苯醚甲环唑和丙环唑在稻田中的残留消解与吸附
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯醚甲环唑和丙环唑是三唑类水稻杀菌剂,它能防治水稻纹枯病,具有很好的防治效果。本论文较为系统地研究了苯醚甲环唑和丙环唑在水稻田中的行为与效应,为生态环境效应和环境安全性提供基础数据,指导苯醚甲环唑和丙环唑的科学使用,也是研究苯醚甲环唑和丙环唑在水稻环境中的残留和消解行为以及制定其在水稻环境中合理使用准则的一项基础工作。论文主要内容如下:
     第一章为文献综述,分别介绍了苯醚甲环唑和丙环唑的的理化性质和研究进展,目前国内外对苯醚甲环唑和丙环唑的研究主要集中于毒性及特点、药效试验等方面,而在水稻田中的行为与效应研究却鲜见报道,本章对其毒理、药效和分析方法等方面的研究进展进行了简要的介绍和总结。
     第二章研究并建立了一种能同时检测苯醚甲环唑和丙环唑的气相色谱分析方法并用于稻田中的残留试验研究中,用来测定稻田水、土壤、稻杆、谷壳和糙米中的苯醚甲环唑和丙环唑的残留量。样品经丙酮振荡提取,后采用液-液分配,经弗罗里硅土净化,气相色谱(ECD)测定。当添加浓度为0.01-0.50 mg/kg之间时,测出苯醚甲环唑和丙环唑在不同稻田样品中的平均回收率为80.81%-112.85%和83.71%-112.11%,相对标准偏差为0.74%-6.11%和2.52%-7.29%。苯醚甲环唑在稻田水、土壤、稻杆、谷壳和糙米中的最低检出浓度分别为5×10-3mg/L,1.25×10-3、2.5×10-3、2.5×10-3、2.5×10-3mg/kg,丙环唑的最低检出浓度分别为1×10-4mg/L,2.5×10-4、5×10-4、5×10-4、5×10-4 mg/kg。该分析方法的准确性、精确性以及灵敏度均达到了农药残留分析的技术要求。
     第三章研究了30%苯醚甲环唑·丙环唑乳油在湖南长沙、云南昆明和浙江杭州两年三地的稻田中使用后,苯醚甲环唑和丙环唑在稻田水、土壤、水稻植株中的消解动态。试验结果表明:苯醚甲环唑和丙环唑的消解动态均符合一级反应动力学方程式,其结果具有较高的相关性。苯醚甲环唑在稻田水、稻田土壤和水稻植株中的平均消解半衰期分别为6.67 d,7.81d,6.01 d;丙环唑在在稻田水、稻田土壤和水稻植株中的平均消解半衰期分别为6.57d,7.87d,6.04d。由此可见,苯醚甲环唑和丙环唑在稻田水、土壤和水稻植株中的属易消解农药。
     苯醚甲环唑和丙环唑在土壤、稻杆、谷壳和糙米中的最终残留试验结果表明:最后一次施药后的21 d时,苯醚甲环唑和丙环唑在糙米中的残留量均未超过它们的MRL值(0.05 mg/kg),即在试验条件下施用30%苯醚甲环唑·丙环唑乳油,收获水稻的安全间隔期至少为21 d。
     第四章研究了苯醚甲环唑和丙环唑在六种供试土壤中的吸附性能和吸附机理。结果表明:苯醚甲环唑和丙环唑的吸附平衡时间分别为24 h和6 h。苯醚甲环唑和丙环唑在六种供试土壤上的吸附情况可以用Freundlich等温吸附方程来拟合,且均表现为物理吸附过程。苯醚甲环唑和丙环唑在杭州水稻土壤中的吸附性最强,移动性最弱,而在太原褐土中的吸附性最弱,移动性最强。土壤理化性质影响苯醚甲环唑和丙环唑的主要因素是土壤有机质的含量,其次是土壤pH值和阳离子交换量。
     第五章研究了苯醚甲环唑和丙环唑在六种供试土壤中的消解情况。结果表明:在六种供试土壤中,苯醚甲环唑和丙环唑的消解存在差异,这两种供试农药在杭州黄红壤中消解最快,苯醚甲环唑和丙环唑的消解半衰期分别为13.75 d、6.85 d,在杭州水稻土中消解最慢,苯醚甲环唑和丙环唑的消解半衰期分别为16.27 d、8.25 d。苯醚甲环唑和丙环唑在的消解半衰期受土壤有机质含量影响较大,在酸性条件下,苯醚甲环唑和丙环唑在土壤中较难消解,碱性条件下,两种供试农药较易消解,另外,苯醚甲环唑和丙环唑的消解受阳离子交换量CEC的影响较小。
Difenoconazole and propicondzole were triazole fungicide applied in paddy,they showed good inhibitory effect on the rice sheath blight. The behavior and effect of difenoconazole and propicondzole in paddy were studied in the thesis in order to provide some fundamental datas for the enviormnent saefty and ecological enviroment effect assessment, and also conduce to scientific application of difenoconazole and propicondzole. It was necessary to develop an effective residue analysis method for monitoring the residue and degradation process of difenoeonazole and propicondzole in paddy.At the same time, it is also necessary to establish their reasonable application criterion, which was also basic for evaluating their safety to rice and environment. The main contents were as follows:
     Chapter 1:It was a survey article that it introduced physical and chemical properies and advancement on research and development of difenoconazole and propicondzole, respectively. Previous studies focused mainly on toxicity, characterist and efficacy, little information was available about their behvaior and effect in paddy. The thesis summarized briefly that current research informations of difenoconazole and propicondzole about toxicity, potency, analysis method.
     Chapter 2:An simultaneously detective and effective gas chromatography analysis methods were established to determine the residue of difenoconazole and propicondzole in paddy water, soil, straw, rice hull and brown rice. Samples were extracted with acetone, purified on liquid-liquid partition and the extract was purified by a chromography column of florisil, subsequently detected by gas chromatography with electron-capture detector. when the added amount changed from 0.01 to 0.50 mg/kg in the samples, the average recoveries of difenoconazole ranged from 80.81% to 112.85% and the coefficient of variations changed from 0.74% to 6.11%. While at the same added amount, the data of propicondzole ranged from 83.71% to 112.11% and changed from 2.52% to 7.29%, respectively. Detectable limits of difenoconazole residue in paddy water, soil, straw, rice hull and brown rice were 5×10-3 mg/L, 1.25×10-3、2.5×10-3、2.5×10-3、2.5×10-3 mg/kg, respectively,and detectable limits of propiconazole residue were 1×10-4 mg/L,2.5×10-4、5×10-4、5×10-4、5×10-4 mg/kg. The accuracy and delicacy of these analysis methods all reached the technique demands of residue analysis of pesticide.
     Chapter 3:Difenoeonazole and propiconazole 30% EC was applied in paddy for two years in Changsha,Kunming and Zhejiang, the results of degradation dynamics of difenoconazole and propicondzole revealed that the degradation dynamics of difenoeonazole and propiconazole accoreded with the first class kinetics equation in paddy water, soil and straw, moreover it had high correlation. The average degradation half-lives of difenoconazole were 6.67 days in paddy water,7.81 days in paddy soil and 6.01 days in paddy straw, respectively. At the same time, the average degradation half-lives of propicondzole were 6.57 days in paddy water,7.87 days in paddy soil and 6.04 days in paddy straw.
     These results indicated that difenoconazole and propiconazole could be easily degradable in paddy. The final residue experiment of difenoconazole and propicondzole in paddy soil, straw, rice hull and brown rice showed that when the 21th day after the last applied,the residues of difenoconazole and propiconazole were less than the maximum residue limit(0.05 mg/kg). So difenoeonazole and propiconazole 30% EC was applied on the condition of the experiment,the safety interval period was at least 21 days.
     Chapter 4:The adsoprtion behavior of difenoconazole and propicondzole was studied by batch experiment with six kinds of soils tested.The results showed:The adsorption equilibrium times of difenoconazole and propicondzole were 24 hours and 6 hours, respectively. It was found that adsorption process of difenoconazole and propicondzole could be described well with Freudlich isotherm equation and there adsorption belonged to physical adsorption.The strongest adsorption occurred on the soil from Hangzhou paddy, and it took place the weakest adsorption on soil from Taiyuan. Among the main physical and chemical characters,organic matter contents played an important role in the adsorption on soils tested,more than pH value and cation exchange capacity.
     Chapter 5:The degradation behavior of difenoconazole and propicondzole was studied by batch experiment with six kinds of soils tested.The results showed:the degradation dynamic was different from difenoconazole and propicondzole, The fastest degradation rate occurred on the soil from Hangzhou area, the degradation half-lives of difenoconazole and propicondzole were 13.75 days,6.85 days, and the slowest degradation rate on soil from Hangzhou paddy. the degradation half-lives of difenoconazole and propicondzole were 16.27 days,8.25 days. The organic matter contents played an important role in degradation half-lives of difenoconazole and propicondzole in six kinds of soils tested. Difenoconazole and propicondzole were hardly degrade on acidity condition, but easily degrade on alkalescent condition. The degradation half-lives had a poor correlation with cation exchange capacity, it indicated that they had litter impact on degradation of difenoconazole and propicondzole.
引文
[1]岳永德主编.农药残留分析[M].中国农业出版社,2003:1.
    [2]郭明,陈红军,李治龙,等.我国农药残留研究现状及发展趋势[J].塔里木农垦大学学报,1998,12,10(2):56-60.
    [3]IJiu w P. Ji J. One of the most important factos affecting the fate of pesticide in soil-water environmental:Sorption and desorption(In Chinese). Enviromental Science,1996,16(1): 25-30.
    [4]Reeves R, Thiruchelvam M, Richfield E K, et al. Behavioral sensitization and long-term neurochemical alteration associated with the fungicide triadimefon. Pharmacol Biochem Behav,2003,76(2):315-326.
    [5]蔡道基.化学农药对环境安全性评价[J].环境化学,1991,10(3):41-46.
    [6]Alexander M. Howare toxic chemicals in soils[J]. Environ Sci.Technol,1995,29(11): 2713-2717.
    [7]Gevao B, Semple K T, Jone K C. Bound pesticide residues in soils:a review[J]. Environ Pollut,2000,108:3-14.
    [8]刘军,周建平,唐逸娟,等.30%苯醚甲环唑·丙环唑EC防治水稻纹枯病试验简报[J].上海农业科技,2008,3:117-118.
    [9]戴英,金彩华,陈时健.30%苯醚甲环唑·丙环唑EC防治水稻纹枯病田间药效试验简报[J].上海农业科技,2007,4:118.
    [10]高朝军,钟玉萍.30%苯醚甲环唑·丙环唑乳油防治水稻纹枯病试验[J].现代农业科技,2008,14:107-108.
    [11]宋国庆,孙红军,张友明.30%苯醚甲环唑·丙环唑悬浮剂防治水稻纹枯病田间药效试验[J].品牌农资,2008,6:54-55.
    [12]方晓航,等.农药在土壤环境中的行为研究[J].土壤与环境,2002,11(1):94-97.
    [13]王进海,张连什,戴广茂.农药在土壤中的吸附[J].1989,8(5):21-27.
    [14]杨克武,等.单甲咪在土壤中的吸附[J].环境化学,1995,14(5):431-435.
    [15]卢颖.农药在土壤中的吸附行为及建模方法研究[D].南京:南京大学硕士论文,2000.
    [16]刘维屏,季瑾.农药在土壤-水环境中归宿的主要支配因素-吸附和脱附[J].中国环境科学,1996,16(1):25-30.
    [17]王进海,张连仲,戴广茂.农药在土壤中的吸附[J].环境化学,1989,8(5):21-27.
    [18]高海英,杨仁斌,龚道新,等.三唑酮在土壤中的吸附及其机理[J].湖南农业大学学报,2006,32(2):203-205.
    [19]许自力,唐畅,冯柏林.30%苯醚甲环唑·丙环唑EC防治水稻纹枯病田间药效试验初报[J].湖南农业科学,2007,(2):98-101.
    [20]刘水芳,杨秀荣,孙淑琴,等.300g/L苯醚甲环唑·丙环唑乳油防治水稻纹枯病田间药效试验[J].天津农业科学,2009,15(1):72-73.
    [21]青岛瀚生生物科技股份有限公司.30%苯甲·丙环唑(瀚生双管),治病又增产[J].湖北植保,2009,12(2):66.
    [22]章瑶,王梅,张勇,等.10%苯醚甲环唑水分散粒剂对梨黑星病的田间药效研究[J].现代农业科技,2006,2(10):63-64.
    [23]农业部农药检定所.农药残留量实用检测方法手册[M].第3卷.北京:中国农业出版社,2005:253-254.
    [24]刘永霞,戈扬,李岩,等.苯醚甲环唑原药的亚慢性毒性研究[J].中国职业医学,2007,1:89-91.
    [25]朱丽秋,顾刘金,杨校华,等.苯醚甲环唑的亚慢性经口毒性[J].职业与健康,2006,22(15):1137-1139.
    [26]纵瑞敬,欧阳素华,蒋永,等.世高防治葡萄炭疽病的试验研究[J].现代农业科技,2006, 4(10):63-64.
    [27]李军民,唐浩,祖智波,等.苯醚甲环唑的合成研究[J].农药研究与应用,2009,13(1):18-21.
    [28]李海华,廖福广,王鹏,等.杀菌剂苯醚甲环唑的制备[J].北京理工大学学报,2006,26(4):365-368.
    [29]郑德赞.100 g/kg苯醚甲环唑水分散粒剂的研制[J].农药,2005,44(9):399-401.
    [30]王筱芬,谢琳,史岩等.苯醚甲环唑的毒性及致突变性试验研究[J].职业与健康,2005,21(12):1953-1954.
    [31]王行军,沈言根.苯醚甲环唑10WG防治西瓜炭疽病的研究[J].安徽农业科学,2005,33(11):2017.
    [32]章瑶,王梅,张勇,等.10%苯醚甲环唑水分散粒剂对梨黑星病的田间药效研究[J].现代农业科技,2006,(10):63-64.
    [33]张立文,高树维,李国平,等.10%苯醚甲环唑WG防治梨黑星病试验研究[J].2006,12(7): 158.
    [34]凌代芬.10%苯醚甲环唑水分散粒剂对西瓜炭疽病防治效果的研究[J].安徽农业科学,2006,34(20):5289.
    [35]杨俊柱.25%苯醚甲环唑乳油的反相高效液相色谱测定[J].农化新世纪,2006,2:22-25.
    [36]刘建飞,夏红英,陈伟.16%苯醚甲环唑乳油高效液相色谱分析[J].农药,2007,11:37-41.
    [37]任竞,龚道新,陈九星,等.苯醚甲环唑残留量的气相色谱分析方法研究[J].精细化工中间体,2009,39(2):63-66.
    [38]沈伟健,杨雯筌,沈崇钰,等.气桓色谱-负化学离子源质谱法检测食品中苯醚甲环唑的残留量[J].色谱,2007,5:418-421.
    [39]冯雪玲,纪然,曹维良.气相色谱法测定水和土壤中苯醚甲环唑的残留量[J].化工环保,2007,27(1):93-96.
    [40]吴曼,陈九星,付启明,等.气相色谱法测定芦笋及其土壤中的苯醚甲环唑残留量[J].精细化工中间体,2009,39(6):71-76.
    [41]王军,温家钧,边侠玲,等.柑橘和土壤中苯醚甲环唑残留动态研究及安全性评价[J].西南农业学报,2009,22(3):644-647.
    [42]王军,花日茂,温家钧,等.苯醚甲环唑在梨和土壤中的残留动态与安全性评价[J].农业,2008,47(8):601-603.
    [43]安晶晶,刘新刚,董丰收,等.苯醚甲环唑在番茄和土壤中的残留动态研究[J].环境科学研究,2009,22(7):868-872.
    [44]刘海涛,薛健,张本刚,等.新型杀菌剂世高(10%苯醚甲环唑WG)在龙胆中残留分析方法的研究[J].世界科学技术-中医药现代化,2005,(7):57-59.
    [45]冯雪玲.苯醚甲环唑在水稻中的农药残留分析研究[J].北京化工大学,2007,22(6):81-85.
    [46]Zhi Hua Wang, Tong Yang, Dong Mei Qin. Determination and dynamics of difenoconazole residues in Chinese cabbage and soil[J]. Chinese Chemical Letters,2008,19:969-972.
    [47]钱虹,张爱庆.三唑类杀菌剂丙环唑原药的分析[J].江苏农药,2001,4:12-13.
    [48]农业部农药检定所.农药残留量实用检测方法手册[M].第3卷.北京:中国农业出版社,2005:356-359.
    [49]卜宇岚,翁建全.丙环唑的合成[J].精细化工中间体,2007,37(1):25-27.
    [50]杨春龙,罗金香,谢学群,等.丙环唑配合物的合成、缓释性能及生物活性研究[J].无机化学学报,2007,23(7):1260-1263.
    [51]孙国俊,季敏,蒋林忠,等.丙环唑25%乳油防治水稻纹枯病药效试验研究[J].农药管理,2008,29(3):25-26.
    [52]丁海玲,郝根娣,张骅,等.丙环唑乳油防治小麦白粉病田间药效试验报告[J].大麦与谷类科学,2006,48-50.
    [53]梁萍,韦广天,黄艳花,等.25%丙环唑乳油防治大棚甜瓜蔓枯病试验[J].广西植保,2003,16(4):10-12.
    [54]吴涛,王仕彪,吴娟,等.25%丙环唑乳油防治香蕉叶斑病田间药效试验[J].海南农业科技,2005,1:14-15.
    [55]Zamora T, Pozo O J, Lopez F J eta.Determination of tridemorph and other fungicide residues in fruit samples by liquid chromatography-electrospray tandem mass spectrometry [J]. Journal of ChromatographyA,2004,45(10):137-143.
    [56]黄东,涂秀芹.高效液相色谱法测定丙环唑[J].现代农药,2006,5(2):30-31.
    [57]于荣,王国联.嘧菌酯·丙环唑悬乳剂气相色谱分析方法研究[J].农药科学与管理,2009,30(9): 1-3.
    [58]慕卫,刘峰,孙作洋,等.戊唑醇、丙环唑和三唑酮的GC和HPLC分析方法[J].农药科学与管理,2005,26(7):1-3.
    [59]高立明,陈丙坤,万莉,等.香蕉中丙环唑残留的分析方法研究[J].西南师范大学学报,2007,32(3):102-105.
    [60]马志荣,张中泽.丙环唑含量分析方法的研究[J].科技进展,2003,17(5):35-36.
    [61]杨云鹏,任卫东.农用杀菌剂的现状及展望[J].继续教育,1999,11(2):35-36.
    [62]王维国.农用杀菌剂研究开发动态[J].化学工程师,2005,2(6):12-13.
    [63]朱卫刚,胡伟群,陈定花,等.丙环唑和苯醚甲环唑复配对水稻纹枯病的联合毒力[J].农药,2008,47(5):365-366.
    [64]程运斌.30%苯醚甲·丙环唑乳油的气相色谱分析[J].农药,2007,46(9):612-613.
    [65]刘哲,王国联,姜宜飞,等.苯醚甲环唑·丙环唑乳油气相色谱分析[J].农药科学与管理,2006,25(12):17-20.
    [66]徐妍,刘世禄,盛琦,等.30%苯醚甲环唑·丙环唑微乳剂的高效液相色谱分析[J].农药,2009,48(3):185-187.
    [67]邓继珠,张燕,李洁,等.30%苯甲·丙环唑悬乳剂的高效液相色谱分析[J].现代农药,2009,1(8):36-37.
    [68]王连珠,王登飞,郑俊超,等.气相色谱-质谱法测定荷兰豆中氟硅唑、丙环唑、苯醚甲环唑残留量[J].农化新世纪,2006,42:1025-1028,1031.
    [69]安晶晶,刘新刚,董丰收,等.超高效液相色谱-串联质谱法测定土壤、蔬菜及水果中苯醚甲环唑和丙环唑残留[J].农药,2009,7(48):506-508.
    [70]卢声宇,徐敦明,余孔捷,等.气相色谱/气质联用分析5种农产品中的苯醚甲环唑和丙炔氟草胺残留[J].农业环境科学学报,2007,26(5):1827-1831.
    [71]单正军,朱忠林,蔡道基.吡虫啉的环境行为研究[J].农药科学与管理,1998,68(4):11-15.
    [72]方晓航,仇荣亮.农药在土壤环境中的行为研究[J].土壤与环境,2002,11(1):94-97.
    [73]石利利,林玉锁,徐亦钢,等.毒死蜱农药环境行为研究[J].土壤与环境,2000,9(1):73-74.
    [74]刘松长,李继睿,何文.农药在土壤环境中的吸附—解吸作用[J].广东化工,2007,34(11):101-104.
    [75]龚道新,汪传刚,邹雅竹,等.咪鲜胺及其三种主要代谢物在六种水稻土中的吸附[J].土壤学报,2007,44(1):154-157.
    [76]Bresnahan G, Dexter A, Koskinen W, et al. Influence of soil pH-sorption interactions on the carry-over of fresh and aged soil residues of imazamox[J]. Weed Research,2002,42:45-51.
    [77]Singh N. Sorption behavior of triazole fungicides in Indian soils and its correlation with soil properties[J].J Agric. Food Chem.,2002,50:6434-6439.
    [78]欧晓明,余淑英,罗玲,等.新农药硫肟醚在土壤上的吸附[J].农业环境科学学报,2007,26(2):577-582.
    [79]司有斌,周静,王兴祥,等.除草剂苄嘧磺隆在土壤中的吸附[J].环境科学,2003,24(3):122-125.
    [80]Stougaard R N, Shea P J, Martin AR.Effect of soil type and pH on adsorption, mobility and efficacy of imazaquin and imazethapyr[J]. Weed Science,1990,38:67-73.
    [81]杨成武,安凤春,莫汉宏.单甲脒在土壤中的吸附[J].环境化学,1995,14(5):431-435.
    [82]卢颍,韩朔睽.除草剂苯噻草胺在土壤中的吸附[J].环境化学,2000,19(6):513-517.
    [83]胡枭,樊耀波,王敏健.影响有机污染物在土壤中的迁移、转化行为的因素[J].环境 科学进展,1999,7(5):14-22.
    [84]McCall P J. Test protocol for environmental fate and movement of toxicants[C]. Proceedings of AOAC,1980:89-109.
    [85]丁言斌,宋卫华,王连生,等.批量平衡法研究芳香族酮类化合物在东北黑土中的吸附[J].环境化学,2000,19(4):330-334.
    [86]曹罡,莫汉宏,安凤春.除草剂2,4-D在土壤中的吸附常数的测定[J].环境化学,2001,20(4):362-366.
    [87]WU Weihong, WANG Haizhen, XU Jianming. Adsorption characteristic of bensulfuron. methyl at variable added Pb2+ concentrations on paddy soil[J]. Environmental Sciences,2009,21:1129-1134.
    [88]ZHANG Jie, LI Zhaojun, GE Gaofei. Impacts of soil organic matter,pH and exogenous copper on sorption behaviorof norfloxacin in three soils[J]. Environmental Sciences,2009, 21:632-640.
    [89]方晓航,仇荣亮.农药在土壤环境中的行为研究[J].土壤与环境,2002,11(1):94-97.
    [90]McCall P J, Laskowski D A, Swmann R L. Test protocols for environmental fate and movement of Toxicants [J]. Washington, DC:proceedings of a symposium, Association of Official Analytical Chemists,1980,89-109.
    [91]王学东,周红斌,王慧利,等.咪唑烟酸在不同土壤中的消解动态及其影响因子[J].农药学学报,2001,6(5):53-57.
    [92]秦曙,乔雄梧,朱九生,等.实验室条件下氯氰菊酯在土壤中的消解[J].农药学报,2000,(3):68-73.
    [93]王俊,陈峰,游泳,等.坪草净在不同土壤中消解的研究[J]..福建农业学报,2008,23(2): 154-157.
    [94]郭东梅,郑永权,焦必宁,等.吡虫啉在土壤中的消解动力学研究[J].现代科学仪器,2007,(1):55-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700