污染物在改良黏土衬里中运移分析及ET封顶层特性探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾填埋场对环境的污染是陆地填埋法面临的主要环境岩土工程问题。为控制渗滤液过量排放而引起环境污染,现代卫生填埋场包含有防渗结构与封顶结构。压实黏土衬里(CCL:Compacted Clay Liner)广泛应用于填埋场防渗结构中。黏土可吸附多种污染物,但吸附能力较弱,提高CCL吸附能力对于控制填埋场对环境污染具有重要意义。在黏土中分别添加活性炭(GAC:Granular Activated Carbon)、酸活化膨润土、石灰等对其进行改良,以提高CCL的吸附及承载能力。采用吸附试验、土柱试验等方法,研究改良衬里的吸附特性,并确定了Cr(Ⅵ)在衬里中运移的弥散系数。采用土工试验对改良黏土作为填埋场衬里建造材料的可行性进行了研究。基于温度变化下污染物运移模型,对Cr(Ⅵ)在改良衬里中的运移过程进行数值分析。另外,对压实黏土封顶层与蒸发传输(ET:Evapotranspiration)封顶层的水分平衡进行了数值分析。基于试验与理论分析,取得了以下研究成果。
     1.吸附动力学研究结果表明,黏土对Cr(Ⅵ)、Zn(Ⅱ)的吸附可以通过伪二阶动力模式来描述;黏土对Cr(Ⅵ)、Zn(Ⅱ)离子吸附的活化能为22.7kJ/mol、26.88kJ/mol,说明黏土对Cr(Ⅵ)、Zn(Ⅱ)离子的吸附属于化学吸附;热力学参数说明黏土对重金属离子的吸附是吸热反应,溶液温度的升高能促进黏土对重金属离子的去除率。
     2.吸附试验结果表明,改良黏土试样对Cr(Ⅵ)的吸附均符合Langmuir等温吸附方程,且吸附强度显著提高。在等温条件下,在双对数坐标系中,Langmuir吸附参数(q_m、b)随着土固体颗粒浓度的增加而线性减小,当土固体颗粒浓度增至临界值时(如:200g/L),可达到稳定状态。在非等温条件下,吸附参数(q_m、b)均随温度升高而线形增大。
     3.土工试验结果表明,在重型击实及特定含水率下,黏土、经GAC或酸活化膨润土改良的黏土均能满足体缩率小于4%、渗透系数小于1×10~(-7)cm/s、无侧限抗压强度大于200kPa的工程要求,说明这些土料可以作为填埋场衬里的建造材料。
     4.由上层含石灰的黏土和下层含GAC或酸活化膨润土的黏土构成的双层衬里不仅能满足低渗透系数的工程要求,且明显的提高了衬里的无侧限抗压强度,增强了衬里的承载能力,进而提高了填埋场的填埋储量。
     5.以土柱试验所得到的穿透曲线拟合数值计算结果,分别确定Cr(Ⅵ)在单层与双层衬里中的弥散系数。在单层衬里中,弥散系数(D)分别为:含10%石灰的黏土为6.4×10~(-8)m~2/s;黏土为3.0×10~(-10)m~2/s;含3%或6%活化膨润土的黏土分别为2.2×10~(-10)m~2/s与6.8×10~(-10)m~2/s;含3%或6%GAC的黏土分别为2.5×10~(-10)m~2/s与8.3×10~(-10)m~22/s。在双层衬里中,上层土为含10%石灰的黏土,其D值为4.4×10~(-8)-5.2×10~(-8)m~2/s;下层土分别为:含3%与6%活化膨润土的黏土,其D值分别为6.1×10~(-10)m~2/s与5.4×10~(-10)m~2/s;含3%与6%GAC的黏土,其D值分别为6.5×10~(-10)m~2/s与7.0×10~(-10)m~2/s。
     6.考虑污染物在多孔介质中的对流、弥散、地球化学反应以及温度对吸附量影响条件下,建立了污染物在饱和双层结构体系中运移的数学模型,采用有限差分法对模型进行数值求解,并对Cr(Ⅵ)的运移过程进行数值分析。计算结果表明,当温度升高时,对于不同类型的双层衬里,Cr(Ⅵ)穿透速度由大到小的顺序依次为双层衬里1(上层为含10%石灰的黏土、下层为黏土)>双层衬里2(上层为含10%石灰的黏土、下层为含3%GAC的黏土)>双层衬里3(上层为含10%石灰的黏土、下层为含3%酸活性膨润土的黏土),表明采用GAC、酸活化膨润土改良的CCL可有效延迟Cr(Ⅵ)的运移。探讨了填埋场水位、压实土层的渗透系数和弥散系数对Cr(Ⅵ)运移的影响,计算结果表明,当提高填埋场水位、增大渗透系数与弥散系数时,Cr(Ⅵ)在双层衬里中的运移速度明显加快,为Cr(Ⅵ)运移过程的控制因素。同时分析了土的比热和热传导系数对Cr(Ⅵ)在双层衬里中运移的影响,计算结果表明,土比热和热传导系数变化对Cr(Ⅵ)在双层衬里中运移影响较小,可不考虑其影响。
     7.以大连市1976全年的实际降水与蒸发蒸腾强度为边界条件,采用数值计算对比分析压实黏土封顶层与ET封顶层中水分运移特性,探讨了降水强度、降水持续时间、土层初始含水率与植物生长土层厚度等因素对封顶系统中水分运移的影响。数值计算结果表明,临近地表的土层,其含水率受降水、蒸发的影响显著,且随着深度的增加出现明显的“峰值滞后”现象;对于压实黏土封顶层,因渗透系数低,其含水率受降水、蒸发影响较小;对于ET封顶层,降水可有效补给整个土层,而蒸发时,可有效排出土层中所储存的水,因此,可避免土层中水分过量蒸发而引起开裂,并可防止水分渗入填埋场,具有水分平衡自调节功能,是一种很有发展潜力的填埋场最终封顶层。
The main environmental geotechnical problem of landfill is the pollution and destruction on environments induced by the municipal solid wastes. In order to control leachate leakage and transport, landfill liners and covers are commonly built in modern landfills. The compacted clay liners (CCL) are widely used in impervious structure of landfill. The clay is used as a retention medium of pollutants present in the leachate. However, the sorption capacity of pollutants onto clay is weak. Hence, there is a crucial need to improve sorption capacity of CCL. A method to amend the liners with granuar activated carbon (GAC), bentonite activated by acid and lime capable of strongly sorbing pollutants is performed in the study. In order to improve the bearing capacity of liners, a method of adding lime into liner-soil materials is proposed. The adsorption property of improved CCL is observed by a series of batch tests. The pollutants transport through improved CCL is investigated by column tests. The diffusion coefficients of pollutants are determined according to data from column tests. The geotechnical tests are carried out to test the feasibility of improved clay used as liner-soil materials. A dynamic model is developed for simulating Cr(Ⅵ) transport in improved CCL. The moisture balance of compacted clay and evapotranspiration (ET) cover are analyzed by numerical simulation. On the basis of tests and theoretical analysis, the main conclusion is as follows:
     1. The pseudo-second order kinetic model is the best choice among all the kinetic models to describe the adsorption of Cr(Ⅵ) and Zn(Ⅱ) onto the clay. The activation energy values for Cr(Ⅵ) and Zn(Ⅱ) were found to be 22.7 kJ/mol and 26.88 kJ/mol. The value of activation energy suggests that the adsorption process might be a by chemical adsorption. The thermodynamic parameters values indicate that the adsorption process is an endothermic in nature and the rise in temperature favors adsorption.
     2. The results from batch tests show that the Cr(Ⅵ) sorption to improved clay was nonlinear and characterized by a Langmuir isotherm model. As the soil-solids concentration increases the Langmuir isotherm parameters (q_m,b) first decreases logarithmically, but then stabilizes when the soil-solids concentration exceeds a critical value (e.g.; 200g/L); The isotherm parameters also increase linearly with increasing temperature.
     3. The results of geotechnical tests show that the compacted clay and clay containing GAC or bentonite activated will exhibit volumetric shrinkage≤4%, hydraulic conductivity ≤1×10~(-7)cm/s and unconfined compressive strength≥200kPa. These data indicate that the above soils can be used as liner-soil materials.
     4. A two-layer liner is designed; the upper soil layer is composed of 90% clay and 10% lime, and the lower soil layer is composed of 97% or 94% clay and 3% or 6% adsorbents (GAC or bentonite activated). The two-layer liner can not only meet requirement of hydraulic conductivity, but enhance its bearing capacity and adsorption capacity to pollutants.
     5. The diffusion coefficients of Cr(Ⅵ) for liner-soil materials were back-calculated by a one-dimensional numerical transport program. The diffusion coefficients of one-layer liners were as follows: for 90% clay plus 10% lime, 6.4×10~(-8)m~2/s; for clay, 3.0×10~(-10)m~2/s; for 97% clay plus 3% bentonite activated, 2.2×10~(-10)m~2/s; for 94% clay plus 6% bentonite activated, 6.8×10~(-10)m~2/s; for 97% clay plus 3% GAC, 2.5×10~(-10)m~2/s; for 94% clay plus 6% GAC, 8.3×10~(-10)m~2/s. The diffusion coefficients of two-layer liners were as follows: for clay containing 10% lime of upper soil layer, 4.4×10~(-8)-5.2×10~(-8)m~2/s; for clay containing 3% or 6% bentonite activated of lower soil layer, 6.1×10~(-10)m~2/s or 5.4×10~(-10)m~2/s; for clay containing 3% or 6% GAC of lower soil layer, 6.5×10~(-10)m~2/s or 7.0×10~(-10)m~2/s.
     6. On the basis of considering flow, diffusion, geochemical reaction and the effect of temperature on adsorption, a pollutants transport model is presented. Solutions to the model were accomplished by finite difference, which predicted Cr(Ⅵ) transport through two-layer liners systems. Results indicate that liner containing activated bentonite exhibited the highest retard capacity, followed by liner containing GAC and CCL. GAC and bentonite activated are two potential materials for their use as sorptive amendments for sorbing heavy metals in CCL. As leachate head, hydraulic conductivity, and dispersion coefficients increase, the Cr(Ⅵ) transport significantly speed up. Hence, they are main factors that influence the pollutants transport. The effect of soil specific heat and thermal conductivity to Cr(Ⅵ) transport is not obvious.
     7. Volumetric water content of compacted clay and ET cover is simulated under data of precipitation and evaporation of Dalian in 1976. Parametric analyses are conducted to simulate variations in precipitation rate, precipitation event duration, initial volumetric water content and top soil layer thickness. Results show that the moisture content near the surface is highly sensitive to climate loading; and the effect is significantly attenuated and time lagged along with increasing depth. The compacted clay cover has low penetrability; so it can not get effective moisture charge. ET cover acts as a Veservoir that stores moisture during precipitation events and subsequently returns it to atmosphere as evapotranspiration. ET cover prevents desiccation cracks and water leakage. Hence, it has great potentialities used in construction of landfill covers.
引文
[1] 沈东升,何若,刘宏远.生活垃圾填埋生物处理技术[M].北京:化学工业出版社,2003,5.
    [2] 杨宏毅,卢英方.城市生活垃圾的处理和处置[M].北京:中国环境科学出版社,2006,7.
    [3] 陈昆柏.固体废物处理与处置工程学[M].北京:中国环境科学出版社,2005,12.
    [4] 金军,贾振邦.中国城市垃圾处理处置发展方向[J].中央民族大学学报(自然科学版),2005,5,14(2):113-119.
    [5] 浦辛刚,陈新民.填埋场村垫系统的评价[J].南京工业大学学报,2004,3,26(2):33-38.
    [6] 中华人民共和国建设部.中华人民共和国行业标准《城市生活垃圾卫生填埋技术规范》CJJ17-2004[S].北京:中国建筑工业出版社,2004.
    [7] 钱学德,郭志平,施建勇等.现代卫生填埋场的设计与施工[M].北京:中国建筑工业出版社,2001,5.
    [8] 张金利.填埋场污染物运移数值分析及安全防渗系统设计方法探讨:(博士学位论文).大连:大连理工大学,2005.
    [9] Mott H V, Weber W J. Sorption of low molecular weight organic containments by fly ash:Considerations for the enhancement of cutoff barrier performance[J]. Environ. Sci. Technol, 1992,26:1234-1242.
    [10] Park J K, Nibras M. Mass flux of prganic chemicals through polyethylene geomembranes[J]. Water Environ. Res, 1993, 65:227-237.
    [11] Shackelford C D. Laboratory diffusion testing for waste disposal-A review[J]. J. Contain. Hydrol, 1991,7:177-217.
    [12] Du Y J, Hayashi S. A study on sorption of Cd on the Ariake clay for evaluating its potential use as a landfill barrier material[J]. Applied Clay Science, 2006,32:14-24.
    [13] Cuevas J, Leguey S, Garralon A, et al. Behavior of kaolinite and illite-based clays as landfill barriers[J]. Applied Clay Science, 2009,42:497-509.
    [14] Frempong E M, Yanful E K. Geoenvironmental assessment of two tropical clayey soils for use as engineered liner materials[A]. Proceedings of the Sessions of the Geo-Frontiers 2005 Congress[C], Austin, Texas, USA, ASCE, 2005:1-10.
    [15] Lorenzetti R J, Bartelt-Hunt S L, Burns S E, et al. Hydraulic conductivities and effective diffusion coefficients of geosynthetic clay liners with organobentonite amendments[J]. Geotextiles and Geomembranes, 2005,23:385-400.
    [16] Lin T T, Cheng C H. Microanalytical characterizations of eroded and slaked mudstone proposed as landfill liner materials[J]. PRACTICE PERIODOCAL OF HAZARDOUS, TOXIC, AND RADIOACTIVE WASTE MANAGEMENT, ASCE, 2006, 7:128-133.
    [17] Sezer G A, et al. Mineralogical and sorption characteristics of Ankara Clay as a landfill liner[J]. Applied Geochemistry, 2003,18:711-717.
    [18] Al-Tabbaa A, Aravinthan T. Natural clay-shredded tire mixtures as landfill barrier materials[.I]. Waste Management, 1998, 18:9-16.
    [19] Chalermyanont T, Arrykul S, Charoenthaisong N. Potential use of lateritic and marine clay soils as landfill liners to retain heavy metals[J]. Waste Management, 2009,29:117-127.
    [20] Ganjian E, Claisse P, Tyrer M, et al. Preliminary invertigations into the use of secondary waste minerals as a novel cementitious landfill liner[J]. Construction and Building Materials, 2004, 18:689-699.
    [21] Bellir K, Bencheikh-Lehocine M, Meniai A H, et al. Study of the retention of heavy metals by natural material used as liners in landfills[J]. Desalination, 2005,185:111-119.
    [22] LU Hai-jun, LUAN Mao-tian, ZHANG Jin-lin, et al. Study on the adsorption of Cr(Ⅵ) onto landfill liners containing granular activated carbon or bentonite activated by acid[J]. J China Univ Ming & Technol, 2008,18:0125-0130.
    [23] Nhan C T, Graydon J W, Kirk D W. Utilizing coal fly ash as a landfill barrier material[J]. Waste Management, 1996,16(7):587-595.
    [24] Bartelt-Hunt S L, Smith J A, Burns S E, el al. Evaluation of granular activated carbon, shale, and two organoclays for use as sorptive amendments in clay landfill liners[J]. JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, ASCE, 2005, 7:848-856.
    [25] 胡云.下蜀黄土作为垃圾填埋场衬垫层的可行性研究[J].西部探矿工程,2005,2,105:220-222.
    [26] Suter G W, Luxmoore R J, Smith E D. Compacted soil barriers at abandoned landill site are likely to fail in the long term[J]. J. Envir. Quality, 1993, 22(2):217-226.
    [27] Sadek S, Ghanimeh S, El-Fadel M. Predicted performance of clay-barrier landfill covers in arid and semi-arid environments[J]. Waste Management, 2006:1-12.
    [28] Khire J A, Benson C H, Bosscher P J. Water balance modeling of earthen final covers[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1997,124(8):744-754.
    [29] Khire J A, Benson C H, Bosscher P J. Capillary barrier: design variables and water balance[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2000,127(8):695-707.
    [30] Albrecht B, Benson C. Effect of desiccation on compacted natural clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2001, 127(l):67-75.
    [31] Dwyer S F. Water Balance Measurements and Computer Simulations of Landfill Covers[D](Ph.D Thesis). Albuquerque, The University of New Mexico Albuquerque, New Mexico, 2003,3.
    [32] Khire, M V, Benson, C H, Bosscher, P J. Capillary barriers: design variables and water balance[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE , 2000,127 (8):695 - 707.
    [33] Daniel D E. Surface barriers: problems, solutions and future needs[A]. Proc, of the 33rd Hanford Symp. on Health and the Environment[C], Columbus, Ohio, 1994:441-487.
    [34] Schnabel W, Lee W, Barnes D L. A numerical simulation of evapotranspiration cover performance at three cold-regin locations[A]. World Water and Environmental Resources Congress 2005[C],Anchorage, Alaska, USA, ASCE, 2005.
    [35] Wing N, Gee G. Quest for the perfect cap[J]. Civil Eng, 1994, 64(10):38-41.
    [36] Morris C, Stormont J. Capillary barriers and subtitle D covers: Estimating equivalency[J]. J Envir. Engng., ASCE, 1997,123(l):3-10.
    [37] McCartney J S, Zornbery J G. Decision analysis for design of evapotranspirative landfill covers[A]. Proceedings of the Fourth International Conference on Unsaturated Soils[C], Carefree, Arizona, USA,2006:694-705.
    [38]Forman A D,AndersonJ E.Design and performance of four evapotranspiration caps[J].PRACTICE PERIODOCAL OF HAZARDOUS,TOXIC,AND RADIOACTIVE WASTE MANAGEMENT,ASCE,2005, 9(4):263-272.
    [39]Young M H,Albright W A,Pohlmann K F,et al.Designing alternative landfill covers using parametric uncertainty analysis[A].Proceedings of the Fourth International Conference on Unsaturated Soils[C],Carefree,Arizona,USA,2006:682-693.
    [40]Lee W,Schnabel W E.Implementation of a pilot scale evapotranspiration landfill cover for use in cold regions[A].World Water and Environmental Resources Congress 2005[C],Anchorage,Alaska,USA,ASCE,2005.
    [41]Wayllace A,Likos W J.Numerical modeling of artificial soil as an evapotranspirative cover[A].Proceedings of the Fourth International Conference on Unsaturated soils[C].Carefree,Arizona,USA:ASCE,2006.
    [42]Link S O,Waugh W J,Downs J L.The role of plants in isolation barrier systems.In-situ remediation:Scientific basis for current and future technologies[A],Proc,33rd Hanford Symp.on Health and the Environment[C],Batelle,Richland,Wash,1994:561-592.
    [43]Hakonson T E,Martinez J L,White G C.Disturbance of low-level waste burial site cover by pocket gophers[J].Health Phys,1982,42:868-871.
    [44]Laundre J W.Effect of small mammal burrows on water infiltration in a semi-arid environment[J].Oecologia.1993,94:43-48.
    [45]Blom P E,Johnson J B,Shafii B,et al.Soil water movement related to distance from three Pogonomyrmex salinus(Hymenoptera:Formicidae) nests in south-eastern ldaho[J].J.Arid Environ.1994,26:241-255.
    [46]Kumar P R.An experimental methodology for monitoring contaminant transport through geotechnical centrifuge models[J].Environmental Monitoring and Assessment,2006,117:215-233.
    [47]Jang Y S,Hong G T.An experimental study on diffusion characteristics of hardened liner materials to inorganic chemicals[J].Environmental Geology,2003,44:599-607.
    [48]Sims D J,Andrews W S,Creber K A M.Diffusion coefficients for uranium,cesium and strontium in unsaturated prairie soil[J].Journal of Radioanalytical and Nuclear Chemistry,2008,27(1):143-147.
    [49]Shackelford C D,Daniel D E.Diffusion in saturated soil.Ⅱ:results for compacted clay[J].Journal of Geotechnical Engineering,1991,117(3):485-506.
    [50]Du Y J,Hayashi S,Liu S Y.Experimental study of migration of potassium ion through a two-layer soil system[J].Environ Geol,2005.
    [51]Lafolie F,Hayot CH,Schweich D.Experiments on solute transport in aggregated porous media:Are diffusions within aggregates and hydrodynamic dispersion independent?[J].Transport in Porous Media,1997,29:281-307.
    [52]Yazicigil H,et al.Laboratory determination of multicomponent effective diffusion coefficients for heavy metals in a compacted clay[J].Turkish Journal of Earth Sciences(Turkish J.Earth Sci.),2005,14:91-103.
    [53]Lv L,Zhang Y,Wang K,et al.Modeling of the adsorption breakthrough behaviors of Pb~(2+) in a fixed bed of ETS-10 adsorbent[J].Journal of Colloid and Interface Science,2008,325:57-63.
    [54]Do N Y,Lee S R.Temperature effect on migration of Zn and Cd through natural clay[J]. Environmental Monitoring and Assessment, 2006.118:267-291.
    [55] Itakura T, Airey D W, Leo C J. The diffusion and sorption of volatile organic compounds through kaolinitic clayey soils[J]. Journal of Contaminant Hydrology, 2003, 65:219-243.
    [56] 陈云敏.叶肖伟.张民强等多场耦合作用下重金属离子在黏土中的迁移性状试验研究[J].岩土工程学报,2005,12,27(2):1371-1375.
    [57] Xi Y H, Ren J, Hu Z X. Laboratory determination of diffusion and distribution coefficients of contaminants in clay soil[J]. 岩土工程学报, 2006,28(3):97-402.
    [58] Du Y J, Liu S Y, Hayash S. Geoenvironmental assessment of Ariake clay for its potential use as a landfill barrier material[J]. 岩土工程学报, 2005,27(10):1215-1221.
    [59] 杨勇,苑国琪,张东.~(90)Sr、~(137)Cs在某种包气带土壤中的迁移研究[J].四川环境,2004,23(3):85-89.
    [60] 任理,毛萌.阿特拉津在饱和砂质壤土中非平衡运移的模拟[J].土壤学报,2003,7,40(4):529-537.
    [61] 李启彬,刘丹,杨立中.城市垃圾卫生填埋场防渗层的安全设计[J].西南交通大学学报,2003,2.38(1):64-69.
    [62] 祝万鹏,陈燕波,杨志华等.酚在饱水亚砂土层中迁移转化的研究[J].环境科学,1994,15(5):15-18.
    [63] 王亚男,王红旗,舒艳.含磷污水淋滤液条件下土壤中磷迁移转化模拟实验[J].环境科学学报,2001,11,21(6):737-741.
    [64] 崔凯,杨国伟,李兴斯等.基于同伦方法反演非饱和土中镉离子传输参数[J].力学与实践,2004,26:56-58.
    [65] 张伟,段保旭.孔隙含水介质的Pb分配系数[J].地质地球化学.2002,30(3):92-95.
    [66] 李铎,宋雪琳.天津市孔隙介质锰吸附迁移规律研究[J].辽宁工程技术大学学报,2005,2,24(1):35-37.
    [67] 王超,阮晓红,朱亮.污染物在非饱和土壤中迁移规律的试验研究[J].河海大学学报,1996,3,24(2):7-13.
    [68] Gillham R W, Robin M J L, Dytynyshyn D J, et al. Diffusion nonreactive and reactive solutes through fine-grained materials[J]. Canadian Geotechnical Journal, 1984,21:541-550.
    [69] Johnson G R, Gupta K, Putz D K, et al. The effect of local-scale physical heterogeneity and nonlinear, rate-limited sorption/desorption on contaminant in porous media[J]. Journal of Contaminant Hydrology, 2003, 64:35-58.
    [70] 何俊,施建勇,廖智强等.膨润土中离子扩散特征试验研究[J].岩土力学,2007,4,28(4):831-835.
    [71] 胡中雄,李向约,周建敏等.击实黏性土分子扩散系数的测定[J].岩土工程学报,1994,11,16(6):131-138.
    [72] 黄蔚.污染质在多孔黏土屏障内扩散的实验研究[J].自然灾害学报,2005,6,14(3):162-166.
    [73] 余开彪,胡斌,张挺.垃圾渗滤液在土体中扩散规律的模拟计算[J].岩石力学与工程学报,2004,6,23(11):1944-1948.
    [74] Koerner G R, Koerner R M. Long-term temperature monitoring of geomembranes at dry and wet landfill[J]. Geotextiles and Geomembranes, 2006,24:72-77.
    [75] Klein R, Baumann T, Kahapka E, et al. Temperature development in a modern municipal solid waste incineration(MSWI) bottom ash landfill with regard to sustainable waste management[J].Journal of Hazardous Materials B,2001,83:265-280.
    [76]Giannis A,Makripodis G,Simantiraki F,et al.Monitoring operational and leachate characteristics of an aerobic simulated landfill bioreactor[J].Waste Management,2007,6,24:1-9.
    [77]Lindstrom F T,Piver W T.Vertical transport and fate of low solubility chemicals in unsaturated soils[J].J.Hydrol,1985,82:93-141.
    [78]Bear J,Gilman A.Migration of salts in the unsaturated zone caused by heating[J].Transport in Porous Media 1995,19:139-156.
    [79]Nassar I N,Horton R.Water Transport in unsaturated,nonisothermal,salty soil:Ⅰ.Experimental results[J].Soil Sci.Soc.Am.J,1989,53:1323-1329.
    [80]Nassar I N,Horton R.Water transport in unsaturated,nonisothermal,salty soil:Ⅱ.Theoretical development[J].Soil Sci.Soc.Am.J,1989,53:1330-1337.
    [81]Nassar I N,Horton R.Simultaneous transfer of heat,water,and solute in porous media:Ⅰ.Theoretical development[J].Soil Sci.Soc.Am.J,1992,56:1350-1356.
    [82]Nassar I N,Horton R,Globus A M.Simultaneous transfer of heat,water,andsolute in porous media:Ⅱ.Experiment and analysis[J].Soil Sci.Soc.Am.J,1992,56:1357-1365.
    [83]Nassar I N,Globus A M,Horton R.Simultaneous soil heat,and water transfer[J].Soil Sci,1992,154:465-472.
    [84]Nassar I N,Horton R.Heat,Water,and solute transfer in unsaturated porous media:Ⅰ-Theory development and transport coefficient evaluation[J].Transport in Porous Media,1997,27:17-38.
    [85]Scanlon B R,Milly P C D.Water and heat fluxes in desert soils 2.Numerical simulations[J].Water Resour.Res.1994,30:721-733.
    [86]Nassar I N,Shafey H M,Horton R.Heat,water,and solute transfer in unsaturated porous media:Ⅱ-Compacted soil beneath plastic cover[J].Transport in Porous Media,1997,27:39-55.
    [87]Yang H,Zhao L,Zhang X,et al.Mathematical simulation on coupled flow,heat,and solute transport in slab continuous casting process[J].METALLURGICAL AND MATERIALS TRANSACTIONS B,1998,29B:1345-1356.
    [88]Mamou M,Vasseur P,Bilgen E.Multiple solutions for double-diffusive convection in a vertical porous enclosure[J].Int.J.Heat Mass Transfer,1995,38:1787-1798.
    [89]Mamou M.Stability analysis of thermosolutal convection in a vertical packed porous enclosure[J].Phys.Fluids,2002,14:4302-4314.
    [90]Kumar B V R,Shalini.Double-diffusive natural convection in a doubly stratified wavy porous enclosure[J].Appl.Math.Comput,2005,171:180-202.
    [91]Kumar B V R,Singh P,Bansod V J.Effect of thermal stratification on double-diffusive natural convection in a vertical porous enclosurefJ],Num.Heat Transfer,Part A,2002,41:421-447.
    [92]Bourich,M.,Hasnaoui,M.,Amahmid,A.:Double-diffusive natural convection in a porous enclosure partially heated from below and differentially salted.Int.J.Heat Fluid Flow,2004,25:1034-1046.
    [93]Liu D,Tang G F,Zhao F Y.Double diffusion in enclosure bounded by massive and volatilizing walls[A].The 6th International Conference for Enhanced Building Operations committee[C],Shenzhen,2006,11:6-8.
    [94]Liu D,Zhao F Y,Tang G F.Indoor heat and contaminant transport structures under different ventilation modes[A]. 2nd International Conference on Environmental Science and Technology (ICEST 2006)[C], Houston, Texas, 2006, 8:19-22.
    [95] Zhao F Y, Liu D, Tang G F. Free convection from one thermal and solute source in a confined porous medium[J]. Transp Porous Med, 2007.
    [96] Costa V A F. Double-diffusive natural convection in parallelogrammic enclosures filled with fluidsaturated porous media[J]. Int. J. Heat Mass Transfer, 2004,47:2699-2714.
    [97] Costa V A F. Unified streamline, heatline and massline methods for the visualization of two-dimensional heat andmass transfer in anisotropicmedia[J]. Int. J.Heat Mass Transfer , 2003,46:1309-1320.
    [98] Zhao F Y, Liu D, Tang G F. Application issues of the streamline, heatline and massline for conjugate heat and mass transfer[J]. Int. J. Heat Mass Transfer, 2007,50:320-334.
    [99] Zhao F Y, Liu D, Tang G F. Conjugate heat transfer in square enclosures[J]. Heat and Mass Transfer, 2006.
    [100] 蔡睿贤,张娜,刘蔚蔚.多孔介质中温度与浓度梯度耦合自然对流基本方程的代数显示解析解[J].自然科学进展,2003,8,13(8):889-892.
    [101] 李明春,田彦文,翟玉春.非热平衡多孔介质内反应与传热耦合过程[J].化工学报,2006,5,57(5):1079-1083.
    [102] 李锡夔,李荣涛,张雪珊等.高温下混凝土中热—湿—气—力学耦合过程数值分析[J].工程力学,2005,8,22(4):171-178.
    [103] 张玉军.核废料地址处置近场热—水—应力—迁移耦合二维有限元分析[J].岩土工程学报,2007,10,29(10):1553-1557.
    [104] Sokratov S A, Maeno N. Heat and mass transport in snow under a temperature gradient[A]. Proc. of the 3~(rd) International Conference on Snow Engineering[C], 1997:49-54.
    [105] Tuteja N K, Cunnane C. Modelling coupled transport of mass and energy into the snowpack-model development, validation and sensitivity analysis[J]. Journal of Hydrology, 1997, 195:232 -255.
    [106] Akan A O. Modeling enrichment of soluble pollutant s in snow covers[J]. Water, Air, and Soil Pollution, 1994, 73:225-234.
    [107] Harrington R, Bales R C. Modeling ionic solute transport in melting snow[J]. Water Resources Research, 1998,34 (7): 1727-1736.
    [108] 张玉军.考虑溶质浓度变化的热—水—应力耦合模型[J].焦作大学学报,2006,7,3:53-55.
    [109] 武文化,李锡夔.热—水力—力学—传质耦合过程模型及工程土障数值模拟[J].岩土工程学报,2003,3,25(2):188-192.
    [110] 刘炳成,李庆领.土壤中水、热、盐耦合运移的数值模拟[J].华中科技大学学报(自然科学版),2006,1,34(1):14-16.
    [111] 胡和平,雷志栋,杨诗秀.土壤冻结时水热迁移规律的数值模拟[J].水利学报,1992,(7):1-8.
    [112] 黄兴法,曾德超.冻结期土壤水盐热运动规律的数值模拟[J].北京农业工程大学学报,1993,13(3):43-50.
    [113] 岳汉森.土壤在冻融过程中水—热—盐耦合运移数学模型之初探[J].冰川冻土,1994,16(4):308-311.
    [114] 李春友,任理,李保国.秸秆覆盖条件下土壤水热盐耦合运动规律模拟研究进展[J].水科学进展,2000,11(3):325-332.
    [115] 梁卫国,徐素国,李志萍等.盐矿水溶开采固—液—热—传质耦合数学模型与数值模拟[J].自然科学进展,2004,8,14(8):945-949.
    [116] Sparks D L. Environmental Soil Chemisty[M]. San Diego, California, USA, Academic Press:2003.
    [117] Zou W H, Han R P, Chen Z Z. Kinetic study of adsorption of Cu(Ⅱ) and Pb(Ⅱ) from aqueous solutions using manganese oxide coated zeolite in batch mode[J]. Colloids and Surface A: physicochem Eng Aspects, 2006, 279:238-246.
    [118] Kumar MNVR.A review of chitin and chitosan applications[J]. React Funct Polym, 2000,46:1-27.
    [119] Chiou M S, Li H Y. Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads[J]. Chemosphere, 2003, 50:1095-1105.
    [120] Ho Y S, Mckay G. Comparative sorption kinetic studies of dye and aromatics compounds onto fly ash[J]. J Environ Sci Health A, 1999, 34:1179-204.
    [121] Juang R S, Wu F C, Tseng R L. Mechanism of adsorption of dyes and phenols from water using activated carbons prepared from plum kemels[J]. J Colloid Interf Sci, 2000, 227:437-444.
    [122] Chang M Y, Juang R S. Equilibrium and kinetic studies an the adsorption of surfactant, organic acids and dyes from water onto natural biopolymers[J]. Colloids and Surfaces A: Physicochem Eng Aspects,2005, 269:35-46.
    [123] 宋来洲,董春艳,张尊举等,聚丙烯酸—聚偏氟乙烯树脂对Cu(Ⅱ)的吸附性能[J].中国环境学2007.28(3):322-326.
    [124] Bierck B R, Chang W C. Innovative solutions for contaminated waste site management[A]. Proc, Water Environ. Fed. Specialty Conf[C],Alexandra, Va: 1994, 461-472.
    [125] Gullick R W, Weber W J. Evaluation of shale and organoclays as sorbent additives for low-permeability soil containment barriers[J]. Environ. Sci. Technol, 2001, 35:1523-1530.
    [126] Myrand D, Gillham R W, Sudicky E A. Diffusion of volatile organic compounds in natural clay deposits: laboratory tests[J]. J Contam Hydrol, 1992, 10:159-177.
    [127] Wambold W S. Large- and small-scale laboratory tests for VOC transport through compacted clay[D]. MS. thesis, University of Wisconsin at Madsion.
    [128] Shackelford C D, Redmond P L. Solute breakthrough curves for processed kaolin at low rates[J]. J. Geotech Eng, 1993,121:17-32.
    [129] Maraqa M A, Zhao X, Wallace R B, et al. Retardation coefficients of nonionic compounds determined by batch and column techniques[J]. Soil Sci Soc Am J, 1998, 62:142-152.
    [130] O'Connor D J, Connolly J P. The effect of concentration of adsorbing solids on the partition coefficient [J]. Water Res, 1980, 14:1517-1523.
    [131] Voice T C, Rice C P, Weber W J Jr. Effect of solids concentration an the sorptive partitioning of hydrophobic pollutants in aquatic system[J]. Environ Sci Technol, 1983,17:513-518.
    [132] Kim J Y, Shin M C, Park J Ret al. Effect of soil solids concentration in batch tests on the partition coefficients of organic pollutants in landfill liner-soil materials[J]. J Mater Cycles Waste Manag, 2003,5:55-62.
    [133] Southen J. M, Rowe R. K. Thermally Induced Desiccation of Geosynthetic Clay Liners in Landfill Basal Liner Applications[A]. Proceedings of the Sessions of the Geo-Frontiers 2005 Congress[C],Austin, Texas, USA, 2005:24-26.
    [134] 何振立.污染及有益元素的土壤化学平衡[M].中国环境科学出版社:1998.
    [135] Shen YunHwei. Preparation of organobentonite using nonionic surfactants[J]. Chemosphere, 2001, 44(10):989-995.
    [136] Daniel D E, Wu Y K. Compacted clay liners and covers for arid sites[J]. J Geotech Eng ASCE, 1993, 119(2):223-237.
    [137] Tay Y Y, Stewart D I, Cousens T W. Shrinkage and desiccation cracking in bentonite-sand landfill liners. Eng Geol, 2001,60:263-274.
    [138] Taha M R, Kabir M H. Tropical residual soil as compacted soil liners[J]. Environmental Geology, 2005,47:375-381.
    [139] 朱伟,李明东,张春雷等.砂土EPS颗粒混合轻质土的最优击实含水率[J].岩土工程学报,2009,1,31(1):21-25.
    [140] 张金利,栾茂田,杨庆.非饱和土层中污染物运移过程的数值分析[J].岩土工程学报,2006,2,28(2):221-224.
    [141] Cooke A J, Rowe R K, Rittmann B E. Modelling species fate and porous media effects for landfill leachate flow[J]. Can. Geotech. J. 2005,42:1116-1132.
    [142] 薛禹群.地下水动力学[M].地质出版社:1997.
    [143] 王铁行,刘自成,卢靖.黄土导热系数和比热容的实验研究[J].岩土力学,2007,4,28(4):655-658.
    [144] 郜建英.利用热脉冲.TDR技术确定饱和土壤中水流通量及其与热弥散和溶质弥散度的关系:(博士学位论文).北京:中国农业大学,2005.
    [145] 苏天明,刘彤,李晓昭等.南京地区土体热物理性质测试与分析[J].岩石力学与工程学报,2006,6,25(6):1278-1283.
    [146] 庄迎春,谢康和,孙友宏.砂土混合材料导热性能的试验研究[J].岩土力学,2005,2,26(2):261-269.
    [147] 王玲玲,邹耀仁,隋洪起.对大连历年汛期起止日期的客观判定[J].气象,2000,26(3):12-15.
    [148] 薛强,徐应明,刘建军.降雨入渗对填埋场土壤水分动力学行为的影响[J].辽宁工程技术大学学报,2004,10,23(5):618-620.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700