生物转盘法同步亚硝酸型脱氮研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量的生活污水、含氮工业废水和农业施用的氮肥随径流进入江河、湖泊和水库等,对环境造成的污染日益严重,这是因为氮是引起水体的富营养化的主要因素。去除水中的氮是水污染防治界研究的重点和热点之一。脱氮的方法主要有物理化学法和生物法,其中生物处理法由于成本较低、工艺简单、投资和运行费用低,无二次污染而被认为是一种最佳的处理方法。因而如何经济有效地运用生物学方法去除水体中的氮是目前国内外水资源控制领域研究的方向。生物法处理污水已经过了两个重要的阶段:上世纪70年代以前的常规活性污泥法和随后发展的改进活性污泥法。常规活性污泥法主要是降解污水中的以BOD为主的有机物,因此仍然有大量的氮、磷进入水体;改进活性污泥法将脱氮、除磷作为开发的重点。
     传统脱氮理论认为,生物脱氮是由两个过程组成的:硝化反应是由硝化细菌在好氧条件下完成的;反硝化反应是由反硝化菌在缺氧条件下完成的。然而近几年来,人们在生物脱氮研究中发现了许多超出传统认识的现象,如硝化过程不仅由自养菌完成,异养菌也可以参与硝化;反硝化不只在厌氧条件下进行,某些细菌也可在好氧条件下进行反硝化;在微生物学研究方面认为,许多好氧反硝化菌同时也是异养硝化菌(如Thiosphaera pantotropha),并能把NH_4~+-N氧化成NO_3~--N后直接进行反硝化反应。这些新观念打破了传统理论中硝化细菌和反硝化细菌的严格界限,认为严格的好氧自养硝化细菌在氧限制条件下能利用NO_2~--N作为电子受体而进行反硝化。这些现象的发现和实验事实为水处理工作者提供了新的理论和研究思路。同步硝化反硝化(simultaneous nitrification and denitrification—SND)是一种具有挑战性的新概念、新技术,SND是指
    
    贵州师范大学硕士学位论文-
    在相同的操作条件下,硝化和反硝化可以在同一反应器中同时进行。由于
    SND将硝化作用和反硝化作用结合起来在同一个反应器中同时实现,从
    而有可能简化工艺流程,节省处理费用。由于硝化反应的产物可直接成
    为反硝化反应的底物,避免了培养过程中NOZ飞N的积累对硝化反应的抑
    制,加速了硝化反应的进程。因此,作为一种经济合理飞高效节能的废
    水处理技术,SND技术具有可持续性和广阔、良好的发展前景。一旦这
    种低能耗、低投入、高处理效率的工艺投入使用,将会更加有效地控制
    水体的富营养化。
     国内外研究者对SND的研究取得了大量的实验室研究成果,但对
    SND的概念、机理、发生的途径、影响因素、实现的条件以及在工程应
    用等方面的认识还不是很清楚。SND作为一种新的观点或者理论,仍然
    要做大量的研究工作来验证其理论正确性或实际应用的可行性。解决这
    些问题有助于该技术在实际工程中的应用。
     本课题立足于国内外生物脱氮技术研究的基础上,采用单级生物转
    盘(RBC)生物反应器,进行SND生物处理实验室小型试验。目前己经
    完成反应器的启动(即SND反应微生物的培养)、污泥的驯化工作,试
    验进入稳定运行阶段,并成功地实现了同步亚硝酸型脱氮。本试验研究
    了氨氮负荷、碳源等对同步硝化反硝化的影响;分析了NOZ~一形成的原
    因;运用化工中的连串反应理论推导硝化过程的动力学微分方程;推导
    有机物降解反应动力学模型。
     试验结果表明:
     在生物转盘中实现了亚硝酸盐的稳定积累和同步亚硝酸型脱氮,且
    通过同步亚硝酸型脱氮去除的氮量占总氮量的19%左右,这对于高浓度、
    低碳氮比废水具有显著的优越性;SND过程中△CODe泌△IN在7~8,这
    
     贵州师范人学硕十学位论文-
    与传统脱氮理论法对碳源的需求相当。因而说,单从△CODC丫△,IN来看,
    SND并不是一个低碳源消耗的过程。适合于发生SND的碳源范围可能在
    240一80mgcoDc几。因而提出采用一次性投加氮源,分批加入碳源的运
    行方式。氨氮负荷及水力停留时间影响氨氮的去除效果。氨氮负荷越高,
    水力停留时间越短,出水氨氮越高,氨氮去除效果越低。碳源不仅影响
    缺氧反硝化,同时也影响好氧反硝化。且CODC州扎+一比对生物硝化产
    物的类型不存在明显的影响。
     本研究在实践和理论上的创新点主要有:实现了亚硝酸盐的长期、
    稳定的积累,提出了形成生物转盘系统中亚硝酸盐氮累积的条件;突破
    了传统生物脱氮理论的认识,进行了同步硝化反硝化(SND)生物脱氮新
    技术的研究;实现了经亚硝酸盐氮的同步硝化反硝化即同步亚硝酸型
    脱氮。
While plenty of wastewater has been drained into waters, ammonium contamination of water environment which is responsible for eutrophication is been fully aware of the gravity of the question. Removal nitrogen is the emphasis and one of the points of issues in the studies of water pollution. Among the nitrogen removal methods, such as physical methods, chemical methods and biological methods, biological denitrification is considered as a kind of the best treatments. At present, because it is the most efficient, lower investment, simple, no secondary pollution. How to remove nitrogen efficiently and reasonably is central issue wastewater treatment realm worldwide. There are two developmental stages for biological treatment. Before the 70's of the last century, the effluent contains a large amount of nitrogen, phosphorus with the conventional activated sludge method which mainly remove the organic pollutants of carbon BOD. After 20Th century 70's, some improved activated sludge methods which focus on nitrogen
    and phosphorus removing has been developed.
    According to the traditional denitrification theory, biological denitrification is made up of two pieces of process. One is nitrify by nitrifier under aerobic condition, the other is denitrify by denitrifier under anaerobic condition instead. But in recent years, some reseacher have found a lot of phenomena beyond the traditional realization in biological denitrification, such as nitrify process not only can be participated by autotrophic microorganism but also by heterotrophic microorganism. The denitrification process not merely go on under anaerobic, but also in aerobic condition by some bacteria. In
    
    
    
    microbiologic studies, aerobic denitrifier, also as heterotrophic nitrifier , can oxidize ammonium to nitrate, then react directly. Such new ideas break down barriers of nitrifiers and denitrifies, thinking that NO2--N can be utilize by aerobic autotrophic bacterium as electronic receptor under oxygen limiting conditions. Those discoveries and experiment facts suggested some new theories and ideas for the workers of wastewater treament. Simultaneous nitrification and denitrification-SND is a kind of new concept and technique with challenge. SND means that nitrification and denitrification can take place concurrently in one vessel at the same operation conditions. As SND combine with nitrify and denitrify together in the same reactor, thus technological process may simplify and reduce cost. Because the product of nitrification can react directly by nitrifier, thus it may avoid inhibition of nitrite accumulation for nitrification and increasing nitrifying amount. Therefor SND as a kind of economical, reasonable, efficient technique has a well-developing prospect. Once this kind of low energy consumption, high efficiency method come into operation, the eutrophication of the water body will be controlled more effectively.
    The domestic and international researchers have obtained many experimental results about SND. But the understanding is still not very clear about SND concept, mechanism, occurrence path, affecting factors, application method. As a new standpoint, we must do a flood of research work to verify its theory's accuracy and actual applied possibility, make further study and developing research. This contributes to apply the nitrogen removal technology to actual treatment. Solve this problem help SND technology
    
    
    application to the actual project.
    Based on the latest research foundation of domestic and abroad, SND have been studied by single stage rotation biological contactor (RBC) and carried out the reactor start-up, running and sludge domestication of the investigation successfully. The experiment goes forward into the steady circulating stage and has got SND via nitrite successfully. The experiment has been entered steady operation stage basically and realized SND via nitrite successively. In this thesis, the effects of ammonium load and CODc/NtV-N ratio of SND have been studied. In SND process, the author found the factors effecting nitrite accumula
引文
[1]郑兴灿,李亚新编著.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998
    [2]王晓霞.高含氮化纤废水生物处理技术研究.长安大学硕士学位论文,2001
    [3]章非娟.生物脱氮技术[M].中国环境科学出版社,1992
    [4]顾夏声.废水生物处理数学模型[M].清华大学出版社,1993
    [5]张希衡.废水厌氧生物处理工程[M].北京:中国环境科学出版社,1995
    [6]申东升,何若,刘宏远.生活垃圾填埋生物处理技术[M].化学工业出版社,2003
    [7]刘俊新,李伟光,王宝贞等.高浓度氨氮废水生物脱氮最佳运行条件控制[J].哈尔滨建筑科技大学学报,1995,28(5):69~74
    [8]李军,杨秀山.彭永臻.微生物与水处理工程[M].化学工业出版社,2002
    [9]Robertson L A, Van Neil E W J, et al. Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha [J]. Applied and Environmental Microbiology, 1988. 54(11): 2812~2818
    [10]Bernet N., Bizeau C., Moletta R.er al.. Study of physicochemical factors controlling nitrite build-up during heterotrophic denitrification[J]. Environ. Tech., 1995, 16:165~179
    [11]吕锡武,李峰,稻森悠平等.氨氮废水处理过程中的好氧反硝化[J].给水排水,2000,26(4):17~20
    [12]郑曼英,李丽桃,刑益和等.垃圾漫出液对填埋场周围水环境污染的研究[J].重庆环境科学,1998,20(3):17~20
    [13]周少奇,周吉林.生物脱氮新技术研究进展[J].环境污染治理技术与设备,2001,1(6):11~19
    [14]Broda E.. Two kinds of lithotrophs missing in nature [J]. Z. Allg. Microbiol., 1977, 17:491~493
    [15]Kuenen J. G., Robertson L. A.. Combined nitrification-denitrification process [J]. EMS Microbic. Rev., 1994, 15(2): 109~117
    [16]Mulder A. A. A., Vandegraaf L. A. et al.. Anaerobic ammonium oxidation discovered in a denitrification fluidized bed reactor[J]. FEMS Microbiol. Ecol., 1995, 16:177~183
    [17]Vandegraaf L.A., Mulder A.A.A. er al.. Anaerobic Oxidation of ammomium is a biologically mediated process [J]. Appl. Envir. Microbiol., 1995, 64(4): 1246~1251
    
    
    [18]Straous M. et al.. Ammonia removal from concentrated waste streams with the ANAMMOX process in different reactor configurations [J]. Water Res., 1997, 31: 1955~1962
    [19]Jetten M S.M., Strous M. et al.. The anaerobic oxidation of ammonium [J]. FEMS Microbiol. Rev., 1999, 22:421~437
    [20]郑平,胡宝兰.生物脱氮技术的研究进展[J].环境污染与防治,1997,19(4):25~28
    [21]郑平,胡宝兰,徐向阳等.厌氧氨氧化电子受体的研究[J].应用与环境生物学报,1998,4(1):74~76
    [22]郑平,冯孝善,Tetten M.S.M.,Kuenen J.G.厌氧氨氧化菌基质转化特性的研究[J].浙江农业大学学报.1997,23(4):409~413
    [23]郑平、冯孝善等.ANAMMOX流化床反应器性能的研究[J].环境科学学报,1998,18(4):367~372
    [24]周少奇.氨氮厌氧氧化的微生物反应机理[J].华南理工大学学报.2000,28(11):16~19
    [25]周少奇.方汉平.低COD/N-NH比废水的同时硝化反硝化生物处理策略[J].环境污染与防治,2002,22(1):18~21
    [26]Voets J. P et al.. Removal of nitrogen from highly nitrogenous wastewater[J]. TWPCF,1975.47: 394~398
    [27]Sutherson S.. Ganczatczyk J. J.. Inhibition of nitrite oxedation during nitrification: some observation [J]. Wat. Poll. Res. 1986, 21:257~266
    [28]Turk O.. Mavinic D. S.. Preliminary. assessment of a shortcut in nitrogen removal from wastewater [J]. Can. J. Cir. Eng., 1986(13): 600~605
    [29]耿艳楼,钱易,顾夏声.简捷硝化—反硝化过程处理焦化废水的研究[J].环境科学,1993,14(3):2~6
    [30]Masuda S, Watanable Y, Ishiguro M.. Bio-film properties and simultaneous nitrification and denitrification in aerobic rotating biological contactors [J]. Wat Sci Tech, 1991, 23(12): 1355~1363
    [31]Elisabeth V. Munch, Paul Lant et al.. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactor [J]. Wat Res, 1996, 30(2): 277~284
    [32]Bruce E. Rittmann, Wayne E. Langeland.. Simultaneous denitrification with nitrification in
    
    single-channel oxidation ditches [J]. JWPCF, 1995, 57(4): 300~308
    [33]Mervyn C Goronszy, Gunnar Demouiin., Mark Newland. Aerated nitrification in full-scale activated sludge facilities [J]. Wat.Sci.Tech., 1997, 35(10): 103~110
    [34]陈方荣.同步反硝化研究进展[J].铁道劳动安全卫生与环保,2002,29(5):219~220
    [35]李丛娜,吕锡武,稻森悠平.同步硝化反硝化脱氮研究[J].给水排水,2001,27(1):22~24
    [36]Pochana K, Keller J. Study of factors affection simultaneous nitrification and denitrifieation (SND) [J]. Wat Sci Tech, 1999, 39(6): 61~68
    [37]吕锡武,李峰,稻森悠平等,氨氮废水处理过程中的好氧反硝化研究[J].给水排水,2000,26(4):17~20
    [38]李峰,吕锡武.序批式反应器(SBR)处理氨氮废水的初步研究[J].江苏环境科技,1999,2:14~17
    [39]胡宇华,丁富新,范轶等.有机碳源对同时硝化/反硝化(SND)过程的影响[J].环境工程,2001,19(4):17~20
    [40]赵玲,张之源.复合SBR系统中同步硝化反硝化现象及其脱氮效果[J].工业用水与废水.2002,33(2):4~6
    [41]袁林江,彭党聪,王志盈.段程硝化—反硝化生物脱氮[J].中国给水排水.2000,16(2):29~31
    [42]Bruce E Rittmann, Wayne E Langeland. Simultaneous denitrification with nitrification in single channel oxidation ditches [J]. Journal WPCE 1985,7(4): 300~308
    [43]吕锡武.李丛娜,稻森悠平.溶解氧及活性污泥浓度对同步硝化反硝化的影响[J].城市环境与城市生态.2001,14(1):33~35
    [44]徐伟锋,孙力平,古建国等.DO对同步硝化反硝化影响及动力学[J].城市环境与城市生态,2003,16(1):8~10
    [45]冯叶成,王建龙,钱易等.同时硝化反硝化的试验研究[J].上海环境科学,2002,21(9):527~529
    [46]高廷耀,周增炎,朱晓君等.生物脱氮工艺中的同步硝化反硝化现象[J]..给水排水,1998(12):6~9
    [47]邹联沛,张立秋,王宝贞等.MBR中DO对同步硝化反硝化的影响[J].中国给水排水,2001,
    
    17(6):10~14
    [48]邹联沛,刘旭东,张立秋等.MBR中影响同步硝化反硝化的生态因子[J].环境科学,2001,22(4):51~55
    [49]吕锡武,稻森悠平,水落元之.同步硝化反硝化脱氮及处理过程N_2O的控制研究[J].东南大学学报,2001,31(1):95~99
    [50]罗固源,杨红薇.NBIAS系统中的好氧反硝化[J].重庆环境科学,2001,23(1):44~49
    [51]冯叶成,王建龙.钱易等.同时硝化反硝化的试验研究[J].上海环境科学,2002,21(9):527~529
    [52]李锋,朱南文等.有氧情况下的同时硝化/反硝化的反应动力学模式[J].中国给水排水,19991,15(6):58~60
    [53]徐伟锋,孙力平,古建国等.DO对同步硝化反硝化影响及动力学[J].城市环境与城市生态.2003,16(1):8~10
    [54]周少奇.周吉林,范家明.同时硝化反硝化生物脱氮技术的进展[J].环境技术.2002,1(6):11~18
    [55]周少奇.生物脱氮的生化反应计量学关系式[J].华南理工大学学报.1998,26(3):124~126
    [56]胡大锵.同步硝化反硝化的总需氧量计算方法探讨[J].中国给水排水,2003.19(2):88~90
    [57]白晓慧.利用好氧颗粒污泥实现同步硝化反硝化[J].中国给水排,2002,28(2):26~28
    [58]杨麒,李小明等.好氧颗粒污泥实现同步硝化反硝化[J].城市环境与城市生态,2003,16(1):40~42
    [59]G.T.Daigger,H.X.Littteton(门晓欣).Orbal氧化沟同时硝化/反硝化及生物除磷的机理研究[J].中国给水排水,1999,15(3):1~7
    [60]Klangduen Pochana. Jurg Kelleretal. Model development for simultaneous nitrification and denitrification [J]. Wat. Sci. Tech., 1999, 39(1): 235~243
    [61]Gupta.S.K, Raja.S. Simultaneous nitrification-denitrification in a rotating biological contactor [J]. M. Environmental Technology, 1994, 15(2): 145~153
    [62]Hyungseok Yoo, Kyu-Hong. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification(SND) via nitrite in an intermittently aerated reactor [J]. Water Research, 1999, 33(1): 145~154
    
    
    [63] Watanabe.Y et al. Simultaneous Nitrification and Denitrification in Micro-Aerobic Biofilms[J], Wat. Sci. Tech., 1992, 26(3-4): 511~522
    [64] Hungseok Yoo. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification(SND) via nitrite in an intermitten-aetated reactor [J]. Wat. Sci. Tech., 1997, 36(12): 151~157
    [65] C. Collivignarelli and G. Bertanza. Simultaneous nitrification and denitrification processes in activated sludge plants: performance and applicability [J]. Wat.Sci.Tech., 1999, 40(4-5): 187~194
    [66] Zhao Hong W, Donald S. Mavinic.. Controlling Factors for Simultaneous Nitrification and Denitrification in a Two-Stage intermittent Aeration Process Treating Domestic Sewage [J]. Wat. Res. 1999. 33(4): 961~970
    [67] Chui P C. Performance of a partly aerated biofilter in the removal of nitrogen[J]. Wat Sci Tech. 1996. 34(2): 187~194
    [68] Helmer Christine et al. Simultaneous Nitrification/Denitrification in an aerobic biofilm system [J]. Wat Sci Yech. 1998, 37 (4-5): 183~187
    [69] Gorear Thomas J.. Production of N_2~- and NO by nitrifying Bacteria at reduced concentration for oxygen [J]. Appl. Environ. Microbio, 1980, 9:16~19
    [70] G. Bertanza. Simultaneous nitrification and denitrification process in extended aeration plants: pilot and real scale experiences[J]. Wat. Sci. Tech., 1997, 35(6): 53~61
    [71] Pochana K. Keller J. Lant P.Model development for simultaneous nitrification and denitrification[J]. Wat Sci Tech, 1999. 39(1): 235~243
    [72] Puznava N, Pwyraudeau M, Thornberg D.Simultaneous nitrification and denitrification in biofilters with real time aeration control [J]. Wat Sci Tech, 2001, 43(1): 269~276
    [73] 徐亚同.废水中氮磷的处理[M].华东师范大学出版社,1996
    [74] Voets J. P etal.. Removal of nitrogen from highly nitrogenous wastewater[J]. TWPCF, 1975, 47: 394~398
    [75] Sutherson S.. Ganczatczyk J.J.. Inhibition of nitrite oxedation during nitrification:sonme observation [J]. Wat Poll Res. 1986, 21:257~266
    [76] Rebertson L A, Kuenen J. G. Aerobic denitrification-old wine in new bottles? [J]. Antoniewan
    
    Leeuwenhoek. 1984, 50(5~6): 525~544
    [77]微波消解法测定CODcr说明书
    [78]水和废水监测分析方法[M].第三版.中国环境科学出版社,1989
    [79]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M].北京:中国建筑工业出版,2001
    [80]Mogens Henze.国家城市给水排水工程技术研究中心译.污水生物与化学处理技术[M],中国建筑工业出版社.2001
    [81]刘俊新.高浓度氨氮废水亚硝酸型与硝酸型脱氮的比较研究[J].工业用水于废水.2002.33(3):1~4
    [82]张小玲.生物膜内亚硝化过程及反硝化特性研究.西交建筑科技大学硕士学位论文,2001:39
    [83]刘雨.杨学富.陈光洁.富底物条件下活性污泥微生物合成-能量代谢理论[J].北京轻工业学院学报,1998,16(3):26~31
    [84]C.P.Leslie Grady,Glen T.Daigger,Henry C.Lim.张锡辉.刘勇弟译.废水生物处理[M].第二版,改变和扩充[美],化学工业出版社,2003
    [85]张自杰.排水工程(下册).中国建筑工业出版社,1999
    [86]须藤隆一.水环境净化及废水处理微生物学[M].北京:中国建筑工业出版社,1988
    [87]张自杰.周帆.活性污泥生物学与反应动力学[M].北京:中国环境科学出版社,1989
    [88]高俊发.活性污泥法动力学模式的分析评价Ⅴ.西南给水排水,1999,1:23~26
    [89]许保玖.龙腾锐.当代给水与废水处理原理[M].北京:高等教育出版社,2000
    [90] Cadeville B., Ngwen K.M.Kinetics and modeling of aerobic and anaerobic film growth V. Wat Sci.Technot.. 1992.22: 149~170
    [91]摩根·汉斯.活性污泥1号模型与活性污泥3号模型[M].国家城市给水排水工程技术研究中心编译.1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700