掉层结构动力特性及整体抗倾覆分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
掉层结构是山地建筑结构的典型代表之一,在山地城市中被广泛应用。在2008年5.12汶川地震中,都江堰某小区山地建筑结构表现出较为严重的破坏。目前掉层结构的特殊性还没有得到充分的认识,工程设计缺乏相关规范指导,理论研究滞后于工程实践的需要。
     本文在以往对山地建筑结构抗震性能等研究的基础上,旨在研究掉层结构动力特性以及整体抗倾覆性能,为工程设计提供理论依据,为《山地建筑结构设计规程》的编订提供一定的理论基础。研究的内容主要包括:①基于掉层结构框架体系,提出简化模型;②进行了掉层部分楼层刚度、楼层质量以及楼层层数变化等相关因素对掉层结构动力特性的影响的分析;③在线性地震作用下,分析了相同振型对掉层结构上部楼层和掉层部分楼层反应贡献的差异性;④在倾覆荷载作用下,对掉层结构的基底应力分布规律进行研究;⑤深入探讨了掉层结构整体抗倾覆稳定性的特殊问题所在,并对掉层结构整体抗倾覆性能的变化规律进行研究。
     通过本文的研究与分析,得到以下主要结论:
     ①利用简化串模型进行了在不同质量和楼层分布下动力特性的分析,发现其动力特性与普通规则结构的动力特性存在显著差异。当掉层部分楼层刚度越小,质量越大以及楼层数量越多,这种差异就越显著。并给出了掉层结构掉层部分楼层刚度、楼层质量及楼层变化对结构固有周期、振型及相关特性(如振型参与系数、振型质量参与系数)带来的影响规律。
     ②在地震作用下,同一振型对掉层结构上部结构楼层以及掉层部分楼层的反应的贡献存在差异,基本振型主要影响上部结构楼层,而高阶振型主要影响掉层部分楼层。
     ③在对结构地震作用下进行分析计算时,目前中国规范要求结构的振型质量参与系数达到90%,此规定要求对掉层结构略显不足,建议可相应提高。
     ④根据掉层结构基底应力分布规律的研究,目前中国规范关于结构整体抗倾覆的规定不适用于掉层结构,建议设计时直接进行掉层结构整体抗倾覆验算;本文给了掉层结构倾覆弯矩和抗倾覆弯矩的计算模型及方法,对于连接式掉层结构需要考虑侧向土压力的影响。
     ⑤对掉层结构整体抗倾覆稳定性能分析表明,掉层结构整体抗倾覆性能与分别按两个接地面起算的规则结构都偏不利;此外,掉层部分的楼层数量越多、跨数越小,掉层结构整体抗倾覆稳定性能越不利。
The structure supported by foundation with different horizontal levels (abbreviated as SSFDH in the paper below), which is widely built in mountain cities, is a typical kind of structure built on slope. Such kind of buildings in a community located in Dujiangyan had damaged heavily during the 5.12 Wenchuan Earthquake 2008. The facts are that the specialties in such structures haven’t been full understanding, and the structure designing is lack of the guides of relevant codes, and the theoretical research fall behind the demands of engineering construction.
    
     Based on the achievements of previous researches about the seismic behaviors of SSFDH, this paper aims to research the dynamic characteristics and anti-overturning behaviors for the purposes of providing a theoretical basis to the design work and the code compiling. The main contents are as below:①offering the simplified model based on the frame structure in SSFDH;②analyzing the influence to the dynamic characteristics when changing storey stiffness, storey mass and storey numbers and other factors;③analyzing the difference of contribution to the earthquake responses among the upper storeys and lower storeys under the same mode shape;④studying the stress distribution of basement subjected to the lateral load action;⑤discussing the special problems and studying the rules of SSFDH on anti-overturning behaviors. It can be concluded as follows by studying and analyzing in this paper:
     ①There exist significant differences in dynamic characteristics between SSFDH and regular structures by analyzing the dynamic characteristics of simplified model with variation of storey mass, stiffness and storey numbers. The differences become significant while the lower storey stiffness is weaker, lower storey mass and storey numbers are larger. In addition, this paper provided the influence laws to natural period, mode shapes and related properties such as modal participation factors and modal participating mass ratios when changing the influence factors above.
     ②The same mode shape contribute differently to the earthquake response between the upper storeys and the lower storeys. The fundamental mode shape mostly affects the upper storeys while the higher modes mainly affect the lower storeys.
     ③The Chinese codes require the modal participating mass ratios must achieve 90% at least computing and analyzing the structure subjected to earthquake action. For the lower storeys of SSFDH, it might be omit the higher modes’contribution if doing this when designing so that leading to unsafety. The ratio is insufficient for SSFDH.
     ④According to the study on the basement stress distribution, the guidelines in current Chinese codes aren’t suitable for SSFDH in anti-overturning. It suggests checking anti-overturning behavior when designing SSFDH. This paper provides the moment computing method of both overturning and anti-overturning. The earthquake dynamic earth pressure have to be considered for SSFDH which lower storys contact with slope.
     ⑤By analyzing the anti-overturning behavior of SSFDH, it is more unfavorable than the two regular structures which based on the different horizontal levels. Besides, the more stories, the less bays in the lower level, the more unfavorable in the anti-overturning behaviors for SSFDH.
引文
[1]王丽萍.山地建筑设计地震动输入与侧向刚度控制方法[D].博士学位论文.重庆大学,2010.
    [2]李英民,刘立平.汶川地震建筑震害与思考[M].重庆:重庆大学出版社,2008.
    [3]黄光宇,山地城市学原理[M].北京,中国建筑工业出版社,2006,9.
    [4]徐坚,山地城镇生态适应性城市设计[M],北京,中国建筑工业出版社, 2008,5.
    [5]郭红雨,山地建筑意义的探寻[J],中华建筑,2000,18(3):16-20.
    [6]戴志中,现代山地建筑接地诠释[J].城市建筑,2006,8:20-24.
    [7]戴志中,现代理念与山地建筑创作[J].北京规划建设,2005,1:106-113.
    [8]戴志中,刘彦君.山地建筑设计理论的研究现状及展望[J].城市建筑,2008,6:17-19.
    [9]唐璞.山地住宅建筑[M].科学出版社,1994.
    [10]卢济威,王海松.山地建筑设计[M].中国建筑工业出版社,2001.
    [11]杨柏坡,杨笑梅.陡坎对地震地面运动的影响[R].国家地震局工程力学研究所研究报告,1994.
    [12] Boore, D.M., S.C.Harmsen and S.T.Harding.Wave Scattering from A Step Change in Surface Topography [J ].Bull.Seism.Soc.Am.,1981,71(1):117-124.
    [13]李山有,廖振鹏.地震体波斜入射情形下台阶地形引起的波型转换[J].地震工程与结构振动,2002,22(4).
    [14]刘晶波.局部不规则地形对地震地面运动的影响[J].地震学报,1996,18(2):239-245.
    [15]刘立平,杨实君,李英民.软夹层对边坡动力特性的影响分析[J].重庆大学学报(自然科学版),2007, 30(5):31-34.
    [16]杨佑发,王一功.山区台地框架建筑抗震性能研究[J].振动与冲击,2007,26(6):36-51.
    [17]王一功,杨佑发.多层接地框架土-结构共同作用分析.世界地震工程,2005.
    [18]杨佑发,王一功.倾斜基岩上的土—框架相互作用研究[J].地震工程与工程振动,2005,25.
    [19]单志伟,掉层结构抗震性能研究[D].硕士学位论文,重庆大学,2008.
    [20]杨实君,吊脚式山地建筑结构抗震性能分析[D].硕士学位论文,重庆大学,2008.
    [21]何岭,掉层结构刚度计算方法及弹塑性抗震性能研究[D].硕士学位论文,重庆大学,2010.
    [22]龙彬,掉层结构设计中的若干问题研究[D].硕士学位论文,重庆大学,2010.
    [23]黄耀志.山地城市生态特点及发展模式研究[D].重庆建筑大学硕士学位论文,1995.
    [24] Ani K. Chopra著,谢礼立译,结构动力学理论及其在地震工程中的应用[M].北京:高等教育出版社,2007,1.
    [25]潘国梁.从环境地质观点论本省山坡地之开发[M].山地坡地开发专集(二),2001.
    [26]中国金土木软件技术有限公司,SAP中文版使用指南[M].北京:人民交通出版社,2006年9月,第1版.
    [27]中华人民共和国建设部,高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社.2002.
    [28]中华人民共和国建设部.建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [29]胡聿贤.地震工程学[M].北京:地震出版社,2006.
    [30]李国强,李杰,苏小卒,建筑结构抗震设计[M].北京:中国建筑工业出版社,2002.
    [31]李杰,李国强,地震工程学导论[M].北京:地震出版社,2002.
    [32]范伟霞,赵群昌,超限高层结构动力特性及抗震性能分析[J].建筑技术,2011,42(1):78-81.
    [33]施卫星,王星,钢筋混凝土框架结构动力特性研究[J].地震工程与工程振动,2010,30(6): 87-91.
    [34]白国良,楚留声等,高烈度区框-筒混合结构动力特性与地震反应研究,[J].建筑工业, 200737:208-212.
    [35]李建平,框架-混合筒体结构动力特性研究[D].硕士学位论文,中南大学,2010.
    [36]张琳琳,钢筋混凝土错层结构动力特性分析[D].硕士学位论文,大连交通大学,2007.
    [37]张桂叶,高层框架-剪力墙结构动力特性研究[D].硕士学位论文,东南大学,2006.
    [38] Tulay Aksu Ozkul, Eiichi Kuribayashi, Structural characteristics of Hagia Sophia: II—A finite element formulation for dynamic analysis[J]. Building and Environment,2007,42:2000-2006
    [39] A.M.I. Sweedan, A.A. El Damatty, Experimental and analytical evaluation of the dynamic characteristics of conical shells[J].Thin-Walled Structures,2002,40:465-486.
    [40] Qinkai Han, Jianjun Wang, Qihan Li, Experimental study on dynamic characteristics of linear parametrically excited system[J]. Mechanical Systems and Signal Processing,2011,25: 1585-1597.
    [41] B.R.Ellis, Full-scale measurements of the dynamic characteristics of buildings in the UK[J]. Journal of Wind Engineering and Industrial Aerodynamics,1996,59:365-382.
    [42] Shigeru Ban, Shohei Motohashi, Arata Yoshida, Dynamic characteristics of a semi-rigid hanging roof structure composed of glulams and steel plate[J], Engineering Structures, 1999,21:770-785.
    [43]中华人民共和国建设部.建筑地基基础设计规范[S].北京:中国建筑工业出版社,2002.
    [44]中华人民共和国建设部.砌体结构设计规范[S].北京:中国建筑工业出版社,2002.
    [45]杨俊杰,崔钦淑,结构原理与结构概念设计[M].北京:中国水利水电出版社,2006.
    [46]卓瑜,高层建筑结构的稳定和倾覆验算[J].广东土木与建筑2001,1:27-28.
    [47]叶华亭,高层建筑结构整体倾覆验算的探讨[J].中外建筑,2008,6:125-126.
    [48]张正威,宋二祥,陈肇元,核爆冲击波作用下高层建筑倾覆机理分析[J].工程力学,2008, 25::177-203.
    [49]王刚,陈杨,张建民,大圆筒结构抗倾覆稳定分析的有限元法[J].岩土力学,2006,27(2):238 -241.
    [50]钱家欢,殷宗泽,土工原理与计算[M].中国水利水电出版社,北京,1996年5月第2版.
    [51]赵明华,土力学与基础工程[M].武汉:武汉理工大学出版社,2003.
    [52]郝文化,ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2005
    [53]王新敏,ANSYS工程结构数值分析[M].北京:人民交通出版社.2007
    [54]刘凌云,门架式水力插板桩抗倾覆抗滑移稳定性研究[D].硕士学位论文,中国海洋大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700