三峡工程电站汛期日调节对上游通航水流条件的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据三峡工程初步设计,三峡电站只在枯水季进行日调节。初步设计过程中,对于枯
    水季日调节非恒定流对航行条件的影响进行过大量研究和分析工作,重点在三峡大坝与葛
    洲坝水利枢纽之间的 38km 河道。随着国民经济的迅速发展,为了充分发挥三峡工程的综合
    效益,要求电站在汛期进行日调节,为电力市场提供高质量的电能。三峡水库枯水季水位
    175m,汛期水位 145m,汛期日调节在上游产生的非恒定流运动比枯水期剧烈。为了三峡工
    程航运安全,2002~2003 年利用 1:100 三峡库区水工模型,进行了三峡工程运行至 50+4 年
    和 70+6 年淤积地形条件下的电站汛期日调节对上游通航水流条件影响的物理模型试验。
     研究表明:电站机组开启在库区形成负波,水体流出引航道,口门区横流向右;电站
    机组关闭在库区形成正波,水体流入引航道,口门区横流向左。负波或正波波高以及口门
    区横向流速随调节流量增加而增加,与起始流量及电站机组开关时间(不大于 6min)关系
    不大。靠船墩局部比降与调节流量和调节时间有关,与起始流量关系不大。在日调节最大
    调节流量条件下,上游引航道的通航控制条件是口门区右侧航线的横流和船闸与升船机前
    的波高均超出三峡通航标准要求。通过试验,建立了船闸前波高及口门处最大横流与电站
    调节流量的关系,据此可分析给定的日调节调度曲线可能出现的水流条件,也可以根据通
    航标准提出航行对日调节的限制条件。当调节流量一定,断面形状对水位变幅起主要作用。
    导航隔流堤开口可以降低日调节过程中引航道内的波高。电站机组分批错开运行可以有效
    的减小口门区横向流速。双闸灌水与电站关闭(或甩负荷)同时进行为最不利运转工况。
    初步的数学模型计算分析表明,随着淤积年份增加,日调节通航水流条件逐渐变差。
     通过模型进口消波方法的研究进一步验证了日调节正波负波的运动机理。通过改变模
    型进口流量,可以消减日调节波动在进口的反射,从而可提高试验效率和精度,并为今后
    更为完善的库区日调节模型试验打下了基础。
The research on influence of peaking operation of TGP hydropower station in flood period on the
    upstream navigation conditions.
    According to TGP preliminary design, the TGP power station will be regulated during the dry
    seasons only. There are many researches and analyses on the influence of peaking flow to the
    navigational conditions, and it is focused on the 38km river between the three Gorges project and
    Gezhouba project. With the rapid development of national economy, the power station should be
    regulated during flood period daily in order to supply high quality electric energy for the market.
    Water level of three Gorges reservoir is 175m at dry reason and 145m in flood period. Unsteady
    flow movement upper formed by daily peaking operation is more violent in flood period than dry
    reason. For the shipping safety of Three Gorges Project, a physical model (1:100) experiment
    has been implemented from 2002 to 2003.The physical model is to evaluate the daily peaking
    influence on upper flow conditions for navigation and it is supposed that the Three Gorges
    Project have been operated 50+4 years and 70+6 years under aggrading conditions.
    The research shows that, when power station unit opened negative wave is formed in reservoir
    and water discharge from channel and former cross current at the entrance area; when power
    station closed, phenomenon of water current is exactly the opposite. The amplitude of wave and
    cross current at entrance area is increasing with regulated discharge increasing, which almost
    have nothing to do with initial discharge and regulated time (not more than 6min) of power
    station unit on-off. Berthing dolphin local slope is related to regulated discharge and regulated
    time, but there are no relationships with initial discharge. Under the condition that the daily
    regulation discharge is maximal, the restriction for navigation of upstream approach channel is
    the cross flow at entrance area right route and the wave amplitude behind ship-lift surpass TGP
    navigation standards. By means of the experiments, the relationships between the amplitude of
    lock fore-wave, maximal cross current at entrance area and regulated flow of power station have
    been set up. Depend on this, we can analyze any possible flow condition in given daily regulated
    curve and can bring forward limiting conditions of navigation on daily regulated according to
    navigation standards. When regulated discharge is fixed, amplitude of water level is response
    with section shape. Uncork guiding dividing duke can decrease the wave height in approach
    channel during daily regulated. Power station units batch-stagger operating can markedly
    decrease cross flow velocity at entrance area. The most disadvantageous operating mode is that
    twin lock watering and closing power station (or swing load) are operating at the same time.
    Initial numerical model calculation and analyse indicated that with the silting years increasing,
    daily regulated flow condition for navigation gradually become more disadvantageous.
    The mobility mechanism of positive and negative wave has been proved further by means of the
    research of way of model inlet wave absorption of the reservoir. Wave reflection at inlet of daily
    regulation is reduced by changing of discharge of inlet, then improved efficiency accurate of the
    experiment, and founded the basis of improving experiment of daily regulation in reservoir.
引文
参考文献
    1“七五”国家重点科技攻关,编号 75-16-01,三峡工程泥沙和航运关键技术研究成果
     汇编,交通部三峡工程航运办公室,991.6
    2 鲁军、袁达夫等,长江三峡水利枢纽电站提高调峰能力研究报告,水利部长江水利委
    员会,2000.6
    3 丁毅、鲁军、等,三峡电站日调节模拟计算,水利部长江水利委员会,2000.6
    4 孙尔雨、杨文俊、等,三峡电站汛期调峰对航运的影响实体模型初步试验研究报告,
     水利部长江水利委员会,2000.6
    5 杜宗伟等、舒荣龙、等,三峡电站汛期调峰对两坝间通航条件影响试验研究报告,重
     庆西南水运工程科学研究所,2000.12
    6 孟祥玮、李焱、等,三峡工程水库综合调度非恒定流通航水流条件试验报告[R],交通
     部天津水运工程科学研究所 2000.10。
    7 唐银安、吴学良,白龙江碧口水电站下泄不稳定流延程变化及其对下游航道的影响,
     《水运工程》,1983(2)
    8 饶冠生、孙尔雨、等,水电站下游河道中不稳定流的问题研究,长江科学院,1987.9
    9 唐兆华,从融江看水电站不均匀泄流对下游航道的影响,水运工程,1981.5
    10 吴时强、王煌,水电站非正常运行下库区涌浪数值模拟,《水利水运科学研究》1999.4
    11 中华人民共和国交通部,通航建筑物水力学模拟技术规程,JTJ/T235-2003
    12 三峡水利枢纽通航建筑物“全包”正向取水方案坝区泥沙淤积和通航水流条件试验研
     究总报告[R],水利部、交通部、电力工业部,南京水利科学研究院河港研究所 2000.7
    13 中华人民共和国交通部,船闸总体设计规范,JTJ305—2001
    14 交通部三峡工程航运领导小组办公室,三峡工程通航标准,北京 1992。
    15 中华人民共和国国家标准 GBJ 139—90 内河通航标准。
    16 杜国仁、王秉哲、等,三峡工程枢纽泄洪及船闸灌泄水对通航水流条件的影响及改善
     措施试验研究[R],交通部天津水运工程科学研究所 2001.11。
     17 船闸灌水时引航道中的波浪[R], Hans-Werner Partenscky著P.A.S.C.E.Journal
     100
    
    
    参考文献
     of Waterways and Harbors Division Volume86 No.ww1 MarcH 1960 Part1.水利部、
     交通部、电力工业部,南京水利科学研究院宗幕伟、须清华译,杨孟藩校。
    18 中华人民共和国水利部,水工(专题)模型试验规程,SL156~165-95,1995-07-21。
    19 中华人民共和国水利部,水工(常规)模型试验规程,SL156-95,1995-07-21。
    20 中华人民共和国交通部,船闸输水系统设计规范,JTJ306—2001。
    21 闵宇翔“三峡电站日调节对航运的影响”水运工程 2002 年 5 月 总 340 期 P28~31。
    22 三峡水利枢纽通航建筑物口门区及其连接段的通航水流条件试验研究报告[R],
    交通部天津水运工程科学研究所 2001.11。
    23 孟祥玮等,Labview 自动控制与库区日调节模型进口消波,《水道港口》2003.2
    24 陈炳和. 计算机控制系统基础[M]1 北京:航空航天大学出版社,20011
    25 曹承志. 微型计算机控制新技术[M]1 北京:机械工业出版社,20011
    26 陶方华,等. 新型 PID 控制及其应用[M]1 北京:机械工业出版社,20011
    27 杨乐平,等 1Labview 程序设计与应用[M]1 北京:电子工业出版社,20011
    28 水利电力部,水利动能设计手册.治涝分册[M].北京:水利电力出版社 1988 年 4 月。
    29 郑邦民等,洪水水力学[M].武汉:湖北科学技术出版社 2000 年 5 月
    30 周雪漪,计算水力学[M].北京:清华大学出版社 1995 年 9 月
    31 曹祖德等,水动力泥沙数值模拟[M].天津:天津大学出版社 1994 年 11 月
    32 谭维炎,计算浅水动力学[M].北京:清华大学出版社 1998 年 10 月
    33 Reservoir-induced hydrological changes in the Ebro River basin (NE Spain)
    Ramon J. Batallaa,*, Carlos M. Go′mezb, G. Mathias Kondolfc
    34 Modeling Navigation Conditions at Lock Approaches by Richard L. Stockstill
    ERDC/CHL CHETN-IX-6 December 2001 U.S, Army Corps of Engineers
    35 Hydraulic model study of Bahmanshir navigation locks ,M.Shafai-Bajestan
    1,A.Shirdeli2
    36 Sediment Deposition Pattern and Flow Conditions in the Three Gorges Reservo
    ir: A PhysicalModel Study WANG Xingkui , SHAO Xue jun , L IDa nxun Departmen t
    of Hydraul ic and Hydropower Eng ineer ing, Ts inghua Un ivers ity, Be ij ing
    100084, China
     101
    
    
    参考文献
    37 REAL-TIME MODELING FOR NAVIGATION AND HYDROPOWER IN THE RIVER MOSEL,By Thomas
    Ackermann,1 Daniel P. Loucks,2 Dirk Schwanenberg,3 and Michael Detering4
    38 Model Test on Hydraulics and Navigationfor Qingju Hydroelectric Project,
    JialingRiver,Xujin Zhang, Shiqiang Zhao, Dewei Mu, Renzhong Zhang Poster
    Session (poster2), 31.08.1998, 15:00 - 15:30
    39 Implementation and Verification of a One-Dimensional, Unsteady-Flow Model for
    Spring Brook near Warrenville, Illinois,By Mary J. Turner, Anthony P. Pulokas,
    andAudrey L. Ishii
    40 Computational Fluid Dynamics The Basics with Applications,John D.Anderson Jr

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700