受氯代苯酚污染水体沉积物厌氧生物修复的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
厌氧生物修复技术在修复受氯代有机物污染土壤、沉积物方面具有优势。本文基于培养具有还原脱氯能力的厌氧颗粒污泥,和解析氯代芳烃(五氯酚、对氯苯胺)在沉积物中吸附/解吸特征基础上,较深入地研究了厌氧Slurry工艺修复模拟PCP污染沉积物的性能,并考察了不同操作条件对修复速率的影响。结果表明:
     (1) 在EGSB反应器中分别采用含PCP和CA有机废水(反应器1#)、含CA有机废水(反应器2#)两种培养方式,研究厌氧颗粒污泥的培养历程。试验结果表明:①反应器1#连续运行180d,初始80d反应器运行稳定;当PCP和CA分别提升至30mg·L~(-1)和10mg·L~(-1),微生物明显受到毒性抑制;在进水中仅含PCP情况下,20d后反应器运行恢复正常;180d进水PCP浓度升至60 mg·L~(-1),去除率稳定在99%。②反应器2#进水为含CA的有机废水,连续运行410天。初始260d,进水CA浓度增至100 mg·L~(-1),去除率达到60%,微生物未出现明显抑制情况;260~394d期间,缓慢提升CA负荷,然而CA去除率仅提升约5%;394~410d,提高反应器水力停留时间(HRT)至36h,CA去除率迅速升至80%以上。③两个反应器的污泥颗粒化进程大致可分为三个阶段:污泥适应期、颗粒污泥出现期和颗粒污泥成长期。两反应器培养出的颗粒污泥外表呈灰白色和深灰色,其粒径主要分布在1.0~2.0mm和1.5~2.5mm范围,结构较致密,颗粒内部含有丰富的产甲烷丝状菌和短杆菌。
     (2) 五氯酚(PCP、有机酸)、对氯苯胺(CA、有机碱)在水体沉积物中的快速吸附、解吸试验表明:①在高浓度条件下,两种污染物的快速吸附过程均符合Parabolic扩散模型,初始浓度-吸附量曲线符合Freudlich方程,说明扩散为吸附过程的限速步骤,而且分配作用在吸附中占主导地位。而相比极性更强CA而言,PCP的分配作用更突出。②调节pH能够促进PCP、CA的解吸。其中碱性条件下(pH:9),PCP的解吸率达到14.0%;在酸性条件下(pH:4),CA解吸率达到最大值17.5%,这反映解吸率与污染物的离子化程度呈正相关;添加有机溶剂和表面活性剂明显促进了PCP和CA的解吸,其中乙二醇-丁醚和乙醇分别对PCP和CA的增溶效果最好,解吸率分别达到33.5%和24.9%,同时反映沉积物中PCP/CA的不可逆吸附量约占70%,生物可利用性低。
     (3) 考察了分批条件下,厌氧泥浆工艺的修复性能及不同操作条件(投加厌氧脱氯颗粒污泥、共基质、有机溶剂和表面活性剂)对修复速率的影响。试验结果表明:①厌氧脱氯颗粒污泥的强化作用明显。对照处理(无颗粒污泥情况),31d固液两相PCP降解速率为4.370
     mg·kg~(-1)·d~(-1);投加10g·kg~(-1)和30g·kg~(-1)颗粒污泥时,两相PCP降解速率分别达到7.972mg·kg~(-1)·d~(-1)
    
     受氯代苯酚污染水体沉积物厌氧生物修复的应用基础研究
    和8.oo4mgkg一’·d一’,并且随着污泥投加量的增加,沉积物中PcP快速降解时间提前;②共基
    质对修复速率的影响比较复杂。在修复初期,共基质的投加促进了PCP的降解;而在中后期,
    修复速率反而下降,并且投加的共基质越多,修复速率越慢;③乙醇的投加提高了固、液两
    相PCP的降解,同时起到了增溶和共代谢基质的作用;非离子表面活性剂乙二醇一丁醚对 PO户
    的解吸效果优于乙醇,但抑制了PCP的进一步降解。
     (4)研究了机械搅拌泥浆反应器和曝氮泥浆反应器半连续运行的修复性能,两反应器均
    采用两批进料方式,即在第一批修复完成后,替换150gPCP污染沉积物进行补料修复。试验
    结果表明:①在一次进料阶段,两类反应器中的固液两相PCP去除率分别达到95 .9~%.5%
    和97.3一98.1%,其两相PCP降解曲线均符合一级动力学方程,相关系数为0.9463一0.9886;
    ②在二次补料阶段,两类反应器的修复性能均明显下降,反映修复过程中,厌氧脱氯菌活性
    逐渐降低;③比较分批修复和反应器修复发现,初始8d,机械搅拌反应器和曝氮反应器的修
    复速率分别达到27.775mgkg’‘·“和23.728 mgkg一‘·d一‘,修复性能优于分批试验(20.o1P/
    mgkg‘’·d‘’);④比较两类反应器性能发现,一次进料阶段的前8d,机械搅拌反应器的两相PcP
    降解速率快于氮气搅拌反应器;而在二次补料阶段(14一25d),曝氮反应器的两相PCP降解
    速率(6 .139 mgkg一’·d一’)快于机械搅拌反应器(3 .738 mgkg一’·d-’)。
Anaerobic bioremediation is deemed appropriate for treating PCOCs-contaminated soil and sediment. This paper studied the bioremediation performance of anaerobic slurry processes, which was dependent on development of anaerobic dechloroination granular sludge and realizing PCOCs (PCP and p-CA ) adsorption and desorption in aquatic sediment. Moreover, effects of different treatments on bioremediation were invesgrated. The following results were achieved:
    (1) Two manners applied to develop anaerobic granules were studied in EGSB reactors with organic wasterwater contained PCP and CA(reacter 1#), and organic wasterwater contained CA(reacter 2#). The results showed that (1)development of anaerobic granules lasted 180d in reactor 1#, which were stable in initial 80d. But when PCP and CA concentrations of influent increased to 30mgL-1 and 10mg L-1, anaerobic biomass were inhibited by PCP and CA toxicity. In condition of adding sole-PCP, activity of the biomass recovered after 20d. When PCP influent concentration increased to 60 mg L-1, the degradation rates were stable at 99%. (2)development of anaerobic granules lasted 410d in reactor 2#. In initial 260d, CA influent concentration increased to 100 mg L-1, and the degradation rates were stable at 60%. During 260~394d, increasing CA influent concentration slowly resulted in only 5% increasing of the CA degradation rates. When HRT were increased to 36h in 394~410d, the degradation rates rise to 80%. (3)Development
    processes of anaerobic granules in reactor 1# and 2# experienced three phases ,adaptive period,appearing period and growing period. Color of the granules developed in two reactors were grey and deep grey. The diameter of the granules ranged from 1.0~2.0mm and 1.5~2.5mm. The struction of these granules were dense. Microscopic examination revealed that the granules contained Methanothrix-like bacteria and Methanobacterium bacteria as prevalent species.
    (2) The fast adsorption and desorption of petrachlorophenol and chloroaniline to the aquatic sediment were studied. The result indicated that (1)the adsorption in high concentration of PCP and CA were followed by the Parabolic-diffusion model, the relation between the initial concentration and adsorption obeyed the Freudlich isotherms, and the adsorption of PCP and CA was dominated by partition and diffusion. Contrasting CA with more polarity, partition of PCP was more prominent. (2)Effect of pH , organic solvents (ethanol, acetonitrile) and surfactant (EGME) on desorption of PCP/CA in sediment were also investigated. Adjustment of pH enhanced desorption of PCP/CA. In alkaline condition(pH:9), PCP desorption rates arised to 14%, and 17.5%CA desorbed in acidic condition; Organic solvents and surfactant were required to enhance PCP and CA desorption. EGME and ethanol were best condidates to enhance desorption of PCP and CA, and
    
    
    33.5%PCP and 24.9%CA were desorbed from sediment. Meanwhile, 70%PCP/CA belonged to irreversible adsorption, which indexed PCP/CA in sediment had a poor bioavailability.
    (3) Performance of anaerobic slurry technics was investigated in anaerobic static batch processes. To enhance bioremediation, different treatments(e.g., inoculated with ADGS, co-substrate, ethanol and surfactants addition) were used here. Results showed (1) inoculation of anaerobic dechlorination granule sludge(ADGS) enhanced the bioremediation performance. The total PCP degradation rates in solid-liquid two-phase reached 7.972mgkg-1 d-1 and 8.004 mg kg-1 d-1 when inoculated ADGS content increased to 10g kg-1 and 30g kg-1, compared to 4.370mg kg-1 d-1 in absence of ADGS in 31 days;(2)The effect of co-substance was complicated. In initial period of bioremediation, co-substance stimulated the PCP degradation, while the degradation rates turned to slow in later time. And the higher co-substance concentration was, the slower the degradation rates would be;(3)Enhancement of the desorption and degradation of PCP by ethanol was found, and non-ionic surfactant EGME also stimulated
     the desorption,
引文
1.王帅杰等.土壤/沉积物中多氯代有机物的生物降解及其在污染修复中的应用[J].环境污染治理技术与设备,2000,1(6):1-6;
    2.朱利中,杨坤.对硝基苯酚在沉积物上的吸附特性[J].环境化学,2001,20(5):449~453;
    3.朱利中,徐霞,胡松等.西湖底泥对水中苯胺、苯酚的吸附性能及机理[J].环境科学,2000,21(2):28~31;
    4.巩宗强等.污染土壤的淋洗法修复研究进展[J].环境污染治理技术与设备,2002,3(7):45-50;
    5.汪小丰,周静珍,王承韶.气相色谱法测定土壤和底泥中的五氯酚[J].中国血吸虫防治杂志,1994,6(5):295-298;
    6.李小明等.固定化厌氧微生物处理含五氯酚废水[J].湖南大学学报.2001,28(2):95-99;
    7.李咏梅,王郁.多环芳烃在天然水体中的自净机理研究—沉积物对多环芳烃的吸附过程模拟[J].中国环境科学,1997,17(3):208~211;
    8.李震宇,朱荫湄.西湖沉积物有机质特征[J].环境化学,1999,18(2):122~126;
    9.巩宗强,李培军,郭书海.多环芳烃污染土壤的生物泥浆法修复[J].环境科学,2001,22(5):112~116;
    10.陈勇生等.对氯酚的生物降解及其污染土壤的生物修复探索[J].环境化学,1999,18(1):82-86;
    11.陈勇生等,氯代芳香化合物的微生物降解研究[J].环境科学进展.1997,5(2):17-24;
    12.陈华林,陈英旭.沉积物对菲和五氯酚的吸附性能[J].环境化学,2003,22(2):159~165;
    13.沈东升,徐向阳,冯孝善.厌氧处理含氯酚废水的颗粒污泥形成过程研究[J].环境科学学报,1997,17(1):60-67;
    14.沈东升,徐向阳,冯孝善.五氯酚(PCP)对厌氧颗粒污泥生物活性的影响[J].浙江农业大学学报,1996,22(1):19-24;
    15.邹世春,张展霞,盛国英.超声波-蒸汽蒸馏萃取技术富集沉积物样品中的氯代农药和多氯联苯[J].环境科学,1996,17(4):67-70;
    16.张丛,夏立江等.污染土壤生物修复技术[M].北京:中国环境科学出版社,2000年11月;
    17.张锡辉.高等环境化学与微生物学原理及应用[M].北京:化学工业出版社,2001年4月;
    18.张锡辉,Baipai R.氯代有机溶剂共降解研究进展[J].环境污染防治技术与设备,2000,1(1):72-83;
    19.杨艳红,傅家谟,盛国英.水中多氯代芳香化合物(PCAs)在自然沉积物及活性污泥中的吸附特征[J].中国环境科学,1997,17(3):203-207;
    20.周岩梅,刘瑞霞,汤鸿宵.溶解有机质在土壤及沉积物吸附多环芳烃类有机污染物过程中的作用研究[J].环境科学学报,2003,23(2):216~223;
    21.周洪波,陈坚.五氯苯酚对厌氧颗粒污泥微生物的毒性作用[J].中南工业大学学报,2002,33(5):469-472;
    22.赵保卫.朱利中.微乳液对难溶有机物的增溶作用及影响因素.中国环境科学,2003,23(5):493-497;
    23.郭晓磊,胡勇有,高孔荣.厌氧颗粒污泥及其形成机理[J].给水排水,2000,26(1):33-38;
    24.徐向阳,冯孝善.PCP污染土壤厌氧生物修复研究初探[J].应用生态学报,2001,12(3):439-442;
    25.徐向阳,冯孝善.工业有机废水为共基质培养降解五氯酚厌氧颗粒污泥[J].环境科学,2001,23(3)108-112;
    26.徐向阳,杜宇峰,郑平等.降解五氯酚(PCP)厌氧生物反应器起动过程的特性研究[J].太
    
    阳能学报,1999,20(4):408-416;
    27.贾青竹.吸附态多氯有机物萃取分析方法研究[J].天津轻工业学院学报,2000,39(4):3-6;
    28.陶颖,周集体,王竞等.有机污染土壤生物修复的生物反应器技术研究进展[J].生态学杂志,2002,21(4):46-61;
    29.瞿福平等.氯代芳香化合物的生物降解性研究进展[J].环境科学,1997,18:74-78;
    30. Abraham W R, Nogales B and Golyshin PN et al. Polychlorinated biphenyl-degrading microbial communities in soils and sediments[J]. Current Opinion in Microbiology, 2002, 5(3): 246-253;
    31. Adrian L, Szewzyk U, Weckd J et al. Bacterial dehalorespiration with cholrinated benzenes[J]. Nature, 2000, 408:580-583;
    32. Antizar-Ladislao B and Galil N L. Simulation of bioremediation of chlorophenols in a sandy aquifer[J]. Water Research, 2003, 37:238-244;
    33. Banergi S, Wei S M and Bajpai R K. Pentach-lorophenol interactions with soil[J]. Water, Air, and Soil Pollution. 1993, 69:149~163;
    34. Banerjee D K et al. Monitoring the biological treatment of anthracene contaminated soil in a rotary drum bioreactor[J]. Appl. Microbiol. Biotechnol, 1995, 43(3):521-528;
    35. Barbeau C et al. Bioremediation of pentachlorophenol-contaminated soil by bioaugmentation using activated soil[J]. Appl Microbiol Biotechnol, 1997, 48:745-752;
    36. Beaudet R, Levesque M J, Villemur R et al. Anaerobic biodegradation of pentachlorophenol in a contaminated soil inoculated with a methanogenic consortium or with Desulfitobacterium frappieri strain PCP-1[J]. Appl Microbiol Biotechnol, 1998, 50:135-141;
    37. Bedard D L. Biochemical transformation of polychorinated biphenyls[J]. In Biotechnology and Biodegradation, 1990, pp:369-388.
    38. Bedard D L et al. Brominated biphenyls can stimulate reductive dechlorination of endogenous Aroclor 1260 in methanogenic sediment slurries[A]. In Abstracts of the General Meeting of the American Society for Microbiology. New Orleans. Loaisiana 1992, Q-26:p339;
    39. Boopathy R. Isolation and characterization of a phenol degradeing, sulfate-reducing bacterium form swine manure[J]. Bioresource Technology, 1995, 54 : 29-33;
    40. Boopathy R et al. Bioremediation of explosives contaminated soil[J]. International Biodeterioration & Biodegradation, 2000, 46:29-36;
    41. Boopathy R. Factors limiting bioremediation technologyes[J]. Bioresource Technology, 2000, 74:63-67;
    42. Boopathy R. Use of anaerobic soil slurry reactors for the removal of petroleum hydrocarbons in soil[J]. International Biodeterioration and Biodegradation, 2003, 52(3): 161-166;
    43. Bruns-nagel D et al. Anaerobic/aerobic composting of 2,4,6-Tfinitrotolune contaminated soil in a reactor system[J]. Environ. Sci. Technol, 1997, 32 (11): 1676-1679;
    44. Bunge M, Adrian L, Kraus A et al. Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium[J]. Nature, 2003, 421 (23):357-360;
    45. Chan E-C, Kuo J, Lin H-P et al. Stimulation of n-alkane conversion to dicarboxylic acid by organic solvent-and detergent-treated microbes[J]. Appl Microbiol Biotechnol, 1991, 34:772-779;
    46. Chang B V et al. Effect of a dichlorophenol-adapted consortium the dechlorination of 2,4,6-trichlorophenol and pentachlorophenol in soil[J]. Chemosphere, 1996, 33(2):303-311;
    47. Chang B V, Liu W G and Yuan SY. Microbial dechlorination of three PCB congeners in river sediment[J]. Chemosphere, 2001, 45:849-856;
    48. Chatterjee D K et al. Plasmids in the biogredation of PCBs and chlorobenzoates[J]. Mol Gen Genet, 1982, 188:279-285;
    49. Chen S T, Berthouex P M, Ascem A M. Use of an anaerobic sludge digestion process to treat pentachlorophenol-(PCP-)contaminated soil[J]. Journal of Environmental Engineering, 2003, 129(12):1112-1119;
    50. Cho Y C et al. Enhancement of microbial PCB dechlorination by chlorobenzoates,
    
    chlorophenols and chlorobenzenes[J]. FEMS Microbiology Ecology, 2002, 42: 51-58;
    51. Chu W and Kwan C Y. Remediation of contaminated soil by a solvent/surfactant system[J]. Chemosphere, 2003, 53:9-15;
    52. Cort T L, Song M S and Bielefeldt A R. Nonionic surfactant effects on pentachlorophenol biodegradation[J]. Water Research, 2002, 36:1253-1261;
    53. Crawford R L and Crawford D L. Bioremediation: Principles and Applications[M]. New York: Cambridge University Press, 1996;
    54. Cdstodoulatos C, Mohiuddin M. Generalized models for prediction of pentachlorophenol adsorption by natural soils[J]. Water Environmental Research, 1996, 68(3):370~378;
    55. Deweerd K A, Suflita J M. Anaerobic aryl reductive dehalogenation of halobenzoates by cell extracts of "desulfomonile tiedjei" [J]. Applied and Environmental Microbiology, 1990:2999-3005;
    56. Dimitre G et al. High-rate biodegradation of pentachlorophenol by biofilm developed in the immobilized soil bioreactor[J]. Environ. Sci. Technol. 1998, 32: 994-997;
    57. Dlofing J and Harrison B K. Gibbs free energy of formation of halogenated aromatic compounds and their potential role as electron acceptors in anaerobic environments[J]. Environ. Sci. Technol, 1992, 26 : 2213-2218;
    58. Fava F, DiGioia D, Marchetti L et al. Randomly methylated beta-cyclodextrins(RAMEB) enhance the aerobic biodegradation of polychlorinated biphenyl in aged-contaminated soil[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 44(1-4):417-421;
    59. Ferguson J F and Pietari J M. Anaerobic transformations and bioremediation of chlorinated solvents[J]. Environmental Pollution, 2000, 107(2):209-215;
    60. Freedman D L and Gossett J M. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethyleneunder methanogenic condiations. Applied and Environmental methanogenic condiations[J]. Applied and Environmental Microbiology, 1989:2144-2151;
    61. Fuller M E, Kruczek J, Schuster R L et al. Bioslurry treatment for soils contaminated with very high concentrations of 2,4,6-trinitrophenylmethyli -ntramine (tetryl) [J]. Journal of Hazardous Materials, 2003, 100:245-257;
    62. Haggblom M M. Reductive dechlorination of halogenated phenols by a sulfate-reducing consortium[J]. FEMS Microbiology Ecology, 1998, 26: 35-41;
    63. Hansen L D, Nestler C, Ringelberg D et al. Extend bioremediation of PAH/PCP contaminated soils from the POPILE wood treatment facility[J]. Chemosphere, 2004, 54:1481-1493;
    64. Hardness M R, McDermott J B et al. In situ stimulation of aerobic PCB biodegradation in Hudon River sediments[J]. Science, 1991, 259:503-507;
    65. Holliger, Christof G, Wohlfarth G et al. Reductive dechlorination in the energy metabolism of anaerobic bacteda[J]. FEMS Microbiology Reviews, 1999, (22) : 383-398;
    66. Huang W L, Young T M, Schlautman M A et al. A distributed reactivity model for sorption by soils and sediments. General isotherm nonlinearity and applicability of the dual reactive domain model[J]. Environ Sci Technol. 1997, 31(6):1703~1710;
    67. Hulshoff Pol L W, Castro Lopes S I, Lettingna G et al. Anaerobic sludge granulation[J]. Wat. Res., 2004, 38: 1376-1389;
    68. Jaspers C J, Ewbank G, McCarthy A J et al. Successive rapid reductive dehalogenation and mineralization of pentachlorophenol by the indigenous microflora of farmyard manure compost[J]. Joural of Applied Microbiology, 2002, 92(1): 127-133;
    69. Jurgen S et al. Using of a rotary drum reactor with grinding beads for microbial soil remediation[J]. Chem. Eng. Technol, 1998, 6:479-483;
    70. Kao C M, Chen S C, Wu M J. Evaluation of TCDD biodegradability under different redox conditions[J]. Chemosphere, 2003, 44:1447-1454;
    71. Karlson et al. Biodegradation of PCP in soil. In Bioremediation of Recalcitrant Organics. eds. Hinchee R E, Hoeppel R E & Anderson D B, 1995, pp. 83-92;
    
    
    72. Ken K C, Lo S L. Desorption kinetics of PCP-contaminated soil:effect of temperature[J]. Water Research, 2002, 36:284~290;
    73. Kennes C, Wu W-M, Bhatnagar L et al. Anaerobic dechlorination and mineralization of pentachlorophenol and 2,4,6-trichlorophenol by methanogenic pentachlorophenol-degrading granules[J]. Appl Microbiol Biotechnol, 1996, 44:801-806;
    74. Khodadoust A P, Suidan M T, Acheson C M et al. Remediation of soils contaminated with wood preserving wastes:crosscurrent and countercurrent solvent washing[J]. Journal of Hazardous Materials, 1999, 64:167-179;
    75. Khodadoust A P, Suidan M T, Sorial G A. et al. Desorption of pentachlorophenol from soils using mixed solvents[J]. Environ. Sci. Technol, 1999, 33:4483-4491;
    76. Kim J & Rhee G Y. Population dynamics of polychlorinated biphenyl-dechlorinating microorganisms in contaminated sediments[J]. Applied and Environmental Microbilolgy, 1997, 63(5):1771-1776;
    77. Kim J & Rhee G Y. Reductive dechorination of polychlorinated biphenyls as affected by sediment characteristics[J]. Chemosphere, 2001, 44:1413-1420;
    78. Kong I-C. Metal toxicity on the dechlorinatin of monochlorophenols in fresh and acclimated anaerobic sediment slurries[J]. Wat. Sci. Tech. 1998, 38(7): 143-150;
    79. Koran K M, Suidan M T, Khodadoust A P et al. Effectiveness of an anaerobic granular activated carbon fluidized-bed bioreactor to treat soil wash fluids: a proposed strategy for remediating PCP/PAH contaminated soils[J]. Wat. Res, 2001, 35(10):2363-2370;
    80. Laine M M, Haario H and orgensen K S. Microbial functional activity during composting of chlorophenol-contaminated sawmill soil[J]. Journal of Microbiological Methods, 1997, 30:21-32;
    81. Lange C. Molecular analysis of pentachlorophenol degradation by Flavobacterium sp strain ATCC 39723[D], 1994: Ph. D. Dissertation, Univerisity of Idaho;
    82. Levin M A&Gealt M A. Biotreatment of Industrial and Hazardous Waste[M]. New York; Mc Graw -Hill;
    83. Li K Y, Annamalai S N, Hopper J R. Rate controlling model for bioremediation of oil contaminated soil[J]. Environmental Progress, 1993, 12:257-261;
    84. Liu S M, Kuo C E, Hsu T B. Reductive dechlorination of Chlorophenols and Pentachlorophenol in anoxic estuarine sediments[J]. Chemosphere, 1996, 32(7):1287-1300;
    85. Loffler F E, Sanford R A, Tiedje J M. Initial characterization of a reductive dehalogenase from Desulfitobacterium chlororespirans Co23 [J]. Applied and Environmental Microbiology, 1996, 62 (10):3809-3813;
    86. Lorenz A & Helmut G. Microbial transformation of chlorinated benzenes under anaerobic conditions. Research in Microbiology, 2002, 153(3):131-137;
    87. Lyytikainen M et al. Environmental fate and bioavailability of wood preservatives in freshwater sediments near an old sawmill site[J]. Chemosphere, 2001, 44:341-350;
    88. McAllister K A, Lee H and Trevors J T. Microbial degradation of pentachlorophenol[J]. Biodegra- dation, 1996, 7: 1-40;
    89. Metcalf & Eddy. Wastewater Engineering: Treatment, Disposal and Reuse[M]. New York: McGraw-Hill. 1991, 1334;
    90. Mikesell M D & Boyd S A. Enhancement of pentachlorophenol degradation in soil through induced anaerobiosis and bioaugmentation with anaerobic sewage sludge[J]. Environmental Science and Technology, 1988, 22, 1411-1414;
    91. Mulligan C N, Farzad E. Remediation with surfactant foam of PCP-contaminated soil[J]. Engineering Geology, 2003, 70:269-279;
    92. Natarajan M R, Wu W-M, Wang H. Dechlorination of spiked PCBs in lake sediment by anaerobic microbial granules[J]. War. Res, 1998, 32(10):3013-3020;
    93. Nobbs D et al. Contaminated site investigation and remediation of chlorinated aromatic compounds[J]. Separation and Purification Technology, 2003, 31:37-40;
    
    
    94. O'reilly K T & Crawford R L. Degradation of pentachlorophenol by polyurethane immobilized Flavobacterium cells[J]. Appl Environ Microbiol, 1989, 55:2113-2118;
    95. Parker S K & Bielefeldt A R. Aqueous chemistry and interactive effects on non-ionic surfactant and pentachlorophenol sorption to soil[J]. Wat. Res., 2003, 37:4663-4672;
    96. Perkins et al. Effects of electron donors and inhihbitors on reductive dechlorination of 2,4,6-trichlorophenol[J]. Water Research, 1994, 28:2101-2107;
    97. Praeger T H et al. Remediation of PCB-containing sediments using surface water diversion "Dry Excavation": A Case Study[J]. Wat. Sci. Tech, 1996, 33 (6) :239-245;
    98. Prakash S M & Gupta S K. Biodegradation of tetrachloroethylene in upflow anaerobic sludgeblanket reactor[J]. Bioresource Technology, 2000, 72: 47-54;
    99. Quarmby J, Forster C F. An examination of the structure of UASB granules[J]. Wat. Res., 1995, 29 (11):2449;
    100. Rulkens W H, Tichy R and Grotenhuis J T C. Remediation of polluted soil and sediment: perspectives and failures[J]. Wat. Sci. Tech, 1998, 37(8):27-35;
    101. Scheibenbogen K, Zytner R G, Lee H et al. Enhanced removal of selected hydrocarbons from soil by Pseudomonas aeruginosa UG2 biosurfactans and some chemical surfactants[J]. Journal of Chemical Technology and Biotechnology, 1994, 59:53-59;
    102. Schmidt J E & Ahring B R. Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors[J]. Biotechnology and Biongineering, 1996, 49:229;
    103. Seech A G et al. On-site/ex situ bioremediation of industrial soils containing chlorinated phenols and polycyclic aromatic hydrocarbons. In Bioremedintion of Chlorinated and Polycyclic Aromatic Hydrocarbon Compounds[A]. eds Hinchee R E, Leeson A, Semprini L et al, 1994, pp:451-455;
    104. Susarla S, Masunaga S and Yonezawa Y. Reductive dechlorination pathways of chloro organics under anaearobic conditions[J]. Wat. Sci. Tech, 1996, 34(5):489-494;
    105. Taktakovsky B, Hawari J, Guiot SR. Enhanced dechlorination of aroclor 1242 in an anaerobic continuous bioreactor[J]. Wat. Res, 1999, 34(1):85-92;
    106. Tartakovsky B, Manuel M F, Beaumier D et al. Enhanced selection of an anaerobic pentachlorophenol degrading consortium[J]. Biotechnol Bioeng, 2001, 72:476-483;
    107. Todd L C, Song M S, Angela R B. Nonionic surfactant effects on pentachlorophenol biodegradation[J]. Water Research, 2002, 36:1253-1261;
    108. Warner K A, Gilmour C C, Capone D G. Reductive dechlorination of 2,4-dichlorophenol and related microbial processes under limiting and non-limiting sulfate concentration in anaerobic mid -Chesapeak Bay sediments[J]. FEMS Microbilolgy Ecology, 2002, 40:159-165;
    109. Williams & William A. Stimulation and enrichment of two microbial polychlorinated biphenyl reductive dechlorination activities[J]. Chemosphere, 1997, 34(3): 655-669;
    110. Wu W-M, Bhatnagar L, Zeikus G Performance of anaerobic granules for degradation of pentachlorophenol[J]. Applied and Environmental Microbiology, 1993, 59(2):389-397;
    111. Yuan S Y, Su C J and Chang B V. Microbial dechlorination of hexachlorobenzene in anaerobic sewage sludge[J]. Chemosphere, 1999, 38(5):1015-1023;
    112. You C N & Liu J C. Desorptive behavior of chlorophenols in contaminated soils[J]. Wat. Sci. Tech. 1996, 33 (6): 263~270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700