河口海岸工程模型试验若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口海岸地带是陆地和海洋的交汇处,为实现经济的可持续发展,需要实施的工程措施包括河口治理工程、港口工程、岸线防护工程和环境保护工程等。河口治理工程中,研究河口潮流物理模型的验证方法并利用该模型进行拦门沙航道整治方案的优化研究是河口海岸工程的重要问题。港口工程在设计时需利用波浪物理模型试验或数值模拟确定港池水域平稳度,为港区平面配置提供技术支持。
     以广利河口为例,研究了缓混合海相河口潮流物理模型的验证方法,总结了口门潮位、河口段潮位对模型扭曲水道长度、加糙方法、加糙范围和潮汐箱控制站潮型曲线等主要模型参数的响应规律,并以此为核心内容,提出了该类型河口的模型验证方法,提高了模型验证的效率和精度。
     以广利河口为例,系统分析了缓混合海相河口的水文泥沙和河床演变特征,指出粉沙质河口拦门沙航道整治须同时采取疏浚和建设导堤的工程措施。由此,通过潮流定床模型试验,首先研究了拦门沙航道轴线的四种基本方向对河口的纳潮量、潮位和拦门沙航道流速分布的影响,确定了最佳方向,与现场调研结果相符。接着,以此方向为基础进行优化,研究了航道过水断面面积、导堤顶高程组合、航道拐弯段环流、口门布置形式等对航道内流速、流向和局部流态的影响,并采用局部动床定性试验验证了工程方案流速、流态分布合理,基本能维持航道设计通航水深并满足设计船型的航行条件。最后,研究得出工程方案各段导堤对维持航道水深的贡献存在大的差异,建议根据贡献大小确定施工顺序。
     港内水域平稳度的研究有两类方法,一是波浪物理模型试验,二是波浪数值模拟。研究中经常遇到造波线和等深线夹角较大以致造波线上各点波要素的差异不能忽略的情况,此时边界条件的确定成为难点:对于单口门港池,物理模型试验采用口门处设置一个验证点的“一段造波法”,通过“凑波”确定边界条件是可行的,但对于多口门港池,这种方法中验证点的位置对试验结果存在较大的影响;数值模拟中,某些模型(如目前被广泛应用的Mike21Boussinesq方程模型)不能给出符合实际情况的边界条件。本文通过实例论证了Mike21的Boussinesq方程模型不宜将波要素验证点设在作为造波边界的造波线上,而应借鉴物理模型试验的“凑波”方法,将验证点设在拟建口门处,在原始地形上对边界条件进行修正。接着,对多口门港池,提出了各口门分别设置验证点的“分段造波法”,可以据此对数值模拟的边界条件进行的修正,并对物理模型试验解决同样问题采用“一段造波法”的做法提出了改进的建议。最后,将“分段造波法”应用于两口门港池、造波线和等深线交角近90°的情况,给出了合理的计算结果。
A river-mouth or coastal area is the confluence of land and ocean. Necessary engineerings need to be carried out for for river-mouth harnessing, harbor, shoreline protection, environment protection and so on. In river-mouth harnessing engineering, it is important to study the verification methods of a river-mouth physcial tide model and to optimize the regulation plan of the navigation channel at a river-mouth bar by the model. For harbor engineering, as a technical support for its layout design, harbor water tranquility needs to be validated by a physical model or a numerical model.
     The detailed verification methods of river-mouth physcial tide model are studied based on Guangli river mouth which is a typical mild mix and marine deposition river mouth. The responses of the dominant model parameters to the tide levels at the river-mouth and the tide-current reach are included. Here the dominant model parameters consist of model length of the upper curved channels, methods of roughness, roughness areas and the tide-level curve at the control station ahead of the tide box. Taking the response laws as the important contents, a model verification method is given to improve its efficiency and precision.
     Taking Guangli river mouth as an example, system analyses of hydrometeorology, sediment and riverbed evolution of the one with mild mix and marine deposition are done. It is suggested that dredging and guard jetties should be applied simultaneously while regulating the navigational channel of a river-mouth bar with microscopic sand. By fixed bed tide model test, firstly four alternative channel directions are tested to study their effects on tide prism, the tide levels and the velocity distribution in the navigational channel of the river mouth bar. And among them, the best direction, which is consistent with the surveyed facts, is decided. Secondly, on the basis of the best direction, the effects on the velocity, flow direction and local flow pattern in the navigational channel exerted by its area of wetted cross section, the elevation of jetties, the swirling flow at the round segment of the navigational channel, the layout form of the jetty outlet are studied. The results of the local movable bed test also show that the velocity and the flow pattern along the channel of the final plan are reasonable which can basically maintain the channel water depth and satisfy the sailing conditions for designed ship. Finally, the studies show that contribution of each portion of the jetties for maintaining the channel water depth is greatly different. For a more economical investment, the jetty project should be divided into several portions and the construction schedule of each portion depends on its own contribution.
     When studying the harbor water tranquility with a physical model or a numerical model, a case is often confronted that the angle between the generation line and the isobath is so large that the differences of the wave climates along the generation line can not be ignored. For this case, the incident wave boundary is difficult to evaluate:(1) In a physical model, it is feasible to decide the incident wave boundary for one-entrance harbor by one verification point located at the entrance and'one-line generation method'; but for a multi-entrance harbor, this method is found that different position of the verification point will result in different harbor tranquility and the test error is so evident. (2) Some numerical models, such as the Boussinesq model of Mike21 which is widely used currently, cannot provide the natural wave distribution along the generation line.
     In order to solve this problem, firstly by several demonstrations, it is recommended that in the Boussinesq model of Mike21 the verification point should locate at the harbor entrance instead of locating on the wave generation line which is a model boundary, and the 'modulation method' widely used in a physical model to determine the inputs for the wave generator according to the output should be introduced into Mike21 to modify the incident wave boundary of Boussinesq model on the original topography. Secondly, due to the deficiencies of a physical model and the Boussinesq model of Mike21, a multi-line wave generation method is proposed for a multi-entrance harbor, with each line generating waves at the same time independently and each entrance having its own verification point. Thirdly, this method is applied to a case that the harbor is designed with two entrances and the angle between the generation line and the isobath is near 90°. And the results are reasonable.
引文
[1]罗肇森.河口航道整治的原则和方法[C].第六届全国海岸工程会议文件,1991.
    [2]Zheng Jinhai, Soe Mee Mee, Zhang Chi et al. Numerical wave flume with improved smoothed particle hydrodynamics[J]. Journal of Hydrodynamics,2010,22(6):773-781.
    [3]罗肇森.潮汐河口航道整治技术的回顾与进展[C].第十届中国海岸工程学术讨论会论文集.北京:海洋出版社,2001:1-7.
    [4]陈吉余,徐海根.河口拦门沙.http://www.chinabaike.com/article/33/34/35/2007/20070621135131.html.
    [5]乐嘉钻,周海,郭豫鹏.长江口深水航道治理工程前期研究工作综述和总体治理方案的确定[J].水运工程,2006,12:1-9.
    [6]黄胜,卢启苗.河口动力学[M].北京:水利电力出版社,1992.
    [7]黄胜.河口治理工程[G].见:严恺.中国海岸工程.南京:河海大学出版社,1992.
    [8]Richard A, Davis Jr. Coastal Sedimentary Environment[M]. NewYork:Springer-Verlag New York Inc,1985.
    [9]罗肇森.从治河观点论河口分类和分段[C].第五届全国海事技术研讨会文集.北京:海洋出版社,1999.
    [10]严恺,梁其荀.海岸工程[M].北京:海洋出版社,2002.
    [11]罗肇森.河口治理与大风骤淤[M].北京:海洋出版社,2009.
    [12]王谷谦,乐嘉钻.长江口拦门沙航道整治方案[J].上海水利,1995,39(2):10-14.
    [13]陈志昌,顾佩玉等.长江口深水航道研究[J].水利水运科学研究(南京水利科学研究院建院
    [14]南京水利科学研究院.长江口深水航道治理工程二期工程动床物理模型试验报告(总平面方案优化试验研究)[R],2002.
    [15]吴永进,辛文杰.用g-测沙仪观测黄埔出海航道浮泥层分布及初步分析[R].南京水利科学研究院,1991.
    [16]严恺.河口治理[G].见:钱正英.中国水利.北京:水利电力出版社,1991.
    [17]罗肇森,罗勇,张晓艳.渤海湾三大港大风期的淤积和比较[C].第十三届中国海洋(岸)工程学术讨论会论文集.北京:海洋出版社,2007.
    [18]罗肇森,李举国等.珠江崖门口航道整治技术研究总报告[R].南京水利科学研究院,广东省航道局,1995.
    [19]罗肇森.珠江黄埔新沙港回淤计算方法及河口拦门沙治理问题研究[R].南京水利科学研究院河港研究所,1985.
    [20]黄永葛.福州港二期整治工程总结[J].水运工程,1999(7).
    [21]高原,黄胜等.美国密西西比河口治理考察报告[R].1982.
    [22]李国臣,徐金环.灌河口外拦门沙航道整治探讨[J].泥沙研究,1993(4):72-80.
    [23]王广平.长江口拦门沙深水入海航道整治工程的研究[J].海洋工程,1994,11(2):78-86.
    [24]李安龙,李广雪等.广利河口拦门沙发育动态和河口航道的选择[J].海岸工程,2004,23(2):1-8.
    [25]海港水文规范[S].北京:人民交通出版社,1999:112-115.
    [26]赵冲久.近海动力环境中粉砂质泥沙运动规律的研究[D]:(博士学位论文).天津:天津大学,2003.
    [27]罗肇森,蒋明.大风期航道的危险性分析[C].第二届海事技术研讨会论文集.北京:海洋出版社,1996.
    [28]江苏省扬泰水文水资源勘测局.东营市广利河及拦门沙海区水文测验报告[R],2003.
    [29]赵冲久.波浪作用下粉沙质底沙运动特性的试验研究[J].水道港口,1994(1):34-39.
    [30]赵冲久等.粉沙质海岸泥沙运动特点的实验研究[J].水道港口,2002(4):259-261.
    [31]Isao Irie. Recent Topics on Siltation Protection by Submerged Structures[A], Sedimentation in the Yellow Sea Coasts[C]. KSCOE Workshop Proceeding,2003:30-31.
    [32]Sawaragi T. Cosatal Engineering Waves, Beaches, Wave-Structure Interactions[M]. Tokyo:Elsevier,1995:296.
    [33]航道整治工程技术规范[S].北京:人民交通出版社,1999.
    [34]乐嘉钻,陈志昌,阮伟.长江口深水航道的选择及其治理原则[J].水利水运工程学报,2005,2:1-8.
    [35]陈志昌,乐嘉钻.长江口深水航道整治原理[J].水利水运工程学报,2005,1.
    [36]常福田.航道整治[M].北京:人民交通出版社,1987.
    [37]冯凌旋.长江口南北槽分流口演变及其对北槽深水航道整治工程的响应[D]:(硕士学位论文).上海:华东师范大学,2003.
    [38]胡达仁,蒋梦林.闽江口马尾港治理的试验研究与工程实践[J].水利水运科学研究,1984,1.
    [39]胡达仁.闽江河口航道治理[G].见:黄胜.中国河口治理.北京:海洋出版社,1992.
    [40]罗肇森.珠江口伶仃洋深水航道开发方案的回淤研究[J].水利水运科学研究,1995(2).
    [41]罗肇森,马启南.珠江崖门口3.5万吨级及5.0万吨级深水航道开发的技术可行性研究[R].南京水利科学研究院河港研究所报告,1997.
    [42]交通部工程管理司,连云港建港指挥部.连云港回淤研究论文集[G].南京:河海大学出版社,1990.
    [43]张庆河,吴相忠,杨华,等.黄骅港外航道整治工程有关问题的探讨.水运工程,2007,399(2):74-78.
    [44]长江口航道整治小组科技组,交通部水运工程科技情报站航道分站.国外河口治理文集,1982.
    [45]曹根祥.长江口深水航道治理整治建筑物施工与关键技术研究[D]:(硕士学位论文).南京:河海大学,2004.
    [46]交通部科学研究院河口海岸研究中心.长江口二期整治工程总平面调整试验研究报告[R],2001.
    [47]交通部科学研究院河口海岸科学研究中心.长江口深水航道治理工程二期工程施工顺序研究试验报告[R],2002.
    [48]张莉莉,李九发,沈焕庭.中国主要河口拦门沙的研究进展.海洋科学,2001,25(10).
    [49]海岸与河口潮流泥沙模拟技术规程[S].北京:人民交通出版社,2010.
    [50]Davies A. M., Jones J. E., Xing J. Review of recent developments in tidal hydrodynamic model ing[J]. Journal of hydraulic engineering,1997,123(4):278-292.
    [51]Martin J. L., McCutcheon S. C., Schottman R. W. Hydrodynamics and transport for water quality modeling. Lewis Publishers, Boca raton,1999.
    [52]Chau, K. W. A review on integration of artificial intelligence into water quality modeling[R]. Marine pollution bulletin,2006,52(7):726-733.
    [53]曹祖德,李炎保.水动力数值模拟的发展方向[J].海洋学报,1995,17(4).
    [54]曹祖德,孔令双,李蓓等.海岸河口水动力数值模拟的研究方向[J].中国港湾建设,2002.
    [55]沈焕庭.中国河口数学模拟研究的进展[J].海洋通报,1997,16(2).
    [56]李孟国,曹祖德.海岸河口潮流数值模拟的研究与进展[J].海洋学报,1999,21(1):110-125.
    [57]李孟国.海岸河口泥沙数学模型研究进展[J].海洋工程,2006,24(1).
    [58]刘桦,何友声.河口三维流动数学模型研究进展[J].海洋学报,2000,18(2):87-93.
    [59]严世强,熊德琪.潮流数值模拟研究进展[J].浙江海洋学院学报(自然科学版),2002,21(3).
    [60]车进胜,周作付,胡学,郑兆勇.河口海岸水动力模拟技术研究的进展[J].台湾海峡,2003,22(1):125-129.
    [61]陈祖军,陈美发.河口水与水环境状况模型研究进展[J].海洋环境科学,2005,24(1).
    [62]陶建华.河口海岸的水波数值模拟[J].人民珠江,2007,1:39-43.
    [63]Davies A.M., Jones J. E. and Xing J. Review of recent developments in tidal hydrodynamic modeling[J]. Journal of hydraulic engineering,1997,123(4):278-292.
    [64]Abbott. M. B. Review of recent developments in coastal modeling. Hydraulic and environmental modeling of coastal, estuarine and river waters. Avebury technical, Aldershot,1997:3-39.
    [65]Abbott. M. B. Range of tidal flow modeling[J]. Journal of hydraulic engineering,1997,123(4):255-277.
    [66]Lsaacson, R. E., Stoker J. J, and Troesch B. A. Numerical solution of flood prediction and river regulation problems(Ohio-Mississippi floods),1954.
    [67]窦希萍,罗肇森.波浪潮流共同作用下的二维泥沙数学模型[J].水利水运科学研究,1992(4).
    [68]曹祖德,王桂芬.波浪掀沙、潮流输沙的数值模拟[J].海洋学报,1993,15(1).
    [69]LU Yong jun, LI Hao lin, Dong Zhuang et al. Two-Dimensional Mathematical Model of Tidal Current and Sediment for Oujiang Estuary and Wenzhou Bay[J]. China Ocean Engineering,2002,16(1):107-122.
    [70]LU Yong jun, ZUO Li qin, SHAO Xue jun et al. A 2D Mathematical Model for Sediment Transport by Waves and Tidal Currents[J]. China Ocean Engineering,2005,19(4):571-586.
    [71]赵士清.长江口三维潮流的数值模拟[J].水利水运工程学报,1985(1).
    [72]韩其为等.潮汐河口三维水流数值模拟[J].水利学报,1989,12:54-60.
    [73]张存智.黄海北部海域三维潮流数值模型[J].海洋预报,2000,17(1):1-120.
    [74]孙英兰,张越美.胶州湾三维变动边界的潮流数值模拟[J].海洋与湖沼,2001,32(4).
    [75]张越美,孙英兰.ECOM模式在丁字湾的应用[J].青岛海洋大学学报,2001,31(5).
    [76]张越美,孙英兰.渤海湾三维变动边界潮流数值模拟[J].青岛海洋大学学报,2002,32(3).
    [77]张学庆,孙英兰.胶南近岸海域三维潮流数值模拟[J].中国海洋大学学报,2005,35(4).
    [78]张燕,张越美,孙英兰等.宁波一舟山海域环境容量研究三维潮流数值模拟[J].海洋环境科学,2005,24(3).
    [79]HydroQual. http://crusty.er.usgs.gov/ecomsi.html.
    [80]LEENDERTSE J. J., ALEXANDER R. C. and LIU S. K. A three dimensional model for estuaries and coastal sea. Vol.1, Principles of computations [A]. R-1471-Owrr[C]. Santa Monica California:CA Rand Corp,1973.
    [81]CASULLI V, CHENG R. Semi-implicit finite difference methods for three-dimensional shallow water flow[J]. Inter J for Num Methods in Fliuds,1992,15:629-648.
    [82]BLUMBERG A F, MELLOR G L. A description of a three-dimensional coastal ocean circulation model[A]. Three-dimensional coastal ocean models[C]. Washington D.C:American Geophysical Union,1987:1-16.
    [83]MELLOR G L, EZER T and OEYL Y. The pressure gradient conundrum of sigma coordinate ocean models[J]. J Atmos Oceanic Technol,1994, (11):1126-1134.
    [84]Galperin B., Mellor G L. Time depender, Three dimensional model of the Dela\ware Bay and River system. Part 1:description of the model and tidal analysis[J]. Journal of Hydraulic Engineering, ASCE,1990,125(7):737-749.
    [85]Lin B, Falconer. Three-dimensional layer-integrated modeling of estuarine flows with flooding and drying[J]. Estuarine, Coastal and Shelf Science,1997,44:737-751.
    [86]Schwiderski, E. W., On chartingg lobal ocean tides. Reviews of Geophysics and Space Physics,1980,18:243-268.
    [87]G.D.Egbert, A.F.Bennett, M. G. G. Foreman. TOPEX/POSEIDON tides estimated using a global inverse model. Journal of Geophysical Research,1994,99 (C12): 24821-24852.
    [88]Gerritsen, H., de Vries, H., and Philippart, M. "The Dutch Continental Shelf Model." Quantitative skill assessment for coastal ocean models. AM. Geophys. Union, Washington, D. C.,425-468.
    [89]POM web page http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom/
    [90]Chen, P., Mellor, G., Determination of tidal boundary forcing using tide station data. Coastal Ocean Prediction,1999,56:329-351.
    [91]A. F. Bennett, P. C. Mcintosh. Open ocean modeling as an inverse problem:tidal theory. Journal of physical oceanography,1982,12:1004-1018.
    [92]Bennett, A. F., Array design by inverse method. Progress in Oceanography,1985, 15:129-156.
    [93]Hall, M. C. G., Cacuci, D. G., Schlesinger, M. E. Sensitivity analysis of a radiative-convective model by adjoint method. Journal of Atmospheric Science,1982, 39:2038-2050.
    [94]Cacuci, D. G., The forward and adjoint methods of sensitivity analysis. Uncertainty Analysis,1988,282.
    [95]Panchang, V. G.,0'Brien, J. J., On the determination of hydraulic model parameter using the adjoint stste formulation. Modeling marine system,1989,1:5-18.
    [96]Larder. Optimal control of open boundary conditions for a numerical tidal model. Computer methods in applied mechanics and engineering,1993(102):367-387.
    [97]Seiler. Estimation of open boundary conditions with the adjoint method. Journal of geophysical research,1993,98 (c12):22855-22870.
    [98]Zhang, K. Q., Marotzke, J., The importance of open-boundary estimation for an Indian Ocean GCM-data synthesis. Journal of Marine Research,1999,57(2):305-334.
    [99]Vogeler, A., Schroeter, J., Fitting a regional ocean model with adjustable open boundaries to TOPEX/POSEIDON data. Journal of Geophysical Research,1999, 104 (c9):20789-20799.
    [100]Heemink, A. W., Mouthaan, E. E. A., Roest, M. R. T., Vollebregt, E. A. H., Robaczewska, K. B., Verlaam, M., Inverse 3D shallow water flow modeling of the continental shelf. Continental Shelf Research,2002,22(3):465-484.
    [101]Aijun. Zhang, Eugene. Wei, Bruce. B. Parker. Optimal estimation of tidal open boundary conditions using predicted tides and adjoint data assimilation technique. Continental shelf research,2003,23(11-13):1055-1070.
    [102]Ayoub, N., Stammer, D., Wunsch, C., Estimating the North Atlantic circulation with nesting and open-boundary conditions using an adjoint model. ECCO Report. 2001, No.10, Scripps Institution of Oceanography. Available from: .
    [103]Ayoub, N., Estimation of boundary values in a North Atlantic circulation model using an adjoint method. Ocean modeling,2006(3-4),12:319-347.
    [104]Ferron, B., Marotzke, J., Impact of 4D-variational assimilation of WOCE hydrography on the meridional circulation of the Indian Ocean. Deep-Sea Research II,2003,50(12-13):2005-2021.
    [105]Gebbie, G. A., Subduction in an eddy-resolving state estimate of the Northeast Atlantic Ocean. MIT/WHOI PhD Thesis,2004,198.
    [106]朱江,曾庆存,郭冬建等.利用伴随算子法从岸边潮位站资料估计近岸模式的开边界条件[J].中国科学(D辑),1997,27(5):462-468.
    [107]韩桂军,何柏荣,马继瑞等.利用伴随法优化非线性潮汐模型的开边界条件Ⅰ.伴随方程的建立及“孪生”数值试验[J].海洋学报,2000,22(6):27-33.
    [108]韩桂军,方国洪,马继瑞等.利用伴随法优化非线性潮汐模型的开边界条件Ⅱ.黄海、东海潮汐资料的同化试验[J].海洋学报,2001,23(2):25-31.
    [109]吕咸青,方国洪.渤海开边界潮汐的伴随法反演[J].海洋与湖沼,2002,33(2):113-120.
    [110]吕咸青,张继才.三维正压非线性潮汐潮流伴随同化模型Ⅱ:开边界反演实验.http://www.paper.edu.cn.
    [111]陈耀登,王如云,李未等.伴随数据同化法反演涌潮河口开边界[J].水科学进展,2007,18(6).
    [112]Liang Shu-Xiu, Li Ming-Chang and Sun Zhao-Chen. The pilot study on optimal inversion of K1 constituent amplitude for tidal model open boundary condition[C]. The 8th ISOPE Pacific/Asia offshore mechanics symposium (ISOPE PACOMS-2008).
    [113]李明昌,梁书秀,孙昭晨.海域潮汐模型开边界反演优化方法初探——以K1分潮振幅为例[J],水科学进展,2009,20(1).
    [114]李明昌.潮汐及生态模型优化反演方法研究[D]:(博士学位论文).大连:大连理工大学,2008.
    [115]罗肇森,辛文杰,马启南.河口整治研究的进展[J].水利水运科技情报,1993(1).
    [116]黄建维.汕头港外拦门沙整治措施的动床模型试验[J].水利水运科学研究,1991(1).
    [117]曹祖德,蔡嘉熙.珠江口伶仃洋航道对整治研究[J].水道港口,1998(1).
    [118]王顺中,李浩麟.瓯江口航道治理工程模型试验研究[J].水利水运工程学报,2006(4).
    [119]薛鸿超.河口航道整治.http://www.chinabaike.com/article/316/334/2007/2007022259740.html
    [120]陈志昌,黄仁元,胡志峰.长江口潮汐模型设计和验证[J].水运工程,1999(10),总309期.
    [121]刘建海.河口水域流场物理模型试验概述[J].科技情报开发与经济,2010,20(4).
    [122]窦希萍,王向明,娄斌,等.模型变率对潮流定床和动床模型试验结果的影响[J].泥沙研究,2007(4):1-9.
    [123]唐存本.复合(梅花型)糙率的研究.天津水运工程研究所,1978.
    [124]罗肇森,孙梅秀.河工模型中几种人工糙率的计算[J].水利水运科学研究,1981(2).
    [125]徐华,夏益民,夏云峰等.潮汐河工模型三角块梅花形加糙试验研究及其应用[J].水利水运工程学报,2007(4).
    [126]波浪模型试验规程[S].北京:人民交通出版社,2001.
    [127]Zheng Jinhai, Mase Hajime and Demirbilek Zeki, Implementation and evaluation of alternative wave breaking formulas in a coastal spectral wave model[J]. Ocean Engineering,2008,35(11-12):1090-1101.
    [128]Zheng Jinhai and Tang Yu. Numerical simulation of spatial lag between wave breaking point and location of maximum wave-induced current[J]. China Ocean Engineering,2009,23(1):59-71.
    [129]俞聿修.随机波浪及其工程应用[M].大连:大连理工大学出版社,2000.
    [130]MIKE21 Boussinesq Waves model User Guide[M]. Danmark:DHI Software,2008.
    [131]MIKE21 Spectral Waves model User Guide[M].Danmark:DHI Software,2008.
    [133]海岸与河口潮流泥沙模拟技术规程[S].北京:人民交通出版社,2010.
    [134]河工模型试验规程(SL 99-95)[S].中华人民共和国水利部.
    [135]贾友海,拾兵,陈兆林.广利河口拦门沙运动特性及水力插板断面模型试验研究[J].海岸工程,2004(2).
    [136]罗肇森等.潮汐河口悬沙淤积和局部动床冲刷试验—射阳河闸下裁弯实例[A].泥沙模型报告汇编[C].1978.
    [137]青岛海洋大学海洋地球科学学院.广利港口拦门沙航道疏浚工程勘察报告[R],2002.
    [138]倪晋仁,薛安,秦华鹏.影响水流运动研究进展的若干关键问题Ⅰ.糙率研究[J].应用基础与工程科学学报,1997,5(4)
    [139]蒋德才,刘百桥,韩树宗.工程环境海洋学[M].北京:海洋出版社,2005.
    [140]王绍成.河流动力学[M].北京:人民交通出版社,1991.
    [141]内河航道与港口水流泥沙模拟技术规程[S].北京:人民交通出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700