控制性交替隔沟灌溉的节水机理与作物需水量估算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱缺水严重地制约着社会经济的可持续发展。我国是一个灌溉农业大国,水资源紧缺问题十分严重。然而,由于经济欠发达,我国农田灌溉仍以传统的畦、沟地面灌溉技术为主,水资源浪费现象还比较严重,因此,如何运用新的理论研究和改进地面灌水技术,提高农田水分利用效率和水的生产效率,已成为当今我国农业节水研究的重点课题。
     沟灌是大田宽行作物灌溉中比较常见的一种灌水方式。但常规沟灌很难满足灌溉过程中对灌水适时、适量的要求。近年来,根据室内控制性作物根系分区交替灌溉的试验成果,通过对土壤控制水分进入作物根区的物理过程、根系吸水的生理过程、以及根系的动态性质、补偿功能、根冠间信息传递和相互作用等的深入了解,提出的控制性交替隔沟灌溉技术,在大田宽行作物灌溉中已初步表现出节水而不减产的优点,被证明是一种行之有效的灌水方式。然而,目前有关交替隔沟灌溉的研究还主要集中于这种灌水方式对作物水分生理指标、耗水量和产量的影响方面,而对大田采用这种灌水式后的土壤入渗参数变化情况、作物需水量与耗水量计算、以及指导大田灌溉的水分下限控制指标等与大田生产实际密切相关的几个问题基本上还没有进行系统的深入研究,而这些问题如不能得到很好地解决,势必会对这种灌水方式的推广应用产生严重的影响。为此,本文针对上述问题,以夏玉米为试验材料,在大田和防雨棚下测坑内开展了三年的试验研究。
     全文共分六章。第一章对地面沟灌技术的改进与发展、控制性交替隔沟灌溉技术的提出与理论依据、国内外相关研究的进展情况等进行了分析和阐述,提出了目前有待进一步研究和解决的主要问题;第二章通过大田灌水试验对控制性交替隔沟灌溉的土壤入渗参数、灌溉水流推进和水分在土壤中的再分布过程进行了研究;第三章利用棚下测坑的实测资料,分析给出了不同沟灌方式夏玉米田棵间土壤蒸发与作物蒸腾的比例关系,并对棵间土壤蒸发与表层土壤含水率和叶面积指数的关系、灌溉后湿沟土面蒸发强度的变化过程进行了研究,最后依据实测的产量资料初步确定了交替沟灌溉的夏玉米需水量和各生育阶段的日平均需水强度;第四章研究了控制性交替隔沟灌溉对夏玉米植株生长发育、根冠比、灌浆速度、叶片水分生理指标、产量及水分利用效率的影响,分析确定了控制性交替隔沟灌溉夏玉米的适宜灌水控制下限;第五章对交替隔沟灌溉条件下夏玉米需水量的估算方法、基础作物系数与土面蒸发系数的确定等
    
    且且
    一
    .进行了研究和验证;第六章对研究主要结论进行概括总结,并就有关问题进行了讨论。
     本文研究得出的主要结论可归纳为如下几点:
     门)由于表层土壤干燥程度及水平方向吸力梯度的差异,不同沟灌方式之间土
    壤入渗参数存在着一定的差异,交替隔沟灌溉的土壤初始入渗速率较大,水流推进速
    率较常规沟灌和固定隔沟灌的都慢,但其入渗速率随时间的衰减速度较快,在单沟灌
    水量相同的情况下沟中地表水消退历时更长一些。根据建立的水量平衡方程,采用模
    式搜索技术中的爬山法,利用 Infilt vs分析软件,计算得到的不同沟灌方式灌溉水流
    的推进过程与利用实测资料回归分析得到的水流推进过程几乎完全重合,预测精度很
    高,因此证明本文建立的模型和分析计算方法是合理可行的,完全可用于不同沟灌方
    式土壤入渗参数和水流推进过程的估算。
     u)采用交替隔沟灌溉,灌水沟的水分入渗类似于 GreenAmPt干土入渗的打
    气筒模型入渗方式,湿润锋面明显且比较陡直,上层剖面同一层次的水平侧渗量比常
    规沟灌和固定隔沟灌的都大,灌水湿润土层深度不到60cm土层,完全可以避免深层
    渗漏的发生。与固定隔沟灌相比,交替隔沟灌土沟的干湿交替循环不会使根区部分土
    壤出现长期极度干燥的情况,因此对作物根系的生长和吸收比较有利。在灌水沟沟长
    小于50m且在尾端打有土埂的情况下,不同灌水方式对沿沟长方向的灌水均匀度不
    会产生任何影响。
     (3)采用交替隔沟灌溉方式,夏玉米生育期需水量为310二3rum,其中棵间土壤
    蒸发与作物蒸腾量分别为88.43turn和221.70mm,比常规沟灌的分别减少25.36%、
    35石2%、20.29%,表明干湿交替循环不仅可以减少每次灌水间隔期间的棵间土壤无
    效蒸发,而且也抑制了作物的奢侈蒸腾,因此作物需水量明显减少,节水效果非常显
    著,被证明是沟灌方式中最科学的一种灌水方法。
     (4)夏玉米田棵间土壤蒸发主要发生在灌后几天表层土壤比较湿润的时期内,
    其中表层土壤含水率和叶面积指数是影响土面蒸发的两个基本因素。采用控制性交替
    隔沟灌溉,通过减少湿润表面面积,缩短表面湿润时间,可在夏玉米生育期各阶段明
    显减少棵间土壤蒸发,增进土壤贮水向作物根系吸水的转化,使作物蒸腾占阶段耗水
    量的比例增大。如灌水下限同为L刁0的水分处理,交替隔沟灌溉的夏玉米,在播种~
    出苗、出苗~拔节、拔节~抽雄、抽雄~灌浆、灌浆~成熟及全生育期的植株蒸腾量
    占阶段耗水量的比例比常规沟灌的分别增加了4.32%、6.82%、5.26%、3石1%、1.89%
    和 4.55%。
     (5)夏玉米
Drought and water shortage are restricting seriously the sustainable development of social economy. China is a large country of irrigated agriculture, in which the shortage of water resources is very serious. Due to the underdevelopment of economy, traditional surface irrigation such as border and furrow irrigation is still taken as the dominant way in farmland irrigation, which leads to the great waste of water resources. Therefore, how to apply a new theory to study and improve surface irrigation technique in order to increase water use efficiency and water productivity in farmland, has become a key project in water-saving research of agriculture today.
    Furrow irrigation is a common way used in wide-row crops. But conventional furrow irrigation is difficult to meet the demands that crops are irrigated at proper time and with suitable amount of water. In recent years, according to the experimental results of controlled roots-divided alternative irrigation, controlled alternative furrow irrigation technique has been put forward through the deep investigation on the physical process of soil water moving into root zone, physiological process of roots absorbing water, dynamic properties and compensative role of roots, signal transmission and interaction between roots and canopy and so on. Controlled alternative furrow irrigation is proved to be an effective irrigation technique that has an advantage of saving water and not reducing yields in irrigating wide-row crops. At present, the studies about the controlled alternate furrow irrigation are focused on how it affects the water physiological indexes, water consumption and yields of crops. But, some problems suc
    h as the soil infiltrative parameters, irrigating water advancing, water redistribution in soil, calculation of crop water requirement and water consumption, and the upper and lower limit indexes of soil moisture, guiding a field irrigation after the controlled alternative furrow irrigation is implemented in field, have not
    
    
    
    been researched systematically and deeply. If these problems could not been solved commendably, the popularization of controlled alternate furrow irrigation will be affected. Therefore, an experimental study has been conducted on summer maize planted in field and lysimeters under a rain shelter for three years to solve the problems.
    This dissertation is divided into six chapters. In the first chapter, the improvement and development of furrow irrigation technique, theory foundation of controlled alternate furrow irrigation, and related research advance at home and abroad were analyzed and elucidated, and the main problems needing to be studied further and to be solved were put forward. In the second chapter, the soil infiltrative parameters, irrigating water advancing and water redistribution in soil were studied by adopting the controlled alternative furrow irrigation in field. In the third chapter, the ratio of soil evaporation to crop transpiration under different furrow irrigation ways adopted in summer maize field was analyzed by using the measured data in lysimeters. Next, the relationship between soil evaporation, surface soil moisture and leaf area indexes and the variation course of surface soil evaporation intensity in wet furrows after irrigation were studied. Finally, water requirement of summer maize and daily water requirement at each stage were determined based on the yield data under alternate furrow irrigation. In the fourth chapter, the effect of controlled alternative furrow irrigation on the ratio of root to shoot, filling rate, leaf physiological indexes, yield and water use efficiency of summer maize were discussed, and the lower limits of suitable irrigation for summer maize in controlled alternate furrow irrigation were analyzed and determined. The estimation methods of water requirement, and determination of basal crop coefficient and soil evaporation coefficient under the controlled alternative furrow irrigation in summer maize were studied and verified in the fifth chapter. In the last chapter, the m
引文
[1] 白晓君,段爱旺,刘志广等译.美国国家灌溉工程手册.北京:中国水利水电出版社,1998.
    [2] 曹仪植,吕忠恕.水分胁迫下植物体内游离脯氨酸的累积及ABA在其中的作用.植物生理学报,11(1):9~12.
    [3] 曹仪植,吕忠恕.天然生长抑制物质的累积与植物对不良环境适应性的关系.植物学报,1983,25(1):123~130.
    [4] 陈培元.作物对水分胁迫的生理反应,见:山仑,陈培元主编,旱地农业生理生态基础,北京:科学出版社,1998,pp18~34.
    [5] 陈亚新,康绍忠.非充分灌溉原理.北京:水利电力出版社,1994.
    [6] 陈玉民,郭国双等.中国主要农作物需水量等值线图研究.中国农业科技出版社,1993.
    [7] 陈玉民,郭国双等.中国主要作物需水量与灌溉.北京:水利电力出版社,1995.
    [8] 段爱旺,肖俊夫等.控制交替隔沟灌中灌水控制下限对玉米叶片水分利用效率的影响.作物学报,1999,25(6):766~771.
    [9] 段爱旺,肖俊夫等.土壤水分胁迫对玉米光合、蒸腾及水分利用效率的影响.华北农学报,1996,11(增刊):139~143.
    [10] 段爱旺,肖俊夫等.叶面喷施磷酸二氢钾对玉米杂交种掖单13幼苗水分利用效率的影响.作物学报,1996,22(3):382~384.
    [11] 费良军,王文焰.由波涌畦灌灌水资料推求土壤入渗参数和减渗率系数.水利学报,1999,(8):75~81.
    [12] 冯广龙,罗远培,刘建利等.不同水分条件下冬小麦根与冠生长及功能间的动态消长关系.干旱地区农业研究,1997,15(2):73~79.
    [13] 顾慰连,沈秀瑛,戴俊英等.玉米不同品种各生育时期对干旱的生理反映.沈阳农业大学学报,1990,21(3):38~43.
    [14] 郭相平.夏玉米调亏灌溉机理与指标研究.杨凌:[博士学位论文],西北农业大学,1999.
    [15] 郭元裕.农田水利学.北京:水利电力出版社,1986.
    [16] 黄河2010年流域缺水40亿立方米.光明日报,2000.2.21.
    [17] 缴锡云,王文焰,雷志栋等.估算土壤入渗参数的改进Maheshwari法.水利学报,2001,(1):62~67.
    
    
    [18] 缴锡云,王文焰,雷志栋等.推求土壤入渗参数的改进Esfandiari法.西安理工大学学报,2000,(2):165-169.
    [19] 康绍忠,蔡焕杰主编.农业水管理学.北京:中国农业出版社,1996.
    [20] 康绍忠,潘英华,石培泽等.控制性作物根系分区交替灌溉的理论与试验.水利学报,2001,(11):80~86.
    [21] 康绍忠,史文娟,胡笑涛.调亏灌溉对玉米生理指标及水分利用效率的影响.农业工程学报,1998,14(2):82~87.
    [22] 康绍忠,张富仓,刘晓明.作物叶面蒸腾与棵间土壤蒸发分摊系数的计算方法.水科学进展,1995,6(4):285~289.
    [23] 康绍忠,张建华,梁建华.土壤水分与温度共同作用对植物根系水分传导的效应.植物生态学报,1999,23(3):211~219.
    [24] 康绍忠,刘晓明,熊运章.土壤—植物—大气连续体水分传输理论及其应用.北京:水利电力出版社,1994.
    [25] 康绍忠,张建华等.控制性交替灌溉—一种新的农田节水调控思路.干旱地区农业研究,1997,15(1):1~6.
    [26] 康绍忠.新的农业科技革命与21世纪我国节水农业的发展.中国农村水利水电,1997(增刊):63~66.
    [27] 雷志栋,杨诗秀,谢森传.土壤水分动力学.北京:清华大学出版社,1988.
    [28] 李开元,李玉山,邵明安.土壤保墒性能与土壤水分有效性综述.中国科学院西北水土保持所集刊,1991年6月,13:94~104.
    [29] 李玉山.娄土水分状况与作物生长.土壤学报,1962,10(3):289~302.
    [30] 李援农.恒定土壤空气阻力对土壤入渗的影响.西北农业大学学报,1995,23(3):138~142.
    [31] 李援农,土壤入渗过程中空气压力变化规律的研究.西北农业大学学报,1995,23(6):72~76.
    [32] 李援农.土壤入渗中气相对水流运动影响的研究.干旱地区农业研究,2002,20(1):81~83.
    [33] 李远华,崔远来,杨常武等.漳河灌区实时灌溉预报研究,水科学进展,1997,8(1):71~77.
    [34] 李远华.实时灌溉预报的方法及应用.水利学报,1994,2:46~51.
    [35] 李跃强.植物对逆境的反应及其生理机制研究.北京:[硕士学位论文],北京农业大学,1992.
    [36] 李跃强,盛承发.植物的超越补偿反应.植物生理学通讯,1996,32(6):457~464.
    [37] 李跃强,王学臣.根信号及其在植物水分利用最优化中的调节作用.植物学通报,1994,1l(2):37~43.
    
    
    [38] 李宗植.干旱地区摆脱缺水困境须综合治理.光明日报,1999.2.1.
    [39] 梁银丽.小麦根系生长及对土壤水分的反应.见:山仑,陈培元主编,旱地农业生理生态基础,北京:科学出版社,1998,pp203~213.
    [40] 梁宗锁,康绍忠,高俊凤等.控制性分根交替灌溉对玉米生长及水分利用率的影响.中国农业科学,1998,(5):88~90.
    [41] 梁宗锁,康绍忠,张建华.控制性分根交替灌水的节水效应.农业工程学报,1997,13(4):58~63.
    [42] 梁宗锁,康绍忠,李新有.有限供水对夏玉米产量及水分利用效率的影响.西北植物学报,1994,13(增刊):9~14.
    [43] 刘昌明,王会肖.节水农业内涵商榷.见:石元春,刘昌明,龚元石主编,节水农业应用基础研究进展,北京:中国农业出版社,1995(12),pp.7~19.
    [44] 刘昌明,张喜英,由懋正.大型蒸渗仪与小型棵间土壤蒸发器结合测定冬小麦蒸散的研究.水利学报,1998,10:36~39.
    [45] 刘昌明,于沪宁.土壤—植物—大气系统水分运行实验研究.北京:气象出版社,1996.
    [46] 刘钰,Fernado R M,Pereira L S.微型蒸发器实测麦田与裸地土面蒸发强度的试验研究,水利学报,1999,6:45~50.
    [47] 刘钰,Pereira L S,Teixeira J L,蔡林根.参照腾发量的新定义及计算方法对比.水利学报,1997,(6):27—33.
    [48] 马瑞昆等.供水深度与冬小麦根系发育的关系.干旱地区农业研究,1991,3:1~10.
    [49] 孟兆江,刘安能,庞鸿宾.夏玉米调亏灌溉的生理机制与指标研究.农业工程学报,1998,14(4):88~92.
    [50] 潘英华,康绍忠.交替隔沟灌溉水分入渗规律及其对作物水分利用的影响,农业工程学报,2000,16(1):39~43.
    [51] 潘英华,康绍忠.交替隔沟灌溉水分入渗规律及其对作物水分利用的影响,农业工程学报,2000,16(1):39~43.
    [52] 潘英华,康绍忠.交替隔沟灌溉水分入渗特性.灌溉排水,2000,19(1):1~4.
    [53] 彭世彰,李荣超.覆膜旱作水稻作物系数试验研究.水科学进展,2001,12(3):312~317.
    [54] 山仑,徐萌.节水农业及生理生态基础.应用生态学报,1991,2(1):70~76.
    [55] 山仑.有限灌溉及其生理生态基础.见:山仑,陈培元主编,旱地农业生理生态基础,北京:科学出版社,1998(1),pp159~173.
    
    
    [56] 盛承发.生长的冗余—作物对于虫害超越补偿作用的一种解释.应用生态学报,1990,3(1):26~30.
    [57] 石培泽,杨秀英.春小麦适度亏缺灌溉的节水增产效应.干旱地区农业研究,1998,16(4):80~84.
    [58] 史文娟,胡笑涛,康绍忠.干旱缺水条件下调亏灌溉技术状况与展望.干旱地区农业研究,1998,16(2):85~88.
    [59] 史文娟.分根区垂直交替供水与调亏灌溉的节水机理及效应.杨凌:[硕士学位论文],西北农业大学,1999.
    [60] 苏祯禄,任和平.河南玉米.北京:中国农业出版社,1994.
    [61] 孙景生.夏玉米生长盛期土壤—作物—大气连续体水热耦合运移的数值模拟.杨凌:[硕士学位论文],西北农业大学,1994.
    [62] 汤章诚.植物对水分胁迫的反应和适应性,Ⅱ植物对干旱的反应和适应性.植物生理学通讯,1983,4:1~7.
    [63] 王会肖,刘昌明等.玉米、大豆棵间土壤蒸发Micro-lysimeter测定分析.见:刘昌明,于沪宁主编,土壤—植物—大气系统水分运行实验研究.北京:气象出版社,1996,pp120~130.
    [64] 王会肖,刘昌明等.小麦棵间土壤蒸发Micro-lysimeter测定分析.见:刘昌明,于沪宁主编,土壤—植物—大气系统水分运行实验研究.北京:气象出版社,1996,pp111~119.
    [65] 王文焰等.波涌灌溉试验研究与应用.西安:西北工业大学出版社,1994.
    [66] 王学臣,任海云,娄成后.干旱胁迫下植物根与地上部间的信息传递.植物生理学通讯,1992,28(6):397~402.
    [67] 许迪,蔡林根,王少丽等.农业持续发展的农田水土管理研究.北京:中国水利水电出版社,2000.
    [68] 许旭旦,诸涵素.植物根部的水分倒流现象,植物生理学通讯,1995,31(4):241~245.
    [69] 杨文治等.黄土高原几种土壤在非饱和条件下水分蒸发性能和抗旱力评价.土壤学报,1985,22(1):13~23.
    [70] 姚贤良等.土壤物理学.北京:农业出版社,1986,pp375~377.
    [71] 张利.作物棵间土壤蒸发及叶面蒸腾量的研究.生态农业研究,1995,3(1):76~78.
    [72] 张喜英,刘昌明.华北平原农田节水途径分析.见:石元春,刘昌明,龚元石主编,节水农业应用基础研究进展,北京:中国农业出版社,1995,pp156~163.
    [73] 张喜英,袁小良.冬小麦根系吸水与土壤水分关系的田间试验研究.华北农学报,1995,10(4):99~104.
    
    
    [74] Hillel D.土壤和水——物理原理和过程.华孟,叶和才译.北京:农业出版社,1981.
    [75] Wallker W R.地面灌溉系统的设计和评价指南.刘荣乐译.北京:中国农业科技出版社,1992.
    [76] Ackerson R C, et al. Stomatal and nonstomatal regulation of water use in cotton, corn and sorghum. Plant Physiology, 1997, 60: 850~853.
    [77] Al-khafaf S, Wierenga P J, and Williams B L. Evaporative flux from irrigated cotton as related to leaf area index, soil water evaporative demand. Agron. J., 1978, 70: 912~917.
    [78] Allen R G, Raes D and Smith M. Crop evapotranspiration guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 1998.
    [79] Allen R G, Smith M, Pruitt W O, and Perira L S. Modifications to the FAO crop coefficient approach. In ASAE Proc. Int. Conf. on Evapotranspiration and Irrigation Scheduling, 1996, 124~132.
    [80] Allen S J. Measurement and estimation of evaporation from soil under sparse barley crops in northern Syria. Agri. For. Meteorol., 1990, 49:291~309.
    [81] Ayars J E, and Hutmacher R B. Crop coefficients for irrigating cotton in the presence of groundwater. Irrigation Science, 1994, 15(1):45~52.
    [82] Baker J M and Van Baver C H M. Water transfer through cotton plants connecting soil regions of differing water potential. Agron. J., 1988, 80: 993~997.
    [83] Bautista E and Wallender W W. Spatial variability of infiltration in furrows. Transactions of the ASAE, 1985, 28(6): 1846~1851.
    [84] Blackman P G, Davies W J. Root-to-shoot communication in maize plants of the effects of soil drying. J. of Experimental Botany, 1985, 36:39~48.
    [85] Boast C W and Robertson T M. A microlysimeter method for determining evaporation from bare soil: description and laboratory evaluation. Soil Sci. Soc. Am. J., 1982, 46: 689~696.
    [86] Brission N, Seguin B and Bertuzzi P. Agrometeorological soil water balance for crop simulation models. Agri. and For. Mete., 1992, 59:267~278.
    [87] Bruce R R. Cotton row spacing as it affects soil water utilization and yield. Agron. J., 1965, 57: 319~321.
    
    
    [88] Carl C, et al. Use of microlysimeters to measure evaporation from sandy soils. Agric. and For. Meteor., 1993, (65) : 159-173.
    [89] Cooper P J M, Keatinge, J D H, and Hughes G. Crop evapotranspiration-a technique for calculating its components by Field measurements. Field Crop Research, 1983, 7:299-312.
    [90] Cowan I R. Regulation of water use in relation to carbon gain on higher plants. In: Lange 0 L , et al. (Ed.) , Physiological Plant Ecology II. Springer, Berlin, 1982, pp. 589-614.
    [91] Dashek W V, Erickson S S. Isolation, assay, biosynthesis, metabolism, uptake and translocation, and function of proline in plant cells and tissues. Bot. Rev., 1981, 47: 349-385.
    [92] Davies W J, Zhang J. Root signals and the regulation of growth and development of plants in drying soil. Annual Review of Plant Physiology and Plant Molecular Biology, 1991, 42: 55-76.
    [93] Doorenbos J and Kassam A H. Yield response to water. FAO Irrigation and Drainage Paper No. 33, FAO, Rome, Italy, 1979.
    [94] Doorenbos J and Pruitt W O. Crop water requirements. Irrigation and Drainage Paper No. 24, FAO, Rome, Italy, 1977.
    [95] Elliott R L and Walker W R. Field evaluation of furrow infiltration and advance functions. Transactions of the ASAE, 1982, 25(2) : 396-400.
    [96] Esfandiari M, Maheshwari B L. Application of the optimization method for estimating infiltration characteristics in furrow irrigation and its comparison with other methods. Agric. Water Manage., 1997,34:169-185.
    [97] Farquhar C D, et al. Stomatal conductance and photosynthesis. Ann. Rev. Plant Physiol. , 1982, 33: 317-345.
    [98] Fischbach P E, MullinerHR. Every-other furrow irrigation of corn. Trans. Of the ASAE, 1974, 17: 426-428.
    [99] Fok Y S, Bishop A A. Analysis of water advance in surface irrigation. Irrig. and Drain. Div, ASCE, 1965, 91(1) :99-117.
    [100] Gretchen B N and Park S N. Changes in hydraulic conductivity and anatomy caused by drying and reweting roots of agave deserti (agavaceae). American Journal of Botany, 1991, 78: 906-915.
    [101] Ham J M, HeilmamJL, Lascano R J. Determimation of soil water evaporation from energy balance and stem flow measurements. Agric. For. Meteorol., 1990, 52: 287-301.
    
    
    [102] Hanks R J and Ashcroft G L. Applied Soil Physics. Spring-Verlog, New York, 1980.
    [103] Hanson A D. Interpreting the metabolic responses of plants to water stress. Horticulture Science, 1980, 15: 623-629.
    [104] Hawkins B S, and Peacock H A. Effect of skip-row culture on agronomic and fiber properties of upland cotton (Gossypium hirsutum) varieties. Agron. J. , 1968, 60: 189-191.
    [105] Hodges M E, Stone J F, and Reevs H E. Yield variability and water use in wide-spaced furrow irrigation. Agric. Water Manage., 1989, 16: 15~ 23.
    [106] Hodges ME, Stone J F, Carton JE, and Weeks DL. Variance of water advance in wide-spaced furrow irrigation. Agric. Water Manage. , 1989, 16: 5-13.
    [107] Hsiao T C, and Jing J H. Leaf and root expansive growth in response to water deficits. In: Physiology of Expansion during Plant Growth (Eds. by Cosgrove D J and Knievel D P), American Society of Plant Physiology, Rockvilla M D, USA, 1987, pp180~192.
    [108] Hunsaker D J. Basal crop coefficients and water use for early maturity cotton . Trans of the ASAE, 1999, 42(4) : 927-936.
    [109] Izadi B and Wallender W W. Furrow hydraulic characteristics and infiltration. Transactions of the ASAE, 1985, 28(6) : 1901-1908.
    [110] Jensen M E, Burman R D, and Allen RG. Evapotranspiration and irrigation water requirements. ASCE Manuals and Reports on Engineering Practices No. 70. , Am. Soc. Civil Engrs., New York, NY, 1990.
    [111] Johnson R R, et al. Effect of water stress on photosynthesis and transpiration of flag leaves and spikes of barley and wheat. Crop Science, 1974, 14: 728-731.
    [112] Kang S Z, et al. Soil water distribution, uniformity and water-use efficiency under alternate furrow irrigation in arid areas. Irrigation Science, 2000, 19: 181-190.
    [113] Kashyap P S and Panda R K. Evaluation of evapotranspiration estimation methods and development of crop-coefficients for potato crop in a sub-humid region. Agri. Water Manage. , 2001, 50 (1) : 10-25.
    [114] Kemper W D, Ruffing B J and Bondurant J A. Furrow intake rates and water management. Trans, of the ASAE, 1982, 25: 333-339, 343.
    
    
    [115] Khalil A A M, and Grace J. Does xylem sap ABA control the stomatal behaviour of water-stressed sycamore (Acer pseudopnatanus L.) seedlings? 1993, 44: 1127-1134.
    [116] Kramer P J. Water relations of plants. Academic Press, 1983.
    [117] Lascano R J and Van Bavel C H M. Experimental verification of a model to predict soil moisture and temperature profiles. Soil Sci. Soc. Am. J., 1983, 47: 441-448.
    [118] Longenecker D E, Thaxton E L, and Lyerly P J. Variable row spacing of irrigated cotton as a means for reducing production costs and conserving water. Agron. J. , 1969, 61: 101-104.
    [119] Mackay A D and Barber S A. Effect of cyclic wetting and drying of a soil on root hair growth of maize roots. Plant and Soil, 1987, 104: 291-293.
    [120] Maheshwari B L, et al. An optimization technique for estimating infiltration characteristics in border irrigation. Agric. Water Manage., 1988, 13:13-24.
    [121] Maheshwari B L, et al. Sensitivity analysis of parameters of border irrigation models. Agric. Water Manage., 1990, 18(1) : 277-287.
    [122] Martin D L, Klocke N L, and Dehaan D H. Measuring evaporation using mini-lysimeters. In: Advance in Evapotranspiration. Proceedings of a Conference at Chicago, IL, Am. Soc. Agric. Eng., St. Joseph, MI, 1985, pp231-240.
    [123] Matthias A D, Salehi R, and Warrick A W. Bare soil evaporation near a surface pointsource emitter. Agric. Water Manage., 1986, 11: 257-277.
    [124] Meyer W S, Barrs H D. Roots in irrigated clay soil: measurement techniques and response to root zone conditions. Irrigation Science, 1991, 12: 125-134.
    [125] Musick J T and Dusek D A. Alternate-furrow irrigation of fine textured soils. Trans, of the ASAE, 1974, 17: 289-294.
    [126] Musick J T, and Dusek D A. Skip-row planting and irrigation of graded furrows. Trans, of the ASAE, 1982, 25: 82-87.
    [127] Sammis T W, Mapel C L, Lugg D G, Lansford R R, and McGuckin J T. Evapotranspiration corp coefficients predicted using growing-degree days. Trans of the ASAE , 1985, 28(3) : 773-780.
    [128] Schneider A D, New L L, and Musick J T. Reducing tailwater runoff for efficient irrigation water use. Trans, of the ASAE, 1976, 19: 1093-
    
    1097.
    [129] Shaozhong Rang, Zongsuo Liang, Wei Hu, et al. Water use efficiency of controlled alternate irrigation on root-divided maize plants. Agric. Water Manage. , 38: 69-76.
    [130] Shawcroft R W and Gardner H R. Direct evaporation from soil under a row crop canopy. Agric. Meteorol, 1983, 28:229-238.
    [131] Shayya W H, Bralts V F, and Segerlind L J. Kinematic-wave furrow irrigation analysis: a finite element approach. Transactions of the ASAE, 1993, 36(6) : 1735-1742.
    [132] Shepard J S, et al. One point method for estimating furrow infiltration. Trans, of the ASAE, 1993, 36: 395-404.
    [133] Slack D C, Martin A E, and Sheta F A. Crop coefficients normalized for climatic variability with growing-degree-days. In ASAE Proc. Int. Conf. on Evapotranapiration and Irrigation Scheduling, 1996,892-898.
    [134] Steel D D, Sajid A H, and Pruuty L D. New corn evapotranspiration crop curves for southeastern North Dakota. Trans of the ASAE , 1996, 39(3) : 931-936.
    [135] Stegman E C. Corn crop curve comparison for the Central and Northern Plains of the U.S. Applied Engineering in Agriculture, 1988, 4(3) :226-233.
    [134] Stone J F and Nofziger D L. Water use and yields of cotton grown under wide-spaced furrow irrigation. Agric. Water Manage. , 1993, 24: 27-28.
    [135] Stone J F, Garton JE, Webb B B, Reeves HE, and Keflemariam J. Irrigation water conservation using wide-spaced furrow. Soil Sci. Soc. Am. J. , 1979, 43: 407-411.
    [136] Stone J F, Reeves H E, and Garton J E. Irrigation water conservation by using wide-spaced furrows. Agric. Water Manage. , 1982, 5: 309-317.
    [137] Tardieu F, Zhang J, and Davies W J. What information is conveyed by an ABA signal from maize roots in drying field soil. Plant Cell Environ. , 1992, 15: 185-191.
    [138] Tardieu F, Zhang J. Relative contribution of apices and mature tissues to ABA synthesis in drought maize root systems. Plant Cell Physiology, 1996, 37(5) : 1-8.
    [139] Trout T J. Flow velocity and wetted perimeter effects on furrow infiltration. Transactions of the ASAE, 1992, 35(3) : 855-863.
    
    
    [140] Tsegaye T, Stone J F, and Reeves H E. Water use characteristics of wide-spaced furrow irrigation. Soil Sci. Soc. Am. J. , 1993, 57: 240~ 245.
    [141] Walker G K. Evaporation from wet soil surface beneath plant canopies. Agric. For. Meteorol. , 1984, 33: 259-264.
    [142] Walker G K. Measurement of evaporation from soil beneath crop canopies. J. Soil Sci., 1983, 63: 137-141.
    [143] Wright J L , and Jensen M E. Development and evaluation of evapotranspiration models for irrigation scheduling. Trans of the ASAE , 1978, 21(1) : 88-96.
    [144] Yvan E G, Eisenhauer D E, and Elmore R W. Alternate-furrow irrigation for soybean production. Agric. Water Manage. , 1993, 24: 133-145.
    [145] Zhang J and Davies W J. Increased synthesis of ABA in partially dehydrated root tips and ABA transport from roots to leaves. J. of Experimental Botany, 1987, 38: 2015-2023.
    [146] Zhang J and DaviesW J. Does ABA in the Xylem control the rate of leaf growth in soil dried maize and sunfower plants? J. of Experimental Botany, 1990, 41: 1125-1132.
    [147] Zhang.J, Schurr U and Davies W J. Control of stomatal behaviour acid which apparently originates in the roots. J. of Experimental Botany, 1987, 38: 1174-1181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700