade BE, Wallace RM, Edge LF and Schlom DG, et al.Outdiffusion of La and Al from amorphous LaA1O3in direct contact with Si100.Appl Phys Lett200586201901
    [48] Njjljsk A, Aarika J, Uustar T, M ndar H, Tkache S and Manghnani M. Proc SPIE2005594659460!
    [49] He G, Fang Q, Liu M, Zhu LQ and Zhang L D.The structural and interfacial propertiesof HfO2/Si by the plasma oxidation of sputtered metallic Hf thin films J CrystGrowth.2004268155
    [50] Chio K J, Kim J H, Yoon S G and Shin W C. J Vac Sci Technol B2004221755!
    [51] Chio K J, Kim J H and Yoon S G.Characterization of HfO2and HfOxNy GateDielectrics Grown by PE Metallorganic CVD with a TaN Gate Electrode. JElectrochem Soc2004151G262!
    [52] Shang G, Peacock P W and Robertson J. Stability and band offsets of nitrogenatedhigh-dielectric-constant gate oxides. Appl Phys Lett200484106!
    [53] Robinson R D, Tang J, Steigerwald M L, BrusL E and Herman I P. Phys Rev B.200571115408!
    [54] Quintard P E, Barbéris P, Mirgorodsky A P and Merle-méjean T. Comparativelattice-dynamical study of the Raman spectra of monoclinic and tetragonal phases ofzirconia and hafnia. J Am Ceram Soc.2002851745
    [55] Christensen A N, Dietrich O W, Kress W and Teuchert W D. Phonon anomalies intransition-metal nitrides: ZrN. Phys Rev B.1979195699!
    [56] Young-Bae K, Ahn H and Wu TT. Semicond Sci Technol200520519

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700