浮筒水力自动控制闸门水力特性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为满足灌区信息化建设需要,本文在全面总结归纳前人在水力自动闸门研究成果的基础上,针对水力自动闸门在实际应用中存在的不足,以低功耗和可控性为.研究目标,提出了浮筒水力自动控制闸门,并通过水工模型试验研究了该类闸门的水力特性和控制特性。此项研究成果不仅有着重要的实用价值,而且对提高我国灌区信息建设及管理水平有着重要意义。
     论文主要研究内容及成果如下:
     (1)全面系统地分析了水力自动闸门在实际应用中存在的问题,指出稳定性不够和控制性较差是影响其难以普及的根本原因,而自动控制闸门的稳定性和控制性明显优于水力自动闸门但它确需要动力供电系统,在相对偏远的地区如果专门架设供电线路虽不存在技术问题,但从经济效益上分析绝对是不划算的。为此,本文在继承二者优点基础上,提出了浮筒水力自动控制闸门,该类闸门在最大限度地借助水的浮力的同时,又保存了闸门的控制功能,保证了闸门的稳定性和灵活性,但它并不需要动力供电系统,只要借助微型供电系统(如太阳能等)就能实现闸门的自动控制。
     (2)为了研究浮筒式闸门的水力特性,设计并进行了水工模型试验,通过对浮筒水力自动控制闸门的模型试验,得到了自由出流情况的流量与闸前水位和开度的流量计算公式和淹没出流情况的流量与水头差和开度的流量计算公式,同时也验证了浮筒水力自动控制闸门的在不同流态下稳定性。
     (3)浮筒水力自动控制闸门流量控制器的设计是在分析现行渠道的运行基本原理,分析渠道运行准则和闸门运行机理后,根据浮筒式闸门的模型试验成果,说明流量控制器的工作原理和过程,闸门控制特性的好坏取决于控制参数的选取。
     (4)并结合石头河灌区干斗渠实际情况和浮筒式闸门的特点,将原有分水闸改造设计为浮筒水力自动控制闸门的可行性,详细研究了浮筒闸门应用的设计思路和闸门孔板高程的确定方法。
To meet the irrigation needs of information technology. In this paper, a comprehensive summary of induction predecessors have automatic hydraulic gate on the basis of research results for hydraulic automatic gate in the practical application of the deficiencies, low-power and controllability of the research objectives, proposed pontoon-style hydraulic automatic gate, through the hydraulic model tests study the hydraulic characteristics and type of gate control characteristics.The results not only has important practical value, But also raise China's irrigation construction and management of information is of great significance.
     Thesis research content and results are as follows:
     A comprehensive and systematic analysis of hydraulic automatic gate in the practical application problems that have poor stability, and control affect the poor are difficult to spread the root causes, the automatic gate stability and control much better than automatic hydraulic gate, but it does need power supply system in a relatively remote areas, erection of power lines though not if the special technical problems, but an economic analysis is absolutely uneconomical. In this paper both in the advantages of inheritance is proposed based on a pontoon-style hydraulic automatic gate, to maximize the use of such gates in the buoyancy in the water, while also preserving the gate control functions to ensure the stability and flexibility of the gate, but it does not need power supply system, as long as the use of micro-power supply system (such as solar energy) will be able to achieve automatic control of gates.
     In order to study the hydraulic characteristics of float-type gate designed and carried out hydraulic model tests, through the gate buoy automatic hydraulic model tests, get a free out of the flow of traffic and gate opening before the water level and flow of the calculation formula and drown out the flow of traffic and head difference and opening the flow of the calculation formula, while also verified the pontoon-style hydraulic automatic gate stability under different flow pattern.
     Pontoon-style hydraulic automatic gate flow controller design is the analysis of the basic principles of operation of the existing channels, analysis canal operation guidelines and the running mechanism of the gate, after, according to float-type gate of the model test results, indicating traffic controller working principle and process of, gate control characteristics of the good or bad depends on the selection of control parameters。
     Stone River Irrigation Area in conjunction with the actual situation and drifting buoys Douqu gate characteristics, watched the original transformation is designed to float hydraulic sluice gate automation feasibility study in detail the application of the pontoon gate design ideas and the gate orifice Elevation Determination。
引文
[1]年立新.加快实现灌区信息化建设[J].中国农村水利水电.2001,(9):10~11
    [2]赵竞成,陆文红,赵丽华.灌溉渠系运行计算机模拟技术的开发[J].中国农村水利水电,2001,(2):9~12
    [3]黄显峰,邵东国.我国灌区信息化建设面临的若干问题与对策[J].2005,21(2):69~71
    [4]陈传友,王春元等编著.水资源与可持续发展[M].中国科学技术出版社,1999,56~58
    [5]张玉欣,吴涤非.水资源合理利用与节水灌溉[J].节水灌溉,2002(4):24~26
    [6]李代鑫,第六届用户参与灌溉管理国际研讨会[R],2002
    [7]贾大林,姜文来.关于以节水为中心的大中型灌区改造规划的意见[J].农业高效用水与水土环境保护
    [8]韩娟,陆军,韩波,杨俊杰.世界节水灌溉高新技术浏览[J].西部大开发,2005,(8):12~14
    [9]D. s.Bernstein. On bridging the theory/Practice gap[J]. IEEE Coatrol Systems,1996, (10):64~70
    [10]李红丽.我国灌溉农业的现状与发展趋势[J].内蒙古林学报,1999,(6):28~30
    [11]冯广志.我国节水灌溉技术研究与推广[J].水利水电技术,1998,(10):59~60
    [12]黄修桥,段爱旺.我国节水灌溉农业建设途径研究[J].灌溉排水,1999,(4):33~35
    [13]张蔚棒.农业灌溉节水问题[J].灌溉排水,1999,(增刊):26~29
    [14]贾大林.关于黄河流域农业节水问题[J].灌溉排水,1999,18(3):1~3
    [15][英国]J.Lewin.水工闸门控制[J].水利水电快报,1996,2:23~24
    [16]徐立中.可编程控制器在水电站闸门控制系统中的应用[J].水利水文自动化,1998,2,24~27
    [17]何善君,吴亦锋.应用TP和PLC技术的水闸启闭机控制系统的研制[J].福州大学学报,2001,10:44~46
    [18]彭兵.单片机在中、小水电站闸门监控系统中的应用[D].西安:西北农林科技大学,2004
    [19]韩晓翠.基于单片机的中小水电站闸门监控系统[D].济南:山东科技大学,2007
    [20]刘兴华,韩怡,简新平.基于DSP的水库闸门控制系统设计[J].河北工程大学学报,2007,12,66~68
    [21]孙锐,周新志.嵌入式Linux系统的闸门控制设计[J].中国农村水利水电,2005,11,60~62
    [22]刘小力,高祥.嵌入式系统在闸门控制中的应用[J].中国自动化与大坝监测,2009,33(1):76~78
    [23]张鹏,刘青,张志秀.基于现场总线的闸门控制系统[J].工业仪表与自动化装置,2007,1:50~52
    [24]郑毅,方红卫,何国建,赵慧明.基于径向基函数的多闸门控制河流的洪水模拟[J].清华大学学报,2008,12(48):61~64
    [25]马勇,杜岗.模糊控制在闸门控制中的应用[J].工矿自动化,2008,1:34~35
    [26]顾燕,徐立中,孙保平,刘大奎等.基于现场总线的分布式闸门监控系统[J].水利水文自动化,2001,2:22~24
    [27]袁忠,刘平.闸门开度测量与控制[J].水利水电技术,1994,10:55~56
    [28]徐立中,于洪珍等.分布式闸门PLC控制系统的设计与研究[J].河海大学机械学院学报,1998,12:27~30
    [29]Bureau of Reclamation. A Summary Report On Research and Development of a Nonelectrical Gate Control[J]. Pacific Northwest Regional Office,1997,2001:21~23
    [30]Buyalski. Study of Automatic Upstream of Control System for Canals[J]. Bureau of Reclamation Report,1978:55~58
    [31]Johnson. Microprocessor Based Process Control[M]. Prentice-Hall
    [32]Solicitation/Specifications,7-SP-80-03880/DS-7750. Programmable Master Supervisory Control System, Dolores Project, Colorado[M]. Upper Colorado Region, Bureau of Reclamation, Salt lake, Utah,1988
    [33]Gooch, R. S., and A. L. Graves. Central Arizona Project Supervisory Control System[C]. Proceeding of Computerized Decision Support Systems for Water Resource Managers:Case Studies of Large Systems, ASCE Spring Convention, Denver, Colorado,1985
    [35]王长德,张礼卫,冯晓波.灌溉自动化的基本原理与技术发展[J].中国农村水利水电,2002,2:33~35
    [36]张朝峰.水“危机”、水利现代化与水管理[J].广东水利水电,2002,6:6~8
    [37]孙小鹏,宁勇.钢闸门流激振动的模拟试验技术[J].河海大学学报,1998,26(2):8~12
    [38]张志昌.水力学实验[M].北京:机械工业出版社,2006.66~75
    [39]吴杰芳,张林让,陈敏中等.三峡大坝导流底孔闸门流激振动水弹性模型试验研究[J].长江科学院院报,2001,18(5):76~79.
    [40]吴持恭.水力学[M].北京:高等教育出版社,1995.395
    [41]李宗健,江仪贞,王长德编著.水力自动闸门[M].北京:水利电力出版社,1987.55~56
    [42]任广云.渐开式翻板门的几个设计问题[J].水利水电科技进展,1999-10,19(5):49~50
    [43]吴永政.双支点自控翻板闸门水力计算问题的研究闭[J].东北水利水电,1994,8
    [44]罗周,曾宪岳,苏祥勉.大型水力自控翻板闸门在花竹水电站闸坝工程中的应用[J].广东水利水电,2997,(6):4~52
    [45]张忠调.浮筒闸门设计[J].武汉水利电力学院学报,1988,6:99~103
    [46]任广云.渐开式翻板门的几个设计问题[J].水利水电科技进展,1999-10,19(5):49~50
    [47]李丽文,闰丽,朱瑞兰.对水力自控翻板门运转稳定胜问题的探讨[J].沈阳农业大学学报,1998-04,29(2):175~177
    [48]叶镇国.水力自控翻板闸门泄流水力关联理论明[J].湖南大学学报,1994,21(3):98~105
    [49]梁国伟,蔡武昌.流量测量技术及仪表[M].北京:机械工业出版社,2002
    [50]黄履,船坞闸门设计[M].北京:人民交通出版社,1978
    [51]于国兴,刘玉霞,李孟黎.水力自动翻板闸门过闸流量公式[J].黑龙江水利科技,2001,(1):65~68
    [52]吕宏兴,裴国霞,杨玲霞.水力学[M].中国农业出版社,2002
    [53]周雪漪.计算水力学[M].北京:清华大学出版社,1995
    [54]郑邦民,槐文信,齐鄂容编著.洪水水力学[M].武汉:湖北科技出版社,2000
    [55]周金陵,蔡海平.闸门监控系统的优化设计[J].计算机应用研究,2002,7
    [56]肖志怀,张志学,王晓麟.旋转编码器在闸门控制中的应用[J].仪器仪表学报,2002,23(5):97~100
    [57]郭宗仁,吴亦锋.可编程序控制器及其通信网络技术[M].北京:人民邮电出版社,1999
    [58]张崇智.PLC在模糊控制中的应用[J].机械,2005,32(增刊):147~148
    [59]谢云敏,曹欣.基于单片机的快速闸门控制系统[J].中国农村水利水电,2002,12
    [60]杨英.水电厂闸门监控系统的开发及应用[J].四川大学学报工程科学报,2001,33(1)
    [61]Distefano, J. J., A. R. Stubberud, and I. J. Williams. Theory and Problem of Feedback and Control System[J]. Schaum's Outline Series, New York,1967
    [62]Falvey, H. T.. Frequency-Response Analysis of Automated Canals[J]. Bureau of Reclamation Report No. REC-ERC-77-3, Denver Colorado, December 1977
    [63]Graves, A. L., and R. S., Gooch. Central Arizona Progect Startup[C]. American Society of Civil Engineering, Water Forum's86:World Water Issues in Evolution, Long Beach, California, pp.546-554, August 4-6,1986
    [64]Hance, S., and E. Rus. Stabilite du Mouvenment de I'eau dans les Canaux d'adduction des Systems d'irrigation a functionment Automatique[J].Reveu Roumaine des Science Techniques, Seriede mechanique Appliquee, Vol.19, No.3,1979
    [65]Hance, S., and E. Rus, P. Dan., and G. H.. Teodoreanu, Hidraulica Sistemelor de Irigatie cu Function Auromata[J]. Edituracu Functionare Auromata, Editura Ceres, Bucharest, Romania,1982
    [66]姚林碧、张仁田.渠道自动控制技术与发展趋势[J].排灌机械,2002,4:34~37
    [67]张志昌,消宏武,毛兆明.明渠测流的理论和方法[M].陕西:陕西人民出版社,2004
    [68]Shand, M. J.. Final Report-The Hydraulic Filter Level Offset Method for the Feedback Control of Canal Engineering Laboratory, University of California at Berkeley, June 1968
    [69]Shand, M. J.. Automatic Downstream Control System for Irrigation Canals [J]. Final Technical Report HEL-8-4, Selection of Control Parameters for the Hydraulic Filter Level Offset (HyFLO) Method, Hydraulic Engineering Laboratory, University of California at Berkeley, August 1968
    [70]Yeh, M. W-G., L.Becker, D. Toy, and A. L. Graves. Central Arizona Project:Operation Model[J]. Proceeding of the American Society of Civil Engineers, Journal of the Water Resources Planning and Management Division, vol.106, No. WR2, pp.521-540, July 1980
    [71]王长德.灌溉渠道水力自动控制闸门[硕士论文].武汉水利电力学院,1981
    [72]王长德.灌溉渠道水力自动控制闸门的运行稳定问题[J].武汉水利电力学院学报,1982,4
    [73]王长德,张礼卫.下游常水位水力自动控制渠道运行动态过程及数学模型的研究[J].1997,11:
    11~12
    [74]徐本忠.水力自动翻转闸门的试验研究[J].江苏农学院学报,1981年增刊
    [75]Solicitation/Specifications,7-SP-60-02686/DS-7715. Programmable Master Supervisory Control System, West Oakes Test Area, Pick-Sloan Missouri Basin Program, North Dakota[M]. Missouri Basin Region, Bureau of Reclamation, Billions, Montana,1987
    [76]Schuster, J. C., and E. A. Serfozo. Study of Hydraulic Filter Level Offset (HyFLO) Equipment for Automatic Downstream Control of Canals [J]. Bureau of Reclamation Report No.REC-ERC-72-3, January 1972
    [77]Falvey, H. T., and, P. C. Luning. Gate Stroking[C]. Bureau of Reclamation Report No.REC-ERC-79-7,86pp., Denver Colorado, July 1979
    [78]马思伟.新型水力自控翻板闸门及其应用[J].四川水利,2001,(5):26~27
    [79]张礼卫,王改会.水力自动翻板闸门在现代水利中的应用[J].中国农村水利水电,2005,12:73~74
    [80]张绍芳.堰闸水力设计[M].北京:水利电力出版社,1987,2,242~249.
    [67]吴永政.双支点自控翻板闸门水力计算问题的研究闭[J].东北水利水电,1994,8
    [81]黄庆繁,钟润广.对水力自控平面翻板闸门几个问题的探讨[J].广东水利水电,1998,(6):19~21
    [82]杨卫中,张宗旗.水力自控翻板闸坝一些特殊问题的研究[J].贵州水力发电,2000,14(4):52~56
    [83]练继建,李一平.水力自控翻板门拍振机理的研究闭[J].1997,(11):56~64
    [84]习周诚,严天恩.水力自控翻板门系统稳定性分析闭[J].水运工程,1983
    [85]李保栋,王青,彭儒武等.自动翻板闸门运行中的拍打成因及防止措施[J].山东农业大学学报(自然科学版),2002,3
    [86]植成杰.新型连杆滚轮水力自控翻板闸门的推广应用闭[J].广东水利水电,2001,4
    [87]武汉水利电力大学农水系水工教研室编.水工建筑物(农田水利工程)上册[M].人民教育出版社,1977,319-351.
    [88]苑希民、李鸿雁、刘树坤、崔广涛.神经网络和遗传算法在水科学领域中的应用[M].北京:中国水利水电出版社,2002,29~30
    [89]Katsuhiko Ogata著,卢伯英、于海勋等译.现代控制工程tM].北京:电子工业出版社,2003,7
    [90]朱政权,林晓萍,黄德芬.新型水力自动闸门[J].黑龙江水利科技,1994,2:64~66
    [91]王长德.上游常水非位自动控制渠道明渠恒定流动态边界条件[J].水利学报,1995,2
    [92]柳劲名.下游常水位后浮箱水力自动控制闸门的设计[J].南水北调与水利科技,2003,5:34~35
    [93]莫导贤,王秀彦编著.水力自控翻板闸门[M].广西:广西人民出版社,1985
    [94]Chevereau, G., and M. F. Gauthier. Use of Mathematical Models as an Approach to Flow Control Problems[J]. Proceedings of the International Symposium on Unsteady Flow in Open Channels, BHRA-IARH, Newcastle-Upon-Tyne England, pp.J1,1-12,1976
    [95]McGarry, E. G.. User's Manual Unsteady Model(USM) [J]. Bureau of Reclamation, Denber, Colordo,1989
    [96]Kruse, G. E.. Surface Irrigation[J]. Agriculture Research Service, Department of Agriculture, Fort Collins, Colorado, National irrigation symposium, Nebraska Center for Continuing Education, Lincnln, Nebraska, November 10-13,1970

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700