黄土塬区麦田水分、氮素平衡及生产力的试验与模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水分和养分(特别是氮素营养)一直是制约黄土高原地区作物生产力提高的主要限制性因素。探讨不同水肥条件下冬小麦水氮利用及生产力变化规律,对于本地区麦田合理施肥及作物产量提高等具有重要意义。
     本研究针对黄土塬区降水少且季节分配不均,土壤严重缺氮的特点,设置了雨养及补充灌溉条件下不同氮磷配施冬小麦种植试验,并依托长期定位施肥试验,结合DSSAT模型,通过田间试验及DSSAT模型模拟相结合的方法,对黄土塬区不同水肥条件下冬小麦生产力及水分、氮素平衡过程进行了试验研究与模型模拟,主要结论如下:
     (1)补充灌水及不同施肥均显著影响麦田水分平衡过程,不同处理土壤含水量随施肥水平提高而降低。氮磷配施及氮磷有机肥配施均显著降低了土壤含水量,土壤含水量随氮磷配施水平提高而减小。雨养条件下,降雨入渗深度随氮磷配施水平提高而降低,测定年份长期试验地CK,N,NP和NPM处理休闲期土壤水分入渗深度分别为220cm,200cm,180cm,160cm。
     补充灌溉及不同施肥水平对冬小麦全生育期耗水量及土壤储水变化量影响显著。不同施肥处理冬小麦耗水量及土壤储水变化量大小次序均为:NPM>NP>N>CK;与对照相比较,不同施肥处理耗水量增加13.0~40.7mm,其中,NP和NPM处理显著高于CK。补充灌溉处理冬小麦总耗水量较雨养处理增加51.7~143.5mm;耗水量随氮磷配施水平提高而增加,雨养和补充灌水条件下,不同氮磷配施处理较不施肥处理耗水量分别增加61.9~112.5mm,和112.1~183.8mm。
     (2)冬小麦叶绿素相对含量(SPAD值)受施氮水平影响显著,施氮不但可以提高冬小麦SPAD值,而且能维持高SPAD值持续时间。补充灌水及氮磷配施均能够增加冬小麦地上部氮素累积量及氮素利用率,冬小麦地上部氮素积累量与施氮水平间具有显著的相关性,不同氮磷配施处理氮素积累量较对照增加83.2%~204.3%,补充灌溉氮素积累量较雨养处理增加1.3%~12.1%。不同处理0~30cm土层土壤全氮含量差异明显,以不施肥处理全氮含量最低,低氮和高氮处理均较高,但二者差别不明显。
     (3)CK及单施氮肥处理二者产量均较低,其次为NP处理,较对照增产168.9%,而M,NM和NPM三个处理则对照增产260%以上;冬小麦籽粒产量随氮磷配施水平提高而增加,雨养和补充灌水条件下,氮磷配施处理分别较CK增产2530~3717 kg·hm-2和2528~4533 kg·hm-2,补充灌溉后籽粒产量提高2~1188 kg·hm-2,表明氮磷配施的增产效果显著高于补充灌水。方差分析表明,不同施氮水平对籽粒产量影响显著,补充灌水及施磷作用不显著。不同施肥均能提高作物水分利用效率(WUE);N,NP和NPM处理水分利用效率分别较对照提高42.5%,104.4%,109.8%,其中NP和NPM处理显著高于CK和N。WUE随氮磷配施水平提高而增加,2007-2008年,氮磷配施处理WUE较不施肥处理提高4.2~7.6 kg·mm-1·hm-2。补充灌溉对WUE的影响主要与灌水多少及试验年降水条件有关,2007-2008年,补充灌溉处理冬小麦水分利用效率较雨养处理降低0.2~2.3 kg·mm-1·hm-2,但二者差异不显著,2008-2009年补充灌溉处理WUE稍高于相应的雨养处理。
     不同处理冬小麦株高、叶面积和生物量等生长指标与籽粒产量有相同的变化趋势,即随施肥水平的升高,冬小麦株高、叶面积和生物量也增加。不同生育期除拔节期叶面积指数与籽粒产量间相关性不显著外,其他时期各指标与籽粒产量均显著相关。
     (4)组建了黄土塬区DSSAT模型气象、土壤和作物遗传参数数据库,并利用田间实测资料对模型的相关参数进行了标定和验证。结果表明DSSAT模型能够准确模拟冬小麦生育期和冬小麦产量,模型适用于本地区作物生长模拟。
     对不同施氮条件冬小麦土壤含水量动态、氮素吸收动态及冬小麦生产潜力进行了模拟研究。结果表明,土壤含水量模拟结果与实测值吻合度较高,能够反映不同土层土壤含水量变化规律及不同处理间的差异。冬小麦不同器官含氮量动态模拟结果以籽粒含氮量最好,而叶片含氮量的模拟结果相对较差。黄土塬区冬小麦24年光温生产潜力为5547~10920kg·hm-2,气候生产潜力在3193~6443 kg·hm-2间变化。1985~2009年间冬小麦水分满足率为0.513~0.782,表明本地区冬小麦生产力仍然有较大的提升空间。
Water and nutrient, especially nitrogen nutrition, are the two key restriction factors in improving crop productivity in the Loess Plateau. Therefore, study the law of the water use, nitrogen accumulation and productivity of winter wheat under different water and fertilizer treatments are important to rational fertilization and yield improvement of winter wheat.
     According to the characteristics of less and uneven seasonal distribution of precipitation and soil nitrogen shortage in the Loess Tableland, the experiment of supplemental irrigation and different nitrogen and phosphorus rates treated winter wheat was designed and simultaneously the long-term fertilization experiments were carried out. The combined method of field experiment and simulation of DSSAT model (Decision Support System for Agrotechnology Transfer) was applied to the field experiment and model simulation of crop productivity and water and nitrogen balance process of winter wheat. The main conclusions were drawn as follows:
     (1) Supplemental irrigation and different fertilization had significant effects on the process of soil water balance of winter wheat, soil water content of different treatment decreased with the increasing of fertilization level. The treatment of mixed use of nitrogen and phosphorus fertilizer (NP), and mixed use of nitrogen, phosphorus and manure treatment (NPM) significantly decreased soil water content, soil water content decreased with the increasing of fertilization level. The depth of rainfall infiltration decreased with the increasing of nitrogen and phosphorus rates. Infiltration depths of CK, N, NP and NPM treatments were 220cm,200cm,180cm,160cm respectively.
     Supplemental irrigation and different fertilization had significant effects on water consumption and water supply amount of soil. Water consumption and water supply amount of soil of different treatment were in the order of NPM>NP>N>CK. Different fertilization increased water consumption from 13.0 to 40.7mm than CK, NP and NPM treatment had significant difference than CK. Supplemental irrigation increased water consumption from 51.7 to143.5mm. Water consumption increased with the increasing of nitrogen and phosphorus rates, water consumption of the treatment of rain-fed and supplemental irrigation increased from 61.9 to 112.5mm and 112.1 to 183.8mm respectively.
     (2)Nitrogen rates had significant influence on chlorophyll relative value (leaf SPAD values), which can increase leaf SPAD values as well as high leaf SPAD values duration. Nitrogen accumulation and nitrogen use efficiency increased with increased level of nitrogen rates and supplemental irrigation and supplemental irrigation, nitrogen rates had significant correlation between nitrogen accumulation, and nitrogen accumulation of different nitrogen rates treated wheat increased from 83.2% to 204.3% than CK, nitrogen accumulation of supplemental irrigation treatment increased 1.3% to 12.1% than rain-fed treatment.
     (3) CK and N treatments both had lower crop yields, crop yields of mixed use of nitrogen and phosphorus fertilizer treatment was 168.9% higher than CK, and M,NM and NPM increase crop production more than 260%.Crop yields increased with the increasing of nitrogen and phosphorus rates, crop yields of the treatment of rain-fed and supplemental irrigation increased from 2530 to 3717 kg·hm-2 and from 2528 to 4533 kg·hm-2 respectively, however, supplemental irrigation increased crop yields from 2 to 1188 kg·hm-2 than CK. Variance analysis showed that nitrogen rates had significant effect on crop yields, however, supplemental irrigation and phosphorus rates didn’t have significant effect.
     Water use efficiency (WUE) of winter wheat increased with increased level of fertilization. Water use efficiency of N, NP and NPM treatment were 42.5%,104.4% and 109.8% higher than CK respectively, NP and NPM treatment were significantly higher than CK and N treatment. Water use efficiency of winter wheat increased with increased level of nitrogen and phosphorus fertilization, from 2007 to 2008, WUE of different nitrogen and phosphorus rates were 4.2 to 7.6 kg·mm-1·hm-2 higher than CK, supplemental irrigation treatment decreased WUE from 0.2 to 2.3kg·mm-1·hm-2 than the rain-fed treatments from 2007 to 2008, which were higher than the rain-fed treatments from 2008 to 2009.
     Plant height, leaf area and biomass of different treatment had the same change tendency with crop yields, which increased with the increased level of fertilization level. LAI had no significant correlation with crop yields during jointing stage, during the other growth stages, plant height, leaf area and biomass had significant correlation with crop yields.
     (4) The databases of weather, soil and crop growth parameter of DSSAT model in the Loess Tableland were created and used to calibrate and validate the DSSAT model. The results showed that DSSAT model was reliable in predicting wheat growth stages and crop yields.
     Soil water content, nitrogen uptake dynamic and wheat production potential were simulated with DSSAT model. The results showed that soil water content, simulation results had the high degree of coincidence with measured results. The result can reflect soil water content dynamic at different soil depths and the differences between the different treatments. The seed’s nitrogen content had the best simulation result of different wheat organs, whereas the leaf nitrogen content was relatively poor. Photo-temperature productivity and climatic potential productivity were 5547~10920 kg·hm-2 and 3193~6443 kg·hm-2, respectively, and the water requirement ratio was 0.513~0.782 from 1985 to 2009, which indicates that the productivity of wheat has more promotion space on Loss Tableland.
引文
[1]郝明德,李军超,党廷辉.长武试验示范区高效农业生态经济系统研究[J].水土保持研究,2003,10(1):1-5.
    [2]郝明德,来璐,王改玲,等.黄土高原塬区旱地长期施肥对小麦产量的影响[J].应用生态学报,2003,14(11): 1893-1896.
    [3]樊军,郝明德.旱地长期轮作施肥对土壤肥力影响的定位研究[J].水土保持研究,2003,10(11):31-36.
    [4]陈磊,郝明德,张少民.黄土高原长期施肥对小麦产量及肥料利用率的影响[J].麦类作物学报,2006,26(5):101-105.
    [5]张淑香,金柯,蔡典雄,等.水分胁迫条件下不同氮磷组合对小麦产量的影响[J].植物营养与肥料学报,2003,9(3):276-279.
    [6]文卿琳,不同灌水和施肥处理对春小麦产量的影响[J].农业科学研究,2006,27(2):26-29.
    [7]方日尧,同延安.黄土高原区长期施用有机肥对土壤肥力及小麦产量的影响[J].中国生态农业学报,2003,11(2):47-49.
    [8]李玉山.陕西省渭北、陕北粮食生产态势与定位[J].水土保持通报,1998,18(2):76-79
    [9]刘文兆,魏翔,李玉山.黄土塬区旱作玉米生产潜力的实验研究[J].应用生态学报, 1997,8(2)∶139-143.
    [10]黄明斌,李玉山.黄土塬区旱作冬小麦增产潜力研究[J].自然资源学报,2000,25(2):143-148.
    [11]李三爱,居辉,池宝亮.作物生产潜力研究进展[J].中国农业气象,2005,26(2):106-111.
    [12]徐学选,穆兴民.小麦水肥产量效应研究进展[J].干旱地区农业研究, 1999, 17(3): 6-12.
    [13]高雪玲,张建平,吕明杰,等.长安灌区小麦氮磷钾肥效试验研究[J].陕西农业科学,2007(1):22-49.
    [14]刘一.施肥对黄土高原旱地冬小麦产量及土壤肥力的影响[J].水土保持研究,2003,10(1):40-42.
    [15]古巧珍,杨学云,孙本华,等.长期定位施肥对小麦籽粒产量及品质的影响[J].麦类作物学报,2004,24(3):76-79.
    [16]皇甫湘荣,杨先明,黄绍敏,等.长期定位施肥对强筋小麦郑麦9023产量和品质的影响[J].河南农业科学,2006,4(1),3-6.
    [17]杨生茂,李凤民,索东让,等.长期施肥对绿洲农田土壤生产力及土壤硝态氮积累的影响[J].中国农业科学,2005,38(10):2043-2052.
    [18]古巧珍,杨学云,孙本华,等.长期定位施肥对土娄土耕层土壤养分和土地生产力的影响[J].西北农业学报,2004,13(3):121-125.
    [19]孔令聪,曹承富,汪芝寿,等.长期定位施肥对砂姜黑土肥力及生产力的影响研究[J].中国生态农业学报,2004,12(2):102-104.
    [20]梁银丽.土壤水分和氮磷营养对冬小麦根系生长及水分利用的调节[J].生态学报,1996 ,16(3):258 -264.
    [21]刘文兆,李生秀.作物水肥优化耦合区域的图形表达及其特征[J].农业工程学报, 2002,18(006): 1-3.
    [22] Liu W Z, Zhang X C. Optimizing water and fertilizer input using an elasticity index: A case study with maize in the loess plateau of china[J]. Field Crops Research, 2007, 100(2-3): 302-310.
    [23]刘文兆,李玉山.渭北旱塬西部作物水肥产量耦合效应研究[J].水土保持研究,2003,10(1):12-15.
    [24]李开元,李玉山.黄土高原南部农田水量供需平衡与作物水肥产量效应[J].土壤通报,1995,26( 3):105- 107.
    [25]李向民,许春霞,李开元.黄土高原沟壑区水肥因子对冬小麦经济性状的影响[J].应用生态学报,1999,10(3):309-311.
    [26]钟良平,邵明安,李玉山.农田生态系统生产力演变及驱动力[J].中国农业科学,2004,37(4):510-515.
    [27]山仑,陈国良.黄土高原旱地农业的理论与实践[M].北京:科学出版社,1993,190-196.
    [28]陶毓汾,王立祥.中国北方旱农地区水分生产潜力及开发[M].北京:气象出版社,1993,103-109.
    [29]谷冬艳,刘建国,杨忠渠,等.作物生产潜力模型研究进展[J].干旱地区农业研究,2007,25(5):89-94.
    [30]马帅,陈印军,郭淑敏.作物生产潜力模型研究进展[J].中国农学通报,2006,22(1):349-352.
    [31]李军.黄土高原地区种植制度研究[M].杨陵:西北农林科技大学出版社,2004,121-124.
    [32]陈建文,贺安乾,杨碧轩.陕北、渭北及关中气候生产潜力的估算与分布特征分析[J].干旱地区农业研究,1999,17(1):112-117.
    [33]李岗,王虎全,谢惠民,等.渭北旱地小麦生产潜力及开发对策研究[J].西北农业大学学报,1997,25(3):26-30.
    [34]黄志英,梁彦庆,葛京凤.作物气候生产潜力估算及有效增产途径探讨[J].农业现代化研究,2003,24(6):446-451.
    [35]冷石林.开发北方旱农地区自然降水生产潜力的主要限制因素及途径[J].中国农业气象,1997,18(1):13-17.
    [36]王宗明,梁银丽.黄土塬区作物生产潜力分析—以长武试区为例[J].水土保持通报,2002,22(1):30-33.
    [37]王立祥,王留芳,范芳强,等.西北黄土高原半干旱-半湿润地区旱作农田降水生产潜力开发途径[J].自然资源学报,1989(1):19-25.
    [38]李军.作物生长模型ALMANAC的验证与应用探讨[J].干旱地区农业研究,1997,15(1):99-104.
    [39]李军,王立祥,邵明安,等.黄土高原地区小麦生产潜力模拟研究[J].自然资源学报,2001,16(2):161-165.
    [40]居煇,李三爱,严昌荣,等.北方旱农区玉米自然降水生产潜力研究[J].自然资源学报,2006,21(4):632-636.
    [41]李军,王立祥,邵明安,等.黄土高原地区玉米生产潜力模拟研究[J].作物学报,2002,28(4):555-560.
    [42]戴明宏,陶洪斌,廖树华,等.基于CERES-Maize模型的华北平原玉米生产潜力的估算与分析[J].农业工程学报,2008,24(24):30-36.
    [43]姜志伟,武雪萍,华珞,等.洛阳旱地夏玉米生产潜力长周期定量模拟与评价[J].生态学报,2009,29(1):315-324.
    [44]李军,王立祥,邵明安,等.宁南旱地作物降水生产潜力及其适度开发研究[J].水土保持学报,2001,15(6):125-128.
    [45]李军,王立祥,邵明安,等.黄土高原地区秋粮作物生产潜力模拟研究[J].西北农林科技大学学报,2001,29(5):56-60.
    [46]李军,王立祥,邵明安.黄土高原地区粮食生产潜力与粮食生产发展战略探讨[J].中国生态农业学报,2002,10(1):118-120.
    [47]李军,邵明安,张兴昌.黄土高原旱塬区高产玉米田土壤干燥化与产量波动趋势模拟研究[J].中国生态农业学报,2007,15(2):54-58.
    [48]王宗明,梁银丽.应用EPIC模型计算黄土塬区作物生产潜力的初步尝试[J].自然资源学报,2000,17(4):481-487.
    [49]李军,邵明安,张兴昌.黄土高原旱塬地冬小麦水分生产潜力与土壤水分动态的模拟研究[J].自然资源学报,2004,19(6):738-746.
    [50]李忠武,蔡强国,Scott Mitchell,等.基于GIS的黄土丘陵沟壑区作物生产潜力模拟研究[J].生态学报,2002,22(3):311-317.
    [51]曹云者,刘宏,王中义,等.基于作物生长模拟模型的河北省玉米生产潜力研究[J].农业环境科学学报2008,27(2):826-832.
    [52]山仑.水分利用效率.邹承鲁主编.当代生物学[M].北京:中国致公出版社, 2000: 399-400
    [53]王会肖,蔡燕.农田水分利用效率研究进展及调控途径[J].中国农业气象,2008, 29(3): 272-276.
    [54]王建林,于贵瑞,房全孝,等.作物水分利用效率的制约因素与调节[J].作物杂志,2007,2,9-11.
    [55]党廷辉.施肥对旱地冬小麦水分利用效率的影响[J].干旱地区农业研究,1999, 7(2): 28-31.
    [56]张仁陟,李小刚,胡恒觉.施肥对提高旱地农田水分利用效率的机理[J].植物营养与肥料学报,1999,5(3):221-226.
    [57]杨文,周涛.氮磷配施对旱地春小麦水分利用效率及水肥交互作用的影响[J].干旱地区农业研究,2008,26(5):10-16.
    [58]张岁岐,李秧秧.施肥促进作物水分利用机理及对产量影响的研究[J].水土保持研究, 1996,3(1): 185-191.
    [59]肖俊夫,刘战东,段爱旺,等.不同灌水处理对冬小麦产量及水分利用效率的影响研究[J].灌溉排水学报,2006,25(2):20-23.
    [60]成雪峰,张凤云,柴守玺,等.不同灌溉模式对春小麦产量及水分利用效率的影响[J].灌溉排水学报,2007,26(2):80-82.
    [61]胡梦芸,张正斌,徐萍,等.亏缺灌溉下小麦水分利用效率与光合产物积累运转的相关研究[J].作物学报,2007,33(11):1884-1891.
    [62]王育红,姚宇卿,吕军杰,等.调亏灌溉对冬小麦光合特性及水分利用效率的影响[J].干旱地区农业研究,2008,26(3):59-62.
    [63]张建军,唐小明,党翼.灌水量及其分配方式对冬小麦水分利用效率、光合特性和产量的影响[J].麦类作物学报,2008,28(1):85-90.
    [64]张绪成,郭天文,谭雪莲,等.氮素水平对小麦根-冠生长及水分利用效率的影响[J].西北农业学报,2008,17(3):97-102.
    [65]黄明丽,邓西平,白登忠. N、P营养对旱地小麦生理过程和产量形成的补偿效应研究进展[J].麦类作物学报, 2002, 22(4): 74-78.
    [66]许振柱,于振文.限量灌溉对冬小麦水分利用的影响[J].干旱地区农业研究, 2003, 21(1): 6-10.
    [67]尹光华,刘作新,李桂芳,等.水肥耦合对春小麦水分利用效率的影响[J].水土保持学报,2004,18(6):156-162.
    [68]翟丙年,李生秀.冬小麦水氮配合关键期和亏缺敏感期的确定[J].中国农业科学,2005,38(6):1188-1195.
    [69]武维华主编.植物生理学[M].北京:科学出版社,2003.
    [70]王建林,房全孝,李举华,等.施肥对小麦叶片光合特性的影响[J].华北农学报, 2007, 22(2): 115-118.
    [71]王建林,齐华,宋辉.不同氮肥水平下冬小麦齐穗期旗叶光合日变化特征[J].沈阳农业大学学报, 2008, 39(6): 643-647.
    [72]李卫民,周凌云.氮肥对旱作小麦光合作用与环境关系的调节[J].植物生理学通讯, 2003, 39(2): 119-121.
    [73]胡亚妮,刘文兆,王俊,等.黄土塬区氮磷配施对冬小麦光合作用、产量形成及水分利用的影响[J].水土保持学报, 2007, 21(6): 159-161,178.
    [74]邢倩,谷艳芳,高志英,等.氮、磷、钾营养对冬小麦光合作用及水分利用的影响[J].生态学杂志, 2008, 27(3): 355-360.
    [75]张睿,刘党校.氮磷与有机肥配施对小麦光合作用及产量和品质的影响[J].植物营养与肥料学报, 2007, 13(4): 543-547.
    [76] Wang D, Yu Z W, Xu Z Z. Photosynthesis, carbohydrate storage and remobilization during grain filling as affected by sulphur application in winter wheat [J].中国农业科学:英文版, 2005, 4(7): 507-513.
    [77] Farquhar G D.Sharkey T D.Stomatal conductance and photosynthesis[J].Annu Rev Plant Physiol, 1982, 33:317-143.
    [78]盛钰,赵成义,贾宏涛.水分胁迫对冬小麦光合及生物学特性的影响[J].水土保持学报, 2006, 20(1): 193-196.
    [79]胡继超,曹卫星,姜东,等.小麦水分胁迫影响因子的定量研究―Ⅰ.干旱和渍水胁迫对光合、蒸腾及干物质积累与分配的影响[J].作物学报, 2004, 30(4): 315-320.
    [80]林琪,侯立白,韩伟,等.限量控制灌水对小麦光合作用及产量构成的影响[J].莱阳农学院学报, 2004, 21(3): 199-202.
    [81]吴克宁,赵彦锋,等.潮土区灌浆水和施磷对冬小麦光合作用和产量的影响[J].植物营养与肥料学报, 2002, 8(4): 428-434.
    [82]尹光华,刘作新,陈温福,等.水肥耦合条件下春小麦叶片的光合作用[J].兰州大学学报:自然科学版, 2006, 42(1): 40-43.
    [83]王国骄,孙备,王嘉宇,等.水分与氮素营养对辽春10号小麦旗叶光合作用的影响[J].干旱地区农业研究, 2008, 26(5): 139-142.
    [84]张岁岐,李秧秧.施肥促进作物水分利用机理及对产量的影响的研究[J].水土保持研究, 1996,3(1):185-191.
    [85]王兵,刘文兆,党廷辉,等.黄土塬区旱作农田长期定位施肥对冬小麦水分利用的影响[J].植物营养与肥料学报, 2008, 14(5): 829-834.
    [86] Skinner R H, Radin J W.The effect of phosphorus nutrition on water flow through the apoplastie by pass in cotton roots [J]. J Exp Bot.1994, 45:423-428.
    [87]王同朝,卫丽,吴克宁,等.地下水浅埋区水磷耦合对冬小麦的影响[J].节水灌溉,2004,(1):9-l3.
    [88]梁银丽,康绍忠.限量灌水和磷营养对冬小麦产量及水分利用的影响[J].土壤侵蚀与水土保持学报, 1997, 3(1): 61-67.
    [89]李裕元,郭永杰.施肥对丘陵旱地冬小麦生长发育和水分利用的影响[J].干旱地区农业研究, 2000, 18(1): 15-21.
    [90]高亚军,杨君林,陈玲,等.旱地冬小麦不同栽培模式、施氮量和种植密度土壤水分利用状况[J].干旱地区农业研究, 2007, 25(3): 45-50.
    [91]张岁岐,山仑.氮素营养对春小麦抗旱适应性及水分利用的影响[J].水土保持研究, 1995, 2(1): 31-35,55.
    [92] Li J M,Inanaga Sh,Li Z H,et a1. Optimizing irrigation scheduling for winter wheat in the North China Plain[J].Agri Water Manag,2005,76:8-23.
    [93] Turner N C. Plant water relations and irrigation management [J].Agri Water Manag, 1990, 17:59-75.
    [94] Ahmet E,Suat S.Determination of plant-pan coeficients for field-grown eggplant (Solanum melongena L.) using class A pan evaporation values[J].Agri Water Manag,2006,85:58-66.
    [95]褚鹏飞,于振文,张玉芳.灌水量和灌水时期对小麦产量和水分利用率的影响[J].山东农业科学, 2007, (1): 57-58.
    [96]邓西平.渭北地区冬小麦的有限灌溉与水分利用研究[J].水土保持研究, 1999, 6(1): 41-46.
    [97]吴永成,张永平,周顺利,等.不同灌水条件下冬小麦的产量、水分利用与氮素利用特点[J].生态环境, 2008, 17(5): 2082-2085.
    [98]张胜全,方保停,王志敏,等.春灌模式对晚播冬小麦水分利用及产量形成的影响[J].生态学报, 2009, 29(4): 2035-2044.
    [99]孔祥旋,杨占平,武继承,等.限量灌溉对冬小麦产量和水分利用的影响[J].华北农学报, 2005, 20(5): 64-66.
    [100]郭天财,沈东风,等.水分调控对小麦开花后水分利用特性及产量的影响[J].华北农学报, 2002, 17(1): 16-20.
    [101]李玉山.土壤水库的功能和作用[J].水土保持通报,1983,3(5):27-30.
    [102]刘庚山,郭安红,安顺清,等.底墒对小麦根冠生长及土壤水分利用的影响[J].自然灾害学报, 2003, 12(3): 149-154.
    [103]刘庚山,郭安红,任三学,等.人工控制有限供水对冬小麦根系生长及土壤水分利用的影响[J].生态学报, 2003, 23(11): 2342-2352.
    [104]马瑞昆,贾秀领,蹇家利,等.前期控水条件下冬小麦的根系和群体光合作用特点[J].麦类作物学报,2001,21(2):88-91.
    [105]李风民,鄢珣,郭安红,等.试论麦类作物非水力根信号与生活史对策[J].生态学报,2000。20(3):510-513.
    [106]郑彩霞,张富仓,张志亮,等.限量灌溉和施磷对冬小麦生长及水分利用的影响[J].干旱地区农业研究, 2008, 26(2): 116-120,125.
    [107]陈玉民等.中国主要作物需水量与灌溉[M].北京:水利电力出版社,1995,34-35.
    [108]刘晓宏,肖洪浪,赵良菊.不同水肥条件下春小麦耗水量和水分利用率[J].干旱地区农业研究, 2006, 24(1): 56-59.
    [109]梁银丽,康绍忠,张成娥.不同水分条件下小麦生长特性及氮磷营养的调节作用[J].干旱地区农业研究,1999,17(4):58-64.
    [110]霍中洋,葛鑫,张洪程,等.施氮方式对不同专用小麦吸收及氮肥利用率的影响[J].作物学报,2004,30(5):449—454.
    [111]李久生,李蓓,宿梅双,等.冬小麦氮素吸收及产量对喷灌施肥均匀性的响应[J].中国农业科学,2005,38(8):1600-l607.
    [112]易时来,何绍兰,邓烈,等.中性紫色土施氮对小麦氮素吸收利用及产量和品质的影响[J].麦类作物学报, 2006, 26(5): 167-169.
    [113]王月福,于振文,李尚霞,等.土壤肥力和施氮量对小麦氮素吸收运转及籽粒产量和蛋白质含量的影响[J].应用生态学报, 2003, 14(11): 1868-1872.
    [114]赵俊晔,于振文.高产条件下施氮量对冬小麦氮素吸收分配利用的影响[J].作物学报, 2006, 32(4): 484-490.
    [115]张月霞,杨君林,刘炜,等.秸秆覆盖条件下不同施氮水平冬小麦氮素吸收及土壤硝态氮残留[J].干旱地区农业研究, 2009, 27(2): 189-193.
    [116]孟建,李雁鸣,党红凯.施氮量对冬小麦氮素吸收利用、土壤中硝态氮积累和籽粒产量的影响[J].河北农业大学学报, 2007, 30(2): 1-5.
    [117]同延安,赵营,赵护兵,等.施氮量对冬小麦氮素吸收、转运及产量的影响[J].植物营养与肥料学报, 2007, 13(1): 64-69.
    [118] Kang S, Zhang L, Liang Y, et a1. Effects of limited irrigation on yield and water useefficiency of winter wheat in the Loess Plateau of China [J]. Agric Water Man, 2002, 55(3):203-216.
    [119]张永丽,于振文.灌水量对小麦氮素吸收、分配、利用及产量与品质的影响[J].作物学报, 2008, 34(5): 870-878.
    [120]王志斌,张起刚,等.灌溉水平对冬小麦氮素吸收及氮素平衡的影响[J].核农学报, 2002, 16(5): 310-314.
    [121]许振柱,于振文,王东,等.灌溉量对小麦氮素吸收和运转的影响[J].作物学报, 2004, 30(10): 1002-1007.
    [122]王朝辉,王兵,李生秀.缺水与补水对小麦氮素吸收及土壤残留氮的影响[J].应用生态学报, 2004, 15(8): 1339-1343.
    [123]王小彬,高绪科,蔡典雄.旱地农田水肥相互作用的研究[J].干旱地区农业研究.1993,1l(3):6-12.
    [124]唐拴虎,杨改河,申云霞.旱地冬小麦产量与水分及施肥量关系的模拟研究[J].干旱地区农业研究,1994,12(3):69-73.
    [125]李世娟,周殿玺,等.水分和氮肥运筹对小麦氮素吸收分配的影响[J].华北农学报, 2002, 17(1): 69-75.
    [126] De Wit C T.Photosynthesis of leaf canopies [J].Agricultural Research Report, 1965,(663):57-88.
    [127] Duncan W G. A model for simulation photosynthesis in plant communities [J].Hilgardia, 1967, 38 (4):1-32.
    [128]林忠辉,莫兴国,项月琴.作物生长模型研究综述[J].作物学报,2003,29(5):750-758.
    [129]潘学标.荷兰作物模型的发展与应用[J].世界农业.1998, (9): 17-19.
    [130]谢云, James R Kiniry.国外作物生长模型发展综述[J].作物学报. 2002, 28(2): 190-195.
    [131] Ritchies J T,Otter S.Description and performance of CERES-Wheat:a user-oriented wheat yield model[J].USDA ARS,1985,38:159-175.
    [132]曹卫星,罗卫红.作物系统模拟与智能管理[M].北京:华文出版社. 2000: 11.
    [133] Tsuji G Y. DSSAT3 User's Guide.Vo1.1-3 [Z]. The University of Hawaii, 1994.
    [134]G. Hoogenboom, J.W. Jones, C.H. Porter, et al. Decision Support System for Agrotechnology Transfer Version 4.0. Vo1.1-3[Z]. University of Hawaii, Honolulu, HI.
    [135] Duncan W G. Simulation of growth and yield in cotton:A computer analysis of the nutritional theory[J].Proe Beltwidc Cotton Prod Res Conf,1971,78:45-61.
    [136] Brouwer R, Dewit C T. A simulation model of plant growth with special attention to root growth and its consequences [J]. In: Whittington W J, ed. Root growth. London: Butterworth, 1969.224-244.
    [137] De Wit C T. Simulation of assimilation, respiration and transpiration of crops [J].Simulation Monographs Pudoc Wageningen, 1978,140.
    [138] De Vires P. Simulation and Systems Analysis for rice pro-duction [J].Pudoc Wageningen, 1982.
    [139] De Vires P, VanLaar HH: Simulation of Plant growth and crop production[C].Simulation Monographs, Pudoc Wageningen, 1982, 69:87-97.
    [140] Hijmans R J,Guiking lens I M,Van Diepen C A.WOFOST,user guide for the WOFOST 6.0 crop growth simulation model[Z].Wageningen:Tenchnical document, DLO Winand Staring Centre,1994.145.
    [141] De Vries P, Jansen D M, ten Berge H F M, et al. Simulation of ecophysiological processes of growth in several annual crops.Simulation Monographs Wageningen,Netherlands. Pudoc, 1989,271.
    [142]宇振荣.作物生长模拟模型研究和应用[J].生态学杂志,1994,13(1):69-73.
    [143] McCown R L, Hammer GL, Hargreaves JNG, et al.APSIM: a novel software system for model development, model testing, and simulation in agricultural systems research [J].Agricultural Systems, 1996, 50: 255-271.
    [144]高亮之,金之庆,黄耀,等.水稻计算机模拟模型及其应用之一,水稻钟模型—水稻发育动态的计算机模型[J].中国农业气象,1989,10(3):3-10.
    [145]陈华,张立中,方娟.小麦发育动态模拟模型的初步研究[J].中国农业气象,1995,16(1):1-4.
    [146]骆世明,彭少麟.农业生态系统分析[M].广州:广东科技出版社,1996.
    [147]殷新佑,戚昌翰.水稻生长日历模拟模型及其应用研究[J].作物学报,1994,20(3):339-346.
    [148]严力蛟,鲍毅新,钱建东.生态研究与探索[M].北京:中国环球科技出版社.1997.
    [149] Ritchie J T.Soil water balance and plant stress [M].In: Tsuji G Y, Hoogenboom G, Thornton PK (Eds).Understanding Options for Agri-cultural Production. Kluwer Academic Publishers, Dordrecht, TheNetherlands, 1998, 41-54.
    [150]Godwin D C, Singh U.Nitrogen balance and crop response to nitrogen in upland and lowland cropping systems [M].In:Tsuji G Y,HoogenboomG,Thornton P K (eds).Understanding Options for Agricultural Production.Kluwer Academic Publishers,Dordrecht,The Netherlands,1998, 55-77.
    [151]罗群英,林而达.农业技术转移决策支持系统(DSSAT)新进展[J].气象, 1996, 22(12):10-13.
    [152]Engel T, Hoogenboom G, Jones J W, et al. AEGIS/WIN:A computer program for the application of crop simulationmodels acrossgeographic areas[J]. AgronomyJournal, 1997, 89:919-928.
    [153] Hartkamp A D, White J W, Hoogenboom G.Interfacing geographic information systems with agronomic modeling: a review [J].Agronomy Journal, 1999, 91:761-772.
    [154] Thornton P K,Booltink H W G,Stoorvogel J J.A computer program for Geostatistical and spatial analysis of crop model outputs[J]. Agronomy Journal, 1997, 89:620-627.
    [155]李军.作物生长模拟模型的开发应用进展[J].西北农业大学学报,1997,25(4):102-107.
    [156] Jones JW, Hoogenboom G, Porter CH et al. The DSSAT cropping system model [J]. European Journal of Agronomy, 2003, 18(34):235-265.
    [157]李军.黄土高原典型地区种植模式产量效应模拟与效益评价研究[J].中国农业科学,2003,36(12):1599-1603.
    [158]李军.作物轮作方式产量效应模拟与优化选择研究[J].西北农林科技大学学报,2002,30(4):37-41.
    [159]赵军.SOYGRO模型在大豆产量预测中的应用[J].大豆科学,1999,18(1):67-71.
    [160]雷水玲.应用DSSAT3模型研究宁夏红寺堡灌区小麦生长过程及产量[J].干旱地区农业研究,2000,18(2):98-103.
    [161] Dogan E, Kirnak H, Copur O. Effect of seasonal water stress on soybean and site specific evaluation of CROPGRO-Soybean model under semi-arid climatic conditions[J]. Agricultural Water Management, 2007, 90(1-2): 56-62.
    [162] G. Kapetanaki and C. Rosenbzweig. Impact of climate change on maize yield in central and northern Greece: A simulation study with CERES-MAIZE [J].Mitigation and Adaptation Strategies for Global Change ,1997,1: 251–271.
    [163] Eitzinger J, Stastna M, Zalud Z et al. A simulation study of the effect of soil water balance and water stress on winter wheat production under different climate change scenarios[J]. Agricultural Water Management, 2003, 61(3): 195-217.
    [164] N.M. Holden, A.J. Brereton, R. Fealy et al. Possible change in Irish climate and its impact onbarley and potato yields[J]. Agricultural and Forest Meteorology, 2003,116 :181–196.
    [165] Alexandrov VA, Hoogenboom G. The impact of climate variability and change on crop yield in Bulgaria[J]. Agricultural and Forest Meteorology, 2000, 104(4): 315-327.
    [166] Peter G. Jones, Philip K. Thornton. The potential impacts of climate change on maize production in Africa and Latin America in 2055[J]. Global environmental change, 2003, 13:51-59.
    [167] S.A. Saseendran, L. Ma, R. Malone, et al. Simulating management effects on crop production, tile drainage, and water quality using RZWQM–DSSAT[J]. Geoderma, 2007, 140: 297–309.
    [168] Tojo Soler C M, Sentelhas P C, Hoogenboom G. Application of the CSM-CERES-Maize model for planting date evaluation and yield forecasting for maize grown off-season ina subtropical environment [J]. Europ. J. Agronomy,2007,27:165–177.
    [169] Soltani A, Hoogenboom G. Assessing crop management options with crop simulation models based on generated weather data[J]. Field Crops Research, 2007, 103(3): 198-207.
    [170] Rinaldi M, Ventrella D, Gagliano C. Comparison of nitrogen and irrigation strategies in tomato using CROPGRO model. A case study from Southern Italy [J]. Agricultural Water Management, 2007, 87(1): 91-105.
    [171] Jagtap S S, Abamu F J. Matching improved maize production technologies to the resource base of farmers in a moist savanna [J]. Agricultural Systems, 2003, 76(3): 1067-1084.
    [172]. Yang Y H, Watanabe M, Zhang XY et al. Optimizing irrigation management for wheat to reduce groundwater depletion in the piedmont region of the Taihang Mountains in the North China Plain[J]. Agricultural Water Management, 2006, 82(1-2): 25-44.
    [173] Gijsman A J, Hoogenboom G, Parton W J et al. Modifying DSSAT crop models for low-input agricultural systems using a soil organic matter-residue module from CENTURY[J]. Agronomy Journal, 2002, 94(3): 462-474.
    [174] Lopez-Cedron FX, Boote KJ, Ruiz-Nogueira B et al. Testing CERES-Maize versions to estimate maize production in a cool environment [J]. European Journal of Agronomy, 2005, 23(1): 89-102.
    [175] S.S.Jagtapa, F.J.Abamub.Matching improved maize production technologies to the resource base of farmers in amoist savanna [J].Agricultural Systems, 2003, 76:1067-1084.
    [176]李军.黄土高原作物生长模型DSSAT3数据库组建[J].干旱地区农业研究,2001,19(1):120-126.
    [177]刘国伟,田奇卓,王树亮,等.土壤肥力和灌水组合对小麦植株-土壤系统氮素平衡的影响[J].中国农学通报,2003,23(5):477-482.
    [178]李玉山,郭明航,董大学.渭北旱塬旱作水分产量潜势与水-肥-产量关系[J].长武王东沟高效生态经济系统综合研究.北京:科技文献出版社,1991:115-125.
    [179]曹靖,胡恒觉.不同肥料组合对冬小麦水分供需状况的研究[J].应用生态学报,2000,11(5)∶713-717.
    [180]樊军,郝明德,党廷辉,等.旱地长期定位施肥对冬麦水分利用的影响研究[J].土壤,2000,(6):315-322.
    [181]邓西平,山仑,稻永忍,等.密度、施肥对旱地春小麦产量、水分利用效率和籽粒养分含量的补偿效应[J].西北植物学报,2003,23(11):1861-1870.
    [182]岳维云,宋建荣,张耀辉等.天水旱作农业区膜侧小麦不同施肥水平增产效应分析[J].干旱地区农业研究,2006,24(4):15-18.
    [183]王旭刚,郝明德,李建民,等.氮磷配施对旱地小麦产量和吸肥特性的影响[J].西北农林科技大学学报(自然科学版),2007,35(2):138-142.
    [184]杜建涛,何文清, Vinay,等.北方旱区保护性耕作对农田土壤水分的影响[J].农业工程学报, 2008, 24(11):25-29.
    [185] Turner F T,Jmad M F.Chlorophyll meter to predict nitrogen topdreas requirement for semidwart rice[J].Agron.J.1991,83:926-928.
    [186]韩育宁,李三爱.北方旱农区小麦水分生产潜力模拟研究[J].山西水土保持科技,2004,3:20-23.
    [187] Westcott, M.P. and J.M. Wraith. 1995. Correlation of leaf chlorophyll readings and stem nitrate concentrations in peppermint. Commun [J]. Soil Sci. Plant Anal. 26(9&10): 1481-1490.
    [188]蒋阿宁,黄文江,刘克礼,等.利用叶绿素计进行冬小麦变量施肥及其效应研究[J].植物营养与肥料学报2007,13(6):1092-1097.
    [189] TsujiG Y. DSSAT4. 0 User’s Guide. Vo1. 1-4 [z]. TheUniversity of Hawai, 2003.
    [190] Ritchie J T.Soil water balance and plant stress [M].In: Tsuji G Y, Hoogenboom G, Thornton PK (Eds).Understanding Options for Agricultural Production. Kluwer Academic Publishers,Dordrecht, The Netherlands, 1998. 41-54.
    [191] Godwin D C,Singh U.Nitrogen balance and crop response to nitrogenin upland and lowland cropping systems[M].In:Tsuji G Y,HoogenboomG,Thornton P K (eds).Understanding Options for Agricultural Production.Kluwer Academic Publishers,Dordrecht,The Netherlands,1998. 55-77.
    [192]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978
    [193]中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法[M].北京:科学出版社,1983
    [194]全国土壤普查办公室.中国土种志(第五卷)[M].北京:中国农业出版社,1995:244-254.
    [195]许振柱,王崇爱,李晖.土壤干旱对小麦叶片光合和氮素水平及其转运效率的影响[J].干旱地区农业研究,2004,22(4):75-79,91
    [196]陕西省土壤普查办公室.陕西土壤[M].北京:科学出版社,1992:62-67.
    [197]王锐,刘文兆,李志.黄土塬区10m深剖面土壤物理性质研究[J].土壤学报,2008,45(3):550-554.
    [198]姜志伟,武雪萍,华珞,等.洛阳孟津冬小麦生产潜力长周期定量模拟与评价[J].中国生态农业学报,2009,17(5):984-991.
    [199] Wood C W,Tracy P W,Reves D W,et al.Determinationof cotton nitrogen status with a hand—held chlorophyll meter[J].J.Plant Nutr.,1992,15:1435-1448.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700