小型离心模型泵非定常流动试验研究及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微小型泵因其特殊的尺寸范围逐渐开始受到人们的关注,并显现出其良好的应用前景,特别是用于医疗设备的微小型泵,由于它可以挽救心脏病人的生命,而被众多学者大量研究。内部流动决定了微小型泵的外部性能,正确的把握泵内的流动特征是研究微小型泵流动的关键。本文以离心式血液泵的模型泵作为对象来进行泵内流动的研究,本研究也为今后更进一步的设计优化研究打下一个坚实的基础。
     本文采用内部流动试验和数值模拟方法来开展相关研究。搭建了适合测量泵内流动的离心式模型泵试验台,并利用折射率匹配溶液和激光诱导荧光技术对固定转速工况下泵内的流动状态进行了PIV测量,得到了测量区域的速度及相关应力的分布规律。为了得到更为完整的泵内流动信息,使用SST k-ω湍流模型和DES湍流模拟方法对泵内三维全流道进行了定常和非定常流动数值模拟得到了模型泵能量性能和内部流动的计算结果。通过对比试验结果证明非定常数值方法可以较为准确模拟泵内的流动状态。分析结果表明,小流量工况下存在“固定失速”等流动不稳定现象,而设计流量和大流量工况流动相对稳定。叶轮壁面处切应力的最大值出现在叶片头部,且叶轮壁面切应力随着流量的增大是逐渐增大的。
     如何在叶轮泵上产生搏动流来帮助人体健康的恢复亦成为心脏泵研究的一个热点。本文使用周期性改变叶轮转速来实现流量、扬程的搏动输出,并对此进行了试验和数值研究。试验得到了周期性变转速工况下泵的能量性能,证明模型泵在周期性变转速工况下可以产生满足设计要求的搏动流。同时,试验还得到了周期性变转速工况下四个测量点的内部流动测量结果,并分析了测量区域的应力状态。通过自编UDFs程序在Fluent程序基础上增加体积力源项和转速调整宏来完成周期性变转速工况下的泵的能量性能及内部流动数值模拟。结果显示,泵内壁面的切应力最大值的变化与转速变化一致。蜗壳和叶轮内静压的最大值的变化规律与转速的变化规律一致,但转速的变化对于吸入管内的静压没有太大的影响。
Miniature pump has attracted more and more attention due to its special varyingsizes as well as its promising future for application. Particularly, the miniature pumpused for medical equipments are studied widely since its role in saving cardiac’s life.The performances of miniature pump is determined by its internal flow, therefore thekey to research on miniature pump lies in the internal flow pattern of the pump. Thisthesis focuses on the internal flow of a centrifugal model pump, which also provides afundamental work for advanced research about optimizing design in future.
     Both experimental measurement and numerical simulation are engaged in thiswork. A centrifugal model pump test rig is built in order to conduct PIV measurement.The test, involving the technology of index match and fluorescent, is for acquiringflow pattern in a fixed rotational speed, the velocity and stress distribution of the flowfield are thus obtained. In order to get more information about internal flow, SST k-ωturbulence model and DES method are applied to simulate3D whole passage flow.The external characteristic and internal flow pattern of the model pump are calculated.According to comparison with experimental data, the unsteady simulation is provedto be relatively accurate in predicting the flow status in the centrifugal model pump.And results show that unsteady flow phenomenon such as “stationary stall” wouldemerge at small flowrate working condition while the flow is stable in conditions ofdesigned and large flowrate working conditions. Maximum wall shear stress nearimpeller wall appears to be at the head of a blade, and the value would increase withthe rise of the pump discharge.
     Another hotspot in the field of blood pump research is how pulse flow could begenerated in the impeller pump to help patients in recuperation. In this thesis, amethod of changing rotational speed of impeller periodically as the pulsation workingcondition is developed to realize pulse output of both discharge and head, which isstudied through experiment and numerical computation. The performance of thepump in pulsation working condition is obtained, indicating that the model pump could produce desired pulse flow in such condition. Furthermore, flow patterns atfour testing points in pulsation working condition are achieved, in addition withanalysis of stress in testing region. After that, by adding a source term of volumeforce as well as rotational speed adjustment macro and a User Defined Functions(UDFs) program is developed based on the software FLUENT to calculate theinternal flow of the pump in pulsation working condition. Results show that changesof maximum shear stress on inner wall of a pump go with changes of speed.Moreover, the maximum value of static pressure in the volute change in a same waywith speed, but speed changes have no significant impact on the static pressure in thepump intake.
引文
[1]胡敏,周兆英,李勇等.微小型单杆螺旋泵.机械设计与研究.1997,29-30.
    [2] Odell G M and Kovasznay L S G. A new type of water channel with density stratification. J.Fluid Mech.1971,50:535-543.
    [3] Hello M and Coutanceau M. Cellular Stokes flow induced by rotation of a cylinder in aclosed channel. J. Fluid Mech.1992,236:557-577.
    [4] Kang C S and Jun C H. Steady flow induced by a rotating cylinder in a rectangular tank.Proc. First Triennial International Symposium on Fluid Control and Measurement.1986,657-662.
    [5] Kovalenko V M, Bychkov N M, and Kisel G A, et al. Flow over rotating and nonrotatingcircular cylinders situated over a flat plate. Part I: Flow over rotating cylinders. FluidMechanics, Soviet Research.1985,14:52-69.
    [6] Liang W J and Liou J A. Flow around a rotating cylinder near a plane boundary. J. ChineseInstitute Eng.1995,18:35-50.
    [7] Sen M, Wajerski D, and Gad-el-Hak M. A novel pump for MEMS applications. J. FluidsEng.1996,118:624-627.
    [8]李金伟.微小型粘性泵的内部流动基础研究[硕士学位论文].北京:清华大学热能工程系,2005.
    [9] Tsutahara M and Kimura T. An application of the Weis-Fogh mechanism to shippropulsion. J. Fluids Eng.1987,109:107-113.
    [10]杨帆.微小型泵内部流动的LBM模拟与试验研究[博士学位论文].北京:清华大学热能工程系,2005.
    [11] Yang Fan, Liu Shuhong, Tang XL, et al. Numerical study on transverse-axis viscous pumpand hydropulser mechanism. International Journal of nonlinear sciences and numericalsimulation.2006,7(3):263-268.
    [12] Rafferty EH, Kletschka HD, Wynyard M, Lckin JT, Smith LV, Cheathem B. Artificial heartII—Application of nonpulsatile radially increasing pressure gradient pumping principle.Minn Med1968;52:191.
    [13] Bramm G, Novak P, Olsen DB. A free floating body as a rotor of a centrifugal pump forLVAD or TAH. Proc Europ Soc Artif Organs1981;8:441-5.
    [14] Olsen DB, Bramm G. Blood pump with a magnetically suspended impeller. Trans Am SocArtif Intern Organs1985;31:79-83.
    [15] Wampler RK, Moise JC, Frazier OH, Olsen DB. In vivo evaluation of a peripheral vascularaccess axial flow blood pump. Trans Am Soc Artif Intern Organs1988;34:450.
    [16] Monties JR, Mesana T, Havlik P, Trinkl J, Demunck JL, Candelon B. Another way ofpumping blood with a rotary but noncentrifugal pump for an artificial heart. ASAIO Trans1990;36(3):258-60.
    [17] Sakuma I, Takatani S, Nosé Y. Development of a motor driven sealless centrifugal bloodpump. Proc Int Workshop Rotary Blood Pumps1991;48-53.
    [18] Fossum TW, Morley D, Benkowski R, Tayama E, Olsen DB, Burns G, Miller MW, Franks J,Matinez E, Carroll G, Edwards J, Vinnerqvist A, Lynch B, Stein F, Noon Gp, DeBakey ME.Chronic survival of calves implanted with the DeBakey ventricular assist device. ArtifOrgans1999;23(8):802-6.
    [19] Allaire PE, Wood HG, Awad RS, Olsen DB. Blood flow in a continuous flow ventricularassist device. Artif Organs1999;23(8):769-73.
    [20] Hiltion EF, Allaire PR, Wei N, Baloh MJ, Bearnson G, Olsen DB, Jhamwolkar P. Testcontroller design, implementation, and performance for a magnetic suspension continuousflow ventricular assist device. Artif Organs1999;23(8):792-6.
    [21] Baloh MJ, Allaire PE, Hiltion EF, Wei N, Olsen DB, Bearnson GB, Khanwilkar PS.Characterization of a magnetic bearing system and fluid properies for a continuous flowventricular assist device. Artif Organs1999;23(8);692-6.
    [22]钱坤喜,费青,马巧妹.叶轮血泵与转子泵的溶血比较[J].医疗器械,1987,11(1):31-33.
    [23]钱坤喜,茹伟民,曾培.一种新颖的永磁轴承及其在叶轮全人工心脏设计中的应用.机械设计与研究,2003,19(3):46–47.
    [24]赵春章,张锡文,白净.可植入式微型轴流血泵流场的数值模拟.机械工程学报,2005,41(7):19-23.
    [25]陈建中,张锡文,赵春章,白净.微型轴流血泵溶血的数值模拟.北京生物医学工程.2007,26(2):117-128.
    [26] O. Akin and D. Rockwell (1994). Flow structure in a radial flow pumping system usinghigh-image-density Particle Image Velocimetry. J. Fluids Engng.,116,538-544.
    [27] K. Eisele, Z. Zhang, and M. Casey (1997). Flow analysis in a pump diffuser-Part1: LDAand PTV measurements of the unsteady flow. J. of Turbomachinery,119,968-977.
    [28] R. Dong, S. Chu, and J. Katz (1992a). Quantitative visualization of the flow within thevolute of a centrifugal pump. Part A: Technique. J. Fluids Engng.,114,390-395.
    [29] R. Dong, S. Chu, and J. Katz (1992b). Quantitative visualization of the flow within thevolute of a centrifugal pump. Part B: Results and analysis. J. Fluids Engng.,114,396-403.
    [30] D. Eckardt (1976). Detailed flow investigations within a high-speed centrifugal compressorimpeller. J. Fluids Engng.,390-402,1976.
    [31]杨华,刘超,汤方平.离心泵有盖叶轮内部流场的PIV测量.农业机械学报.2003,3(34):27-29.
    [32] Araki, K., Taenaka, Y., Masuzawa, T.,Inoue, K., Nakatani, T., Kinoshota, M., Akagi, H.,Baba, Y., Sakaki, M., Anai, H., and Takano, H.,1993,“A Flow visualization Study ofCentrifugal Blood Pumps Developed for Long-Term Usage,” Artif. Organs17s5d, pp.307–312.
    [33] Ng, B. T. H., Chan, W. K., Yu, S. C. M., and Li, H. D.,2000,“Experimental andComputational Studies of the Relative Flow Field in a Centrifugal Blood Pump,” Crit.Rev. Biomed. Eng.28s1-2d, pp.119–125.
    [34] Rose, M. L. J., Mackay, T. G., and Wheatley, D. J.,2000,“Evaluation of Four BloodPump Geometries: Fluorescent Particle Flow Visualisation Technique,” Med. Eng. Phys.22s3d, pp.201–214.
    [35] Apel, J., Neudel, F., and Reul, H.,2001,“Computational Fluid Dynamics andExperimental Validation of a Microaxial Blood Pump,” ASAIO J.47, pp.552–558.
    [36] Asztalos, B., Yamane, T., and Nishida, M.,1999,“Flow Visualization Analysis forEvaluation of Shear and Recirculation in a New Closed-Type, Monopivot CentrifugalPump,” Artif. Organs23s10d, pp.939–946.
    [37] Baldwin, J., Tarbell, J., Deutsch, S., and Geselowitz, D.,1989,“Mean Flow VelocityPatterns Within a Ventricular Assist Device,” ASAIO Trans.35s3d, pp.429–433.
    [38] Nishida, M., Yamane, T., Tsukamoto, Y., Konishi, Y., Ito, K., Masuzawa, T., Tsukiya, T.,and Taenaka, Y.,2000,“Effect of Washout Hole Geometry on a Centrifugal BloodPump,” ASAIO J.46s2d, pp.172–178.
    [39] Day SW, McDaniel, J. C., Wood, H. G., Allaire, P. E., Landrot, N., and Curtas, A.,2001,“Particle Image Velocimetry Measurements of Blood Velocity in a Continuous FlowVentricular Assist Device,” ASAIO J.47s4d, pp.406–411.
    [40] Day SW, McDaniel JC, Wood HG, et al. A prototype heartquest ventriclar assist device forparticle image velocimetry measurements. Artif Organs2002;26:1002–5.
    [41] Steck Ewald, Felsch Karl-Otto. Calculating3D laminar flow through centrifugal pumps.Proceedings of the Sixth International Conference, Swansea, Wales, July11-15,1989. Vol6: p1321-1331.
    [42] Qingping Shi, RJ Ribando. Numerical Simulations of Viscous Rotating Flows Using a NewPressure-based Method[J]. Computers Fluids,1992,21(4).
    [43]许洪元,吴玉林,戴江,宋益群,王琳.离心式叶轮中低浓度固体颗粒分布的研究.工程热物理学报[J].1994, Vol15(3):288-291.
    [44] Jay B. Anderson, Houston G. Wood, Paul E. Allaire, G. Bearnson, P. Khanwilkar.Computational Flow Study of the Continuous Flow Ventricular Assist Device, PrototypeNumber3Blood Pump. Artificial Organs.2000,24(5):377-385.
    [45] Shoichiro Nakamura, Keiji Yano. Computational Simulation of Flows in an EntireCentrifugal Heart Pump.1999,23(6):572-575.
    [46] Yuki Tsukamoto, Kazuyuki Ito, et. al. Computational Fluid Dynamics Analysis of aCentrifugal Blood Pump with Washout Holes. Artificial Organs.2000,24(8):648-652.
    [47] Daniel Legendre, Pedro Antunes, Eduardo Bock, Aron Andrade, et. al. Computational FluidDynamics Investigation of a Centrifugal Blood Pump. Artificial Organs,2008: p342-348.
    [48] H.Tsukamoto, H.Ohashi, Transient characteristics of a centrifugal pump during startingperiod[J]. ASME Journal of Fluid Engineering,1982,104(1):6-13.
    [49] P.J.Lefebvre, W.P. Barker, Centrifugal pump performance during transient operation[J].ASME Journal of Fluid Engineering,1995,117(2):123-128.
    [50] A Thanapandi, R. Prasad, Centrifugal pump transient characteristics and analysis using themethod of characteristics[J]. Int. J.Mech. Sci.1995,37(1):77-89.
    [51]吴大转,焦磊,王乐勤.不同启动加速度下离心泵瞬态水力性能的试验研究.工程热物理学报,2008,29(1):62-64.
    [52]吴大转,焦磊,王乐勤.离心泵启动过程瞬态空化特性的试验研究.工程热物理学报,2008,29(10):1682-1684.
    [53]蒋志刚.离心泵基于稳态性能试验的起动特性预测.水泵技术,2004,3:27-30.
    [54]朱文灿.绕线式异步电动机托动离心水泵起动过程的计算.湖南水利,1994,3:26-31.
    [55]于永海,徐辉.电磁调速水泵机组起动过程的数值模拟.排灌机械,2000,18(3):26-28.
    [56]王乐勤,李志峰,戴维平,吴大转.离心泵启动过程内部瞬态流动的二维数值模拟.工程热物理学报,2008,29(8):1319-1322.
    [57]夏朋辉.离心消防稳压泵的水力设计及启动性能研究[博士学位论文].北京:清华大学热能工程系,2006.
    [58] Jesús Herreros, Enrique J. Berjano, et. al. A New Method of Providing Pulsatile Flow in aCentrifugal Pump: Assessment of Pulsatility Using a Mock Circulatory System. ArtificialOrgans.2008.
    [59] Christof G bel, Arash Arvand, Rolf Eilers, et. al. Development of the MEDOS/HIADeltaStream Extracorporeal Rotary Blood Pump. Artificial Organs.2001,25(5):358-365.
    [60] Steven W. Day, James C. McDaniel. PIV Measurements of Flow in a Centrifugal BloodPump: Time-Varying Flow. Journal of Biomechanical Engineering, Transactions of theASME.2005,127:254-263.
    [61] Liu Shuhong. A Basic Study on Hydraulic Performance of a High-Speed MiniTurbo-pump[Ph.D thesis]. Japan: Kyushu Institute of Technology,2001.
    [62] Liu Shuhong, Nishi Michihiro, Yoshida Kouichi. Impeller geometry suitable for miniturbo-pump. Proceeding of the ASME Fluids Engineering Division Summer Meeting.Fluids Engineering Division Summer Meeting.2003; v2:415-422.
    [63] Adrian RJ. Particle imaging techniques for fluid mechanics. Annual Review of FluidMechanics1991;23:261-304.
    [64] Durst F, A. Melling, J. Whitelaw. Principles and Practice of Laser Doppler Anemometry.New York, Academic Press.1976.
    [65] Keane RD, RJ Adrian. Theory of cross-correlation analysis of PIV images. AppliedScientific Research1992;49:1991-215.
    [66] Scarano F, M Reithmuller. Iterative Multigrid approach in PIV image processing withdiscrete window offset. Experiments in Fluids.1999;26:513-523.
    [67] Raffel M, CE Willert, J Kompenhans. Investigation of the unsteady flow velocity fieldabove an airfoil pitching under deep dynamic stall conditions. Experiments in Fluids.1995;19(2):103-111.
    [68] Bendat JS, AG Piersol. Random Data: Analysis and Measurement Procedures. New York,Wiley Interscience.1971.
    [69] Wernet M. Application of DPIV to study both steady state and transient turbomachineryflows. Optics&Laser Techology.2000;32:497-525.
    [70] Baldwin JT, S Deutsch, HL Petrie, JM Tarbell. Determination of principal Reynoldsstresses in pulsatile flows after elliptical filtering of discrete velocity measurements. Transof ASME, Bioengineering Division.1993;115:396-403.
    [71] Zhang Z, K Eisele, F Hirt. The influence of phase-averaging window size on thedetermination of turbulence quantities in unsteady turbulent flows. Experiments in Fluids.1997;22:265-267.
    [72] Sinha M, J Katz, C Meneveau. Addressing passage-averaged and LES modeling issues inturbomachinery flow using two-dimensional PIV data. Am Soc of Mech Eng, FluidsEngineering Division (Publication) FED1998FEDSM98-5091.
    [73] Wernert P, D Favier. Consideration about the phase averaging method with application toELDV and PIV measurements over pitching airfoils. Experiments in Fluids.1999;27(6):473-83.
    [74] Adrian RJ. Dynamic ranges and spatial resolution of particle image velocimetry.Measurement Science and Technology.1997;8(12):1393-1398.
    [75] Huang H, D Dabiri, M Gharib. On errors of digital particle image velocimetry.Measurement Science and Technology.1997;8(12):1427-1440.
    [76] Boillot A, AK Prasad. Optimization procedure for pulse separation in cross-correlation PIV.Experiments in Fluids.1996;21:81-93.
    [77] Hart DP. PIV error correction. Experiments in Fluids.2000;29:13-22.
    [78] Baek SJ, SJ Lee. A new two-frame particle tracking algorithm using match probability.Experiments in Fluids.1996;22:23-32.
    [79] Cowen E, S Monismith. A hybrid digital particle tracking velocimetry technique.Experiments in Fluids.1997;22:199-211.
    [80] Chen PH, JY Chen, JL Chen. An artificial neural network for double exposure PIV imageanalysis. Experiments in Fluids.1998;24:373-374.
    [81] Rehm JE, NT Clemens. An improved method for enhancing the resolution of conventionaldouble-exposure single-frame particle image velocimetry. Experiments in Fluids1999;26:497-504.
    [82] Luorenco LM, A Krothapalli. TRUE resolution PIV: A mesh-free second-order accuratealgorithm. Proceedings of the10th International Symposium of Laser Techniques in FluidMechanics. Lisbon2000.
    [83] Durrani TS, CA Greated. Laser Systems in Flow Measurements. New Tork, Plenum Press.1997.
    [84] Westerweel J, D Dabiri, M Gharib. The effect of a discrete window offset on the accuracyof cross-correlation of digital PIV recordings. Experiments in Fluids.1997;23:20-28.
    [85] Grant I. Particle image velocimetry: a review. Proceedings of the Institute of MechanicalEngineers.1997;211(C):55-76.
    [86] Adrian RJ. Statistical properties of particle image velocimetry measurements in turbulentflow. Laser anemometry in fluid dynamics, Lisbon.1988.
    [87] Edwards RV, Dybbs A. Refractive index matching for velocity measurements in complexgeometries[J]. TSI Quarterly,1984,10(4):3-13.
    [88] Lowe KL, Kutt PH. Refraction through cylindrical tubes[J]. Experiments in Fluids,1992,13:315-320.
    [89] Muguercia I, Largaespada E, Li W, et al. Fluid flow behavior inside a circular helicoidalpipe using a laser Doppler anemometer/velocimetry (LDA/LDV) system[A]. The3rdWorld Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics,Honolulu,1993.
    [90] Budwing R. Refractive index matching method for liquid flow investigations[J].Experiments in Fluids,1994,17:350-355.
    [91] Lesieur M. Recent Approaches in Large-Eddy Simulation of Turbulence. Boston: KluwerAcademic Publishers,1997.
    [92] Ferziger J.H. Large Eddy Simulation: An introduction and perspective. New York:Springer-Verlag,1996.
    [93] Galperin B., Orszag S.A. Large Eddy Simulation of Complex Engineering and GeophysicalFlow. Cambridge: Cambridge University Press,1993.
    [94] Smagrinsky J. General Circulation Experiments with the Primitive Equations. Mon.Weather Review.1963,91(3):99-165.
    [95] Deardorff J.W. A Numerical Study of Three-dimensional Turbulent Channel Flow at LargeReynolds Numbers. J. Fluid Mechanics.1970,41:453-480.
    [96] Schumann U. Subgrid Scale Model for Finite-Difference Simulations of Turbulent Flows inPlane Channels and Annuli. J. Comp. Phys.1975,18:376-404.
    [97] McMiillan O.J., Feriger J.H. Direct Testing of Subgrid Scale Models. AIAA J.1979,17:1340.
    [98] McMiillan O.J., Feriger J.H., Rogallo R.S. Test of New Subgrid Scale Models in StrainedTurbulence. AIAA Paper.1979,80-1339.
    [99] Moin P., Kim J. Numerical Investigation of Turbulent Channel Flow. J. Fluid Mech.1982,118(3):41-77.
    [100] Yoshizawa A. A Statistical Theory of Thermally Driven Turbulent Shear Flow with theDerivation of Subgrid Model. J. Phys. Soc. Jpn.1983,52(4):1194-1205.
    [101] Yoshizawa A. A Statistically Derived Model for the Large-Eddy Simulation of turbulence.Phys. Fluids.1982,25(9):1532-1538.
    [102] Bardin J., Ferziger J.H., Reynolds W.C. Improved Subgrid Scale Models for Large EddySimulation. AIAA Paper.1980,80-1357.
    [103] Germano M., Piomelli U., et al. A Dynamic Subgrid-Scale Eddy Viscosity Model. Phys.Fluids A.1991.7,3(7):1760-1765.
    [104] D. K. Lilly. A Proposed Modification of the Germano Subgrid-Scale Closure Method. Phys.Fluids A.1992.12,4(3):633-635.
    [105] Ghosal S. Lund T.S., Moin P. et al. A Dynamic Localization Model for Large-EddySimulation of Turbulent Flows. J. Fluid Mech.1995,286:229-255.
    [106] Yan Zang, Robert L. Street, Jeffrey R. Koseff. A Dynamic Mixed Subgrid-Scale Model andIts Application to Turbulent Recirculating Flows. Phys. Fluids A.1993.12,5(12):3186-3196.
    [107] Kiyosi Horiuti. A New Dynamic Two-Parameter Mixed Model for Large-Eddy Simulation.Phys. Fluids.1997.11,9(11):3443-3464.
    [108] Sandip G. and Thomas S. L., et al. A Dynamic Localization Model for Large-EddySimulation of Turbulent Flows. J. Fluid Mech.1995,286:229-255.
    [109] Poimelli U., Junhui Liu. Large-Eddy Simulation of Rotating Channel Flows Using aLocalized Dynamic Model. Phys. Fluids.1995.4,7(4):839-848.
    [110] Wang W.P., Plectcher R.H. On the Large Eddy Simulation of a Turbulent Channel Flowwith Significant Heat Transfer. Phys. Fluids.1996.12,8(12):3354-3366.
    [111] Meneveau C. Statistics of Turbulence Subgrid-Scale Stress: Necessary Conditions andExperimental Tests. Phys. Fluids.1994.2,6(2):815-833.
    [112] Kim W.W. A New Dynamic One-Equation Subgrid-Scale Model for Large EddySimulation. AIAA Paper.1995,95-0356.
    [113] Shimomura Y. Subgrid-Scale Algebraic Stress Model of Turbulence. Journal of thePhysical Society of Japan.1994.1,63(1):5-9.
    [114] Canuto V.M. Large Eddy Simulation of Turbulence: a Subgrid Scale Model IncludingShear, Vorticity, Rotation and Buoyancy. Astrophys. J.1994.6,428(2):729-752.
    [115]苏明德,弗里德里克.用大涡模拟检验湍流模型.应用数学和力学.1994.11,15(11):991-996.
    [116] James RF, Detached eddy simulation of a supersonic axisymmetric base flow with anunstructured solver. AIAA-00-2410,2000.
    [117] Streiets M. Detached eddy simulation of massively separated flows. AIAA-01-0879,2001.
    [118] Scott M. DES and RANS simulations of delta wing vertical flows. AIAA-02-0587,2002.
    [119]薛帮猛,杨永.基于两方程湍流模型的DES方法在超音速圆柱底部流动计算中的应用.西北工业大学学报,2006,24(5):544-547.
    [120]刘学强,伍贻兆,程克明.用基于M-SST模型的DES数值模拟喷流流场.力学学报,2004,36(4):401-406.
    [121]顾春伟,陈美兰,李雪松,奉凡. DES模型在压气机叶栅中的应用研究.工程热物理学报,2008,29(12):2007-2010.
    [122]顾春伟,奉凡,李雪松,陈美兰. DES模型在压气机亚音转子中的应用探讨.工程热物理学报,2008,29(6):951-956.
    [123] Merry MA, Shephard MS. A modified quadtree approach to finite element mesh generation.IEEE Computer Graphics Application,1983,3(1):39-46.
    [124] Weatherill NP. Adaptive mesh generation and flow solution method for the Euler equationson unstructured grids. J Comput Phys.1994,110:23-38.
    [125] Van Doormaal, J. R. and Raithby, G. D. Enhancement of the SIMPLE Method forPredicting Incompressible Fluid Flows. Numerical Heat Transfer,1984,7:147-163.
    [126] Robert CD. On the necessity of unsteady flow in fluid machines. ASME Journal of BasicEngineering,1959,79:24-28.
    [127]李文广.大出口角离心泵叶轮后方非定常流动.水泵技术.2006,2:9-14.
    [128]吴玉林.流体机械及工程.北京:中国环境科学出版社,2005:189-200.
    [129]李文广.离心油泵蜗壳与叶轮内部流动LDV测量与数值计算[博士学位论文].北京:石油大学,1996.
    [130]柳兆荣,李惜惜.血液动力学原理和方法.上海:复旦大学出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700