资源节约型社会建设中的水权优化配置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水资源既是一种特殊的、不可替换的资源,又是一种可重复利用的自然资源。根据联合国教育科学文化组织最新发表的“世界水资源开发报告”指出,未来20年全球供水量预计将下跌三分之一,而到2050年,全球将有48-60个国家的20-70亿人口受饮用水短缺的影响。水资源将取代能源成为21世纪最紧缺的战略资源。水资源是中国在自然资源领域面临的最大威胁,中国用水量居世界第一位,而人均供水却远远低于世界平均水平。根据国家发改委预计,到2010年中国的用水供求缺口将达320亿立方米,到2030年将激增至500亿立方米。因此,如何合理有效地配置水资源,缓解水资源供需矛盾成为当今社会发展的一个刻不容缓的重大命题。
     在十一五规划中,中央明确指出,要落实节约资源和保护环境基本国策,建设低投入、高产出,低消耗、少排放,能循环、可持续的国民经济体系和资源节约型、环境友好型社会。资源节约型社会的建设要求强化资源管理,而加强水资源管理,须完善取水许可和水资源有偿使用制度,实行用水总量控制与定额管理相结合的制度,建立国家初始水权分配制度和水权转让制度,健全流域管理与区域管理相结合的水资源管理体制。
     为了剖析水权优化配置对资源节约型社会建设的积极作用、解决水权优化配置的几个关键问题,本文从水权及水权优化配置理论出发,分别从流域水权配置的模式选择,流域水权初始配置模型、流域水权交易机制等方面,结合太湖流域的实践,对流域水权优化配置问题进行了较为系统的研究,其主要研究成果及结论如下:
     本文阐明了研究目的和研究意义,对国内外水权优化配置的相关研究进行综述。
     本文主要研究水权及水权优化配置理论,阐述了水权及产权的概念、水权特征,对水权的界定及水权制度进行了分析,指出了水资全产权具有非完全排他性、可分割性、外部性、配置主体地位的不平等性、稀缺性等五个特性,并认为在我国水权必须基于流域的基础上进行探讨和研究。在此基础上,本文将水权定义为流域水资源的使用权、收益权、处分权和自由转让权。
     本文主要就水权配置模式的选择进行了探讨。通过政府垄断型、自由市场型和水权交易型三种流域水权配置模式的比较,本文认为采用水权交易型水权配置模式是较优的模式,它克服了政府垄断型配置模式所带来的“政府失灵”以及自由市场型配置模式所带来的“市场失灵”。在讨论水权交易型配置的两种模式——基于优先专用权原则的配置模式和基于比例分享权原则的配置模式,我们发现基于比例共享权原则的配置模式消除了用水户之间的不公平性,尤其是当用水双方的弹性系数相同时,基于比例共享权原则的配置模式能够优化和提升整个社会的福利。
     本文主要研究了水权初始配置模式,认为合理地界定初始水权,是建立可交易水权制度的前提,也是流域水资源高效开发利用和水资源统一管理的基础。本文通过建立多目标多层次模糊优选模型,从“流域”至“行政区”对水权进行了第一层次的初始配置,解决了流域间各行政区的竞争用水问题;通过建立多目标规划模型,从“行政区”至“用水户”对水权进行第二层次的初始配置,解决了各行政区内产业部门的竞争用水问题,在一定程度上实现了水权根据效益优先原则进行配置。本文通过对太湖流域的实证分析,得出的结论表明,水权初始配置能够提高节水效率,通过水权的优化配置能够引导产业结构的优化配置,从而提高整个流域的经济效益。
     本文研究了水权准市场交易机制,具体阐述了水权准市场的两种拍卖模型,第一价格拍卖模型和双方叫价拍卖模型,并且在这两种基本模型的基础上,提出水权准市场多因子动态交易模型,考虑了水权转让双方对水权价值的判断,即水权价格弹性系数,并通过模型的推导得出动态交易模型的交易价格和存在条件。本文通过对太湖流域的实证分析,并通过计算机程序语言实现了水权交易均衡价格的模拟测算过程,得到上海地区第一产业富余水权向第二产业转让的水权交易均衡价格。
     通过以上研究,本文的创新点可归纳为以下三点:
     1、通过分析比较基于优先占用权原则和基于比例分享权原则的两种水权交易型配置模式,得出水权优化配置应遵循比例分享权原则的结论,以及明晰水权的重要性。
     2、选择合理的指标体系,通过多目标多层次模糊优选理论和多目标规划理论对水权进行两个层次的初始配置,解决了初始水权配置的难点,并对太湖流域目前的水权配置进行了实证分析。
     3、在建立多因子水权准市场交易动态模型的基础上,分析了水权交易价格均衡解及其存在条件,并用计算机程序语言实现了上海地区第一产业富余水权向第二产业转让交易的均衡价格模拟测算。
Water is a special, irreplaceable resource as well as a kind of natural resource which could be repetitively used. According to the“World Water Development Report”issued by United Nations Educational, Scientific and Cultural Organization recently, the global supply of water in the next 20 years is expected to fall by one third and there will be 20-70 million people from 48-60 countries affected by shortage of drinking water in 2050. Water will definitely become one of the most important strategic resources in 21st century.
     China’s water resources are facing the biggest threat among all natural resources. China ranks first in the world consumption of water while the water supply per capita is far below the world’s average level. According to the prediction of the State Development and Reform Commission, the gap between water supply and demand will reach 32 billion cubic meters by 2010 and will be increased to 50 billion cubic meters in 2030. Therefore, how to make effective and efficient distribution of water resource to ease contradiction between supply and demand has become a major proposition in social development.
     In the 11th Five-Year Plan, the central government clearly pointed out that we should comply with the basic national policy of resource conservation and environment protection to build a low-input, high-yield, low-consumption, emission, energic and sustainable economic system and a resource-saving, environment-friendly society. In order to build a resource-saving society, we should strengthen resource management, especially in water resource management to improve water usage permission and paid system, to implement water volume control, to initialize the establishment of water property distribution system and water property trade system, to sound water resource management system.
     There are a few key issues to analyze the impact of optimal allocation of water property on establishment of resource-saving society. This thesis will focus on the issues under the base of water property and optimal allocation of water property theory and to solve the issues like water property distribution mode, initial water property allocation model, water property trade system. This thesis did some demonstration and data analysis for Taihu Lake Watershed and the main results and conclusions are as follows:
     Firstly, this thesis clarifies the purpose and significance of the topic and sum up the reviews of optimal distribution of water property and some relevant studies.
     Secondly, this thesis studies water property theory, explain the definition of water property, characteristics of water property, and analyze the water property system. The findings are that the water property study should be based on watershed in China because of the completely non-exclusive, un-dividend, externality, inequality and scarcity features of water property. Therefore, the water property is defined as the right to use water, get profit from water, dispose of water and trade of water.
     Thirdly, this thesis mainly discusses the distribution model of water property. Through the analysis of three different models, we consider that the adoption of water trade distribution model will be the more effective one because it overcomes of shortcomings of government failure as well as market failure. In discussing water trade distribution model, we find that the trade distribution model based on the principle of proportional allocation could eliminate the inequality between the users. And more important, this kind of distribution model could upgrade the welfare of the whole society if the water users have the same coefficient of elasticity.
     Fourthly, this thesis solve the problem of water resource competitiveness on the level of“Valley to City”through multi-level, multi-objective optimization model; solve the problem of water resource competitiveness on the level of“City to Sector”through multi objective programming model. According to the data analysis of Taihu Lake Watershed, the initial water property allocation could improve the efficiency of water-saving, guide the optimization of industrial structure and increase the economic effectiveness of the entire watershed.
     At last, this thesis studies water property quasi-market trading mechanism by setting out in detail of two types of quasi-market auction model for water property. The one is the first price auction model and another is two sides outcry auction model. Based on these two basic models, this thesis initialize the water property quasi-market dynamic transaction model by considering both parties water property value judgment, that to say the elasticity co efficiency of water price. Based on the data analysis of Taihu Lake Watershed, this thesis use C++ computer programming language to realize the process of dynamic trading and get the equilibrium price of water property trade from primary industry to second industry in Shanghai.
     Through the research above, the innovative points of this issue could be summarized as follows:
     1. Through the analysis of two kinds of water property trade distribution model——Based on the principle of priority sharing and proportional sharing, the conclusion is that the optimal distribution of water property should be based on the principle of proportional sharing. Therefore, it’s very important to clarify water property before water property allocation.
     2. Through choosing a reasonable target system and multi-level, multi-objective optimization model and multi-objective programming model, the thesis initializes the two level water property allocations to solve the problem of property competitiveness.
     3. Based on the multi-factor water property quasi-market dynamic transaction model, this thesis analyze the equilibrium price water property trade and use C++ computer programming language to realize the process of dynamic trading and get the equilibrium price of water property trade from primary industry to second industry in Shanghai.
引文
1. Aida, Kazuo; Cooper, William W.; Pastor, Jésus T.; Sueyoshi, Toshiyuki. Evaluating Water Supply Services in Japan with RAM: a Range-adjusted Measure of Inefficiency. Omega Volume: 26, Issue: 2, April, 1998, pp. 207-232.
    2. Bennett L L. The integration of water quality into transboundary allocation agreement lessons from the southwestern Unite States[J ] . Agricultural Economics,2000,24 :113 – 125
    3. Carstensen, Jacob; Vanrolleghem, Peter; Rauch, Wolfgang; Reichert, Peter. Terminology and methodology in modelling for water quality management - a discussion starter. Water Science and Technology Volume: 36, Issue: 5, 1997, pp. 157-168.
    4. Crockett, A.B. Water and wastewater quality monitoring, McMurdo Station, Antarctica. Oceanographic Literature Review Volume: 44, Issue: 11, November, 1997, pp. 1368-1369.
    5. Copertino, V. A.; Molino, B.; Telesca, V. Spatial and Temporal Evolution of Water Quality in Reservoirs. Physics and Chemistry of the Earth Volume: 23, Issue: 4, 1998, pp. 475-478.
    6. Cheng, Chia-Yau; Ribarova, Irina. Activated sludge system modelling and simulations for improving the effluent water quality. Water Science and Technology Volume: 39, Issue: 8, 1999, pp. 93-98.
    7. Crabtree, Bob; Hickman, Matt; Martin, Dave. Integrated water quality and environmental cost-benefit modelling for the management of the River Tame. Water Science and Technology Volume: 39, Issue: 4, 1999, pp. 213-220.
    8. Drew Fudenberg,Jean Tirole,博弈论[M],北京:中国人民大学出版社,2002
    9. Dixon, A.; Butler, D.; Fewkes, A.; Robinson, M. Measurement and modelling of quality changes in stored untreated grey water. Urban Water Volume: 1, Issue: 4, December, 2000, pp. 293-306.
    10. De Marchi, Carlo; Ivanov, Pavel; Jolma, Ari; Masliev, Ilia; Smith    11. Dynamics of water flow and fertilizer solute leaching in lateritic soils of Kharagpur region, India S. Behera, Madan K. Jha□, S. Kar Agricultural and Food Engineering Department, I.I.T., Kharagpur 721302, India Agricultural Water Management Volume: 63, Issue: 2 December 1, 2003
    12. Evaluation of subsurface drainage performance in Lithuania A. Rimidisa, W. Dierickxb,Agricultural Water Management Volume: 59, Issue: 1 March 2, 2003
    13. Fama. Efficient Capital Markets : a review of theory and empirical work[J ] . Journal of Finance ,1970 ,(25) :383 - 417.
    14. Faby, J. A.; Brissaud, F.; Bontoux, J. Wastewater Reuse in France: Water Quality Standards and Wastewater Treatment Technologies. Water Science and Technology Volume: 40, Issue: 4-5, 1999, pp. 37-42.
    15. Gra?a, M. A. S.; Coimbra, C. N. The elaboration of indices to assess biological water quality. A case study. Water Research Volume: 32, Issue: 2, February, 1998, pp. 380-392.
    16. Gu, Ruochuan; Dong, Mei. Water quality modeling in the watershed-based approach for waste load allocations. Water Science and Technology Volume: 38, Issue: 10, 1998, pp. 165-172.
    17. Gündüz, Orhan; Soyupak, Sel?uk; Yurteri, Coskun. Development of water quality management strategies for the proposed isikli reservoir. Water Science and Technology Volume: 37, Issue: 2, 1998, pp. 369-376.
    18. Haughton G et al. Sustainable cities. London. Jessica Kingsley publishers.1996.
    19. Haddad, Marwan. Planning water supply under complex and changing political conditions: Palestine as a case study. Water Policy Volume: 1, Issue: 2, April, 1998, pp. 177-192.
    20. Hamilton, David P.; Schladow, Geoffrey; Fisher, I.H. Controlling the indirect effects of flow diversions on water quality in an Australian reservoir. Environment International Volume: 21, Issue: 5, 1995, pp. 583-590.
    21. Isaac, Russell A. Costs and benefits of water quality: Massachusetts as a case example. Water Science and Technology Volume: 38, Issue: 11, December 4, 1998, pp. 15-21.
    22. Jiménez, B.; Ramos, J.; Quezada, L. Analysis of Water Quality Criteria in Mexico. Water Science and Technology Volume: 40, Issue: 10, 1999, pp. 169-175.
    23. Jolma, Ari; De Marchi, Carlo; Smith, Mark; Perera, B.J.C.; Somlyódy, László. StreamPlan: a support system for water quality management on a river basin scale. Environmental Modelling and Software with Environment Data News Volume: 12, Issue: 4, 1997, pp. 275-284.
    24. Joubert, Alison R.; Leiman, Anthony; de Klerk, Helen M.; Katua, Stephen; Aggenbach, J. Coenrad. Fynbos (fine bush) vegetation and the supply of water: a comparison of multi-criteria decision analysis and cost-benefit analysis. Ecological Economics Volume: 22, Issue: 2, August, 1997, pp. 123-140.
    25. Kisgy?rgy, Sándor; Botond, Gy?rgy; Tyson, John M. Water Quality Management and Legislation in Hungary - A River Basin Approach. Water Science and Technology Volume: 40,Issue: 10, 1999, pp. 81-86.
    26. Krysanova, Valentina; Müller-Wohlfeil, Dirk-Ingmar; Becker, Alfred. Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds. Ecological Modelling Volume: 106, Issue: 2-3, March 1, 1998, pp. 261 – 289.
    27. León, L.F.; Soulis, E.D.; Kouwen, N.; Farquhar, G.J. Nonpoint source pollution: a distributed water quality modeling approach. Water Research Volume: 35, Issue: 4, March, 2001, pp. 997-1007.
    28. Leonard D , Long N V. Optimal control theory and static optimization in economics [M] . Cambridge , MA: Cambridge University Press,1992.
    29. Lee, H. K.; Oh, K. D.; Park, D. H.; Jung, J. H.; Yoon, S. J. Fuzzy expert system to determine stream water quality classification from ecological information. Water Science and Technology Volume: 36, Issue: 12, 1997, pp. 199-206.
    30. Langan, Simon J.; Wade, A.J.; Smart, R.; Edwards, A.C.; Soulsby, C.; Billett, M.F.; Jarvie, H.P.; et. al. The prediction and management of water quality in a relatively unpolluted major Scottish catchment: current issues and experimental approaches. The Science of the Total Environment Volume: 194-195, February 24, 1997, pp. 419-435.
    31. Marian L Weber. Markets for Water Rights under Environmental Constraints[J],Journal of Environmental Economics and Management,2001(42):53 – 64.
    32. Marsden, M.W.; Mackay1, D.W. Water quality in Scotland: the view of the regulator. The Science of the Total Environment Volume: 265, Issue: 1-3, January 29, 2001, pp. 369-386.
    33. Mailhot, Alain; Rousseau, Alain N.; Massicotte, Serge; Dupont, Jacques; Villeneuve, Jean-Pierre. A watershed-based system for the integrated management of surface water quality: the GIBSI system. Water Science and Technology Volume: 36, Issue: 5, 1997, pp. 381-387.
    34. Mimikou, M.A.; Baltas, E.; Varanou, E.; Pantazis, K. Regional impacts of climate change on water resources quantity and quality indicators. Journal of Hydrology Volume: 234, Issue: 1-2, June 30, 2000, pp. 95-109.
    35. Mourad, Elbelkacemi; Lachhab, A.; Limouri, M.; Dahhou, B.; Essaid, A. Adaptive control of a water supply system. Control Engineering Practice Volume: 9, Issue: 3, March, 2001, pp. 343-349.
    36. Marjanovic, P.; Miloradov, M.; van Zyl, F. Systems approach to effective water quality management in the Republic of South Africa, existing situation and expected future developments. Water Science and Technology Volume: 38, Issue: 11, December 4, 1998, pp.77-85.
    37. Menéndez, A.; Biscarri, F.; Gómez, A. Balance equations estimation with bad measurements detection in a water supply net. Flow Measurement and Instrumentation Volume: 9, Issue: 3, September, 1998, pp. 193-198.
    38. Norton, M.M.; Fisher, T.R. The effects of forest on stream water quality in two coastal plain watersheds of the Chesapeake Bay. Ecological Engineering Volume: 14, Issue: 4, April, 2000, pp. 337 – 361.
    39. Nederlof, Maarten M.; Kruithof, Joop C.; Hofman, Jan A.M.H.; de Koning, Martin; van der Hoek, Jan-Peter; et. al. Integrated multi-objective membrane systems application of reverse osmosis at the Amsterdam Water Supply. Desalination Volume: 119, Issue: 1-3, September 20, 1998, pp. 263-273.
    40. Ostrom E,1990,Governing the Commons: The Evolution for Collective Action, Cambridge University, Press Cambridge,30.
    41. Onishi T. A capacity approach for sustainable urban development: an empirical study. Regional studies. 1994.
    42. Owen, A. J.; Colbourne, J. S.; Clayton, C. R. I.; Fife-Schaw, C. Risk communication of hazardous processes associated with drinking water quality - a mental models approach to customer perception, part 1 - a methodology. Water Science and Technology Volume: 39, Issue: 10-11, 1999, pp. 183-188.
    43. Parent, Serge; Morin, Antoine. N budget as water quality management tool in closed aquatic mesocosms. Water Research Volume: 34, Issue: 6, April 1, 2000, pp. 1846-1856.
    44. Park, Kyeong; Shen, Jian; Kuo, Albert Y. Application of a multi-step computation scheme to an intratidal estuarine water quality model. Ecological Modelling Volume: 110, Issue: 3, July 22, 1998, pp. 281-292.
    45. Portielje, Robert; Hvitved-Jacobsen, Thorkild; Schaarup-Jensen, Kjeld. Risk analysis using stochastic reliability methods applied to two cases of deterministic water quality models. Water Research Volume: 34, Issue: 1, January 1, 2000, pp. 153-170.
    46. Prévost, Marcel; Plamondon, André P.; Belleau, Pierre. Effects of drainage of a forested peatland on water quality and quantity. Journal of Hydrology Volume: 214, Issue: 1-4, January, 1999, pp. 130-143.
    47. Qian, Song S. Water quality model structure identification using dynamic linear modeling: river cam case study revisited. Water Science and Technology Volume: 36, Issue: 5, 1997, pp. 27-34.
    48. Roger Perman,Yue Ma,JamesMcGilvray,et al. Natural Resource and Environmental Economics (Second Edition) [M] .Longman Publishing House ,1999
    49. Rout, D.; Verma, R.; Agarwal, S. K. Polyelectrolyte treatment - an approach for water quality improvement. Water Science and Technology Volume: 40, Issue: 2, 1999, pp. 137-141.
    50. Riddle, A.M. Investigation of model and parameter uncertainty in water quality models using a random walk method. Journal of Marine Systems Volume: 28, Issue: 3-4, April, 2001, pp. 269-279.
    51. Risbey, James S. Sensitivities of water supply planning decisions to streamflow and climate scenario uncertainties. Water Policy Volume: 1, Issue: 3, June, 1998, pp. 321-340.
    52. Randhir, Timothy O.; O’Connor, Robert; Penner, Paul R.; Goodwin, David W. A watershed-based land prioritization model for water supply protection. Forest Ecology and Management Volume: 143, Issue: 1-3, April 1, 2001, pp. 47-56.
    53. Sakai, Hiromitsu; Iiyama, Satoru; Toko, Kiyoshi. Evaluation of water quality and pollution using multi-channel sensors. Sensors and Actuators B: Chemical Volume: 66, Issue: 1-3, July 25, 2000, pp. 251-255.
    54. SONG H L ,LIU C C ,LAWARREE J . Nash equilibrium bidding strategies in a bilateral electricity market [J ] . IEEE Transaction on Power Systems ,2002 ,17(1) :73279.
    55. Somlyódy, László. Use of optimization models in river basin water quality planning. Water Science and Technology Volume: 36, Issue: 5, 1997, pp. 209-218.
    56. Scharf, Wilfried. Integrated water quality management of the gro?e dhünn reservoir. Water Science and Technology Volume: 37, Issue: 2, 1998, pp. 351-359.
    57. ?tambuk-Giljanovic, Nives. Water quality evaluation by index in Dalmatia. Water Research Volume: 33, Issue: 16, November, 1999, pp. 3423-3440.
    58. Sharma, A. Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 3 — A nonparametric probabilistic forecast model. Journal of Hydrology Volume: 239, Issue: 1-4, December 20, 2000, pp. 249-258.
    59. Sharma, A.; Luk, K.C.; Cordery, I.; Lall, U. Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 2 — Predictor identification of quarterly rainfall using ocean-atmosphere information. Journal of Hydrology Volume: 239, Issue: 1-4, December 20, 2000, pp. 240-248.
    60. Smith, Mark Griffin; De March, Carlo; Jolma, Ari. Paddling Enforceable Approaches Upstream to EU Standards: Water Quality Management and Policy Implementation in Central and EasternEurope. Water Science and Technology Volume: 40, Issue: 10, 1999, pp. 73-79.
    61. TISDELL J G, HARRISON S R. Estimating and optimal Distribution of water entitlements [J ] . Water Resources Research ,1992 ,28(12) :311123117.
    62. Torán, F.; Ramírez, D.; Navarro, A.E.; Casans, S.; Pelegrí, J.; Espí, J.M. Design of a virtual instrument for water quality monitoring across the Internet. Sensors and Actuators B: Chemical Volume: 76, Issue: 1-3, June 1, 2001, pp. 281-285.
    63. The Potential for Water Market Efficiency When Instream Flows Have Values Ronald C.Griffin and Shih-Hsun Hsu
    64. Tambo, Norihito; Kamei, Tasuku. Coagulation and flocculation on water quality matrix. Water Science and Technology Volume: 37, Issue: 10, 1998, pp. 31-41.
    65. Tahri, Khalid. The prospects of fresh water supply for Tan Tan City from non-conventional water resources. Desalination Volume: 135, Issue: 1-3, April 20, 2001, pp. 43-50.
    66. Tillman, D.; Larsen, T. A.; Pahl-Wostl, C.; Gujer, W. Modeling the actors in water supply systems. Water Science and Technology Volume: 39, Issue: 4, 1999, pp. 203-211.
    67. Tatietse, Thomas Tamo; Zimmermann, Monique; Villeneuve, Paul; Pettang, Chrispin. A new and rational approach to modelling and designing potable water and electricity supply systems in African cities. Building and Environment Volume: 35, Issue: 7, October 1, 2000, pp. 645-654.
    68. van Straten, Gerrit. Models for water quality management: the problem of structural change. Water Science and Technology Volume: 37, Issue: 3, 1998, pp. 103-111.
    69. Vogel, Richard M.; Bell, Christopher J.; Fennessey, Neil M. Climate, streamflow and water supply in the northeastern United States. Journal of Hydrology Volume: 198, Issue: 1-4, November 1, 1997, pp. 42-68.
    70. WANGL ,FANGL , HIPEL K W. Cooperative water resourceallocation based on equitable water rights [J ] . Systems , Man and Cybernetics , 2003(5) :442524430.
    71. Water Policy 3 (2001) 297-320 Sustainable development of India’s watersFsome policy issues Mahesh C. Chaturvedi* Department of Environmental Sciences, Harvard University, Cambridge, MA 02138,USA
    72. Water Policy 4 (2002) 423-446 The economic value of water in agriculture: concepts and policy applications$ Frank A. Warda,*, Ari Michelsenb,1 a Department of Agricultural, Economics and Agricultural Business, New Mexico State University, Las Cruces, NM, USA
    73. Worrall, F.; Wooff, D.A.; McIntyre, P. A simple modelling approach for water quality: The example of an estuarine impoundment. The Science of the Total Environment Volume: 219,Issue: 1, August 12, 1998, pp. 41-51.
    74. Zlatarova, Savka; Slavtcheva, Dora; Georgieva, Bojanka. Ecological research on the Tzonevo dam as a possible alternative source for the water supply of Varna City. Water Science and Technology Volume: 39, Issue: 8, 1999, pp. 155-160.
    75. 杨志保等,水资源知识,郑州黄河水利出版社,2001
    76. 汪恕诚,水权管理与节水社会[J],中国水利,2001 第 4 期
    77. 雷玉桃,产权理论与流域水权配置模式研究,南方经济,2006 年第 10 期
    78. 沈满洪,水权交易制度——中国案例分析,博士学位论文,2004
    79. 沈菊琴,水权理论对水资源优化配置的影响研究,博士学位论文,2005
    80. 张平,水权制度与水资源优化配置,人民黄河,2005 年 4 月,第 27 卷第 4 期
    81. 程晓冰,水资源保护概念[J],水资源保护,2001(4)
    82. 胡振鹏,傅春,周国栋,水资源使用权有偿转让浅议[J],中国水利,2001(5)
    83. 李燕玲,国外水权交易制度对我国的借鉴价值[J],水土保持科技情报,2003(4)
    84. 赵海林,赵敏,毛春梅等,中外水权制度比较研究与我国水权制度改革[J],水利经济,2003(7)
    85. 李可可,邵自平,美国西部水权管理制度及启示[J],中国水利,2004(6)
    86. A. 阿尔钦:产权:一个经典的注释,《财产权利和制度变迁》,上海三联书店,1991 年
    87. Y.巴泽尔:《产权的经济分析》,上海三联书店,上海人民出版社,1997 年
    88. 德姆塞茨:关于产权的理论,《财产权利和制度变迁》,上海三联书店,1991 年
    89. E.G.菲吕博腾,S.配杰威齐:产权与经济理论:近期文献的一个综述,《财产权利和制度变迁》,上海三联书店,1991 年
    90. 张军:《现代产权经济学》,上海三联书店,上海人民出版社,1994 年
    91. 道格拉斯.C.诺思:《经济史中的结构与变迁》,上海三联书店,1997 年
    92. 斯蒂格利茨:《政府为什么干预经济》,中国物质出版社,1998 年
    93. 丹尼尔.W.布罗姆利:《经济利益与经济制度——公共政策的理论基础》,上海三联书店,上海人民出版社,1996 年
    94. 斯蒂格利茨:《微观经济学》,中国人民大学出版社,2000 年
    95. 胡振鹏、傅春、王先甲:《水资源产权配置与管理》,科学出版社,2003 年
    96. 林洪孝,彭绪民,城市水权分配机会的多目标规划模型,水利学报,2005 年 4 月,第 36 卷,第4 期
    97. 吴季松,水务知识读本[M],北京:中国水利水电出版社,2003
    98. 方红远,邓玉梅,水资源系统不确定性决策机会约束模型法[J ],河海大学
    99. 林洪孝,城市水务系统管理模式与运作机制研究[D],成都:西南交通大学
    100. 刘宝碇,赵瑞清,随机规划与模糊规划[M],北京:清华大学出版社,2001
    101. 金菊良,丁晶,水资源系统工程[M],成都:四川科学技术出版社,2002
    102. 周明,孙树栋,遗传算法原理及应用[M],北京:国防工业出版社,1999
    103. 侯成波,初始水权内涵分析,水利发展研究,2005 年 12 月
    104. 汪恕诚,水权和水市场[A],中国水利年鉴 2001[C],北京:中国水利水电出版社,2001
    105. 钱正英等,中国可持续发展水资源战略研究综合报告[A],中国水利年鉴[C],北京:中国水利水电出版社,2001
    106. 王浩等,水资源评价准则及其计算口径[A],中国水利学会论文集[C],中国水利学会,2003
    107. 常云昆,黄河断流与黄河水权制度研究[M],北京:中国社会科学出版社,2001
    108. 侯成波,黄河本原蠡测[M],北京:光明日报出版社,2004
    109. 吴凤平,葛敏,基于和谐性判断的交互式水权初始分配方法,河海大学学报(自然科学版),2006年 1 月,第 34 卷第 1 期
    110. 葛颜祥,胡继连,解秀兰,水权的分配模式与黄河水权的分配研究[J],山东社会科学,2002(4):
    35O39.
    111. 梁慧稳,流域水务一体化管理下水权配置与定价[J],东北水利水电,2002(5):1O5.
    112. 裴源生,李云玲,于福亮,黄河置换水量的水权分配方法探讨[J],资源科学,2003(3):32O37.
    113. 苏青,施国庆,吴湘婷,流域内区域间取水权初始分配模型初探[J],河海大学学报(自然科学版),2003,31(3):347O350.
    114. 吴凤平,葛敏,水权第一层次初始分配模型[J],河海大学学报(自然科学版),2005,33(2):
    216O219.
    115. 葛敏,吴凤平,水权第二层次初始分配模型[J],河海大学学报(自然科学版),2005,33(5):592O594.
    116. 胡鞍钢,王亚华,转型期水资源配置的公共政策:准市场和政治民主协商[J],中国软科学,2000(5):5O11.
    117. 徐南荣,仲伟俊,现代决策理论与方法[M],南京:东南大学出版社,2001:78O85.
    118. 和莹,常玉昆,流域初始水权的分配,西北农林科技大学学报(社会科学版),2006 年 5 月,第6 卷第 3 期
    119. 李长杰,王先甲,郑旭荣,流域初始水权分配方法与模型,武汉大学学报(工学版),2006 年 2月,第 39 卷第 1 期
    120. 李光丽,霍有光,流域水权初始分配的路径研究,水利经济,2006 年 1 月,第 24 卷第 1 期
    121. 陈燕飞,郭大军,王祥三,流域水权初始配置模型研究,湖北水力发电,2006 年第 3 期
    122. 明晰初始水权是建设节水型社会的基础,水利规划与资源配置,中国水利,2005 年 9 月
    123. 柯劲松,桂发亮,模糊决策和层次分析法在水权初始分配中的应用,中国农村水利水电,2006年第 5 期
    124. 陈洪转,羊震,杨向辉,我国水权交易博弈定价决策机理,水利学报,2006 年 11 月,第 37 卷第 11 期
    125. 罗惠,李良序,王梅华,刘国彬,水权准市场交易模型及市场均衡分析,水利学报,2006 年 4月,第 37 卷第 4 期
    126. 汪恕诚,水权和水市场——谈实现水资源优化配置的经济手段[J ],中国水利,2000(11):6 --9.
    127. 倪红珍,王浩,阮本清,汪党献,基于环境价值论的商品水定价[J ],水利学报,2003(10):101 - 107
    128. 冯耀龙,王宏江,资源水价的研究[J],水利学报,2003(8):111 - 116.
    129. 罗慧,仲伟周,刘宇等,陕北黄土高原生态环境治理的有效性:产权残缺立论的分析视角[J],中国人口·资源与环境,2005,15(3):50 - 54
    130. 石玉波,关于水权与水市场的几点认识[J],中国水利,2001(2):31 - 32
    131. 罗慧,王梅华,杜继稳,水资源可持续发展中政府管制作用[J],水土保持通报,2005,25(5):94 - 99
    132. 阿维纳什·K·迪克西特,经济政策的制定:交易成本政治经济学的视角[M],刘春元泽,北京:中国人民大学出版社,2004.
    133. 陈宝林,最优化理论与算法[M],北京:清华大学出版社,2004
    134. 胡振鹏,傅春,水权转让及其经济学分析,南昌工程学院学报,2005 年 6 月,第 24 卷第 2 期
    135. 李海红,王光谦,水权交易中的水价估算,清华大学学报(自然科学版),2005 年第 45 卷,第6 期
    136. 周玉玺,葛颜祥,水权交易制度绩效分析,中国人口·资源与环境,2006 年第 16 卷第 4 期
    137. 陈洁,许长新,水权定价指标体系研究,辽宁师范大学学报(自然科学版),2006 年 3 月第 29卷第 1 期
    138. 尹云松,糜仲春,张道武,流域水资源分配纳什均衡实现过程的进化博弈分析,运筹与管理,2005年 2 月,第 14 卷第 1 期
    139. 王为人,屠梅曾,基于回流模型的水权双方叫价拍卖分析,水利学报,2006 年 1 月,第 37 卷第1 期
    140. 王庆,王先甲,基于博弈论的水权交易市场研究,水利经济,2006 年 1 月,第 24 卷第 1 期
    141. 尹云松,糜仲春,刘亮,流域内不同地区间水权交易的博弈模型研究[J],水利经济,2004,22(6):527.
    142. 尹云松,孟枫平,流域水资源数量与质量分配双重冲突的博弈分析[J],数量经济技术经济研究,2004 (1):136-140
    143. 罗波特,吉本斯,博弈论基础[M],高峰译,北京:中国社会科学出版社,1999:1712176
    144. 孙六平,罗建华,张健,论我国水权制度体系的完善,西北水力发电,2005 年 12 月,第 21 卷,第 4 期
    145. 李晶,王晓娟,胡昌明,水权不同阶段比较分析,水利发展研究,2005 年 1 月
    146. 太湖流域水资源公报,2006 年
    147. 上海、浙江、江苏地区统计年鉴,2006 年
    148. 郑忠萍,彭新育,我国水市场研究述评,2005 年 2 月,第 7 卷第 1 期
    149. 党卫红,杨玉农,王勤,水权交易和水市场[J].水利发展研究,2002(11):46-49
    150. 于纪玉,刘方贵,水市场建立的支撑和保障体系[J],水利经济,2003(3):35-36
    151. 吴恒安,水价、水权和水市场[J],水利科技与经济,2001(9):110-113.
    152. 张仁田,陈守伦,童利忠,水权分配与水市场中的水权交易体制[J],华北水利水电学院学报,2002(6):77-80
    153. 冯耀龙,崔广涛,王安源,我国水市场机制建立的分析探讨[J],河北水利水电技术,2003(4):
    9-13
    154. 杨剑敏,冯建维,初探水市场[J],水利经济,2001(5):6-10
    155. 黄河,水市场的特点和发展措施[J],中国水利,2002(12):15-17
    156. 黄贤金,陈志刚,周寅康,彭补拙,水市场运行机制的国际比较及其对我国的启示[J],国土资源,2002(12):18-21.
    157. 焦士兴,面向 21 世纪的中国水资源市场[J],安阳师范学院学报,2003(2):28-30
    158. 曹烨,浅谈水权与水市场[J],价格与市场,2001(9):28-29
    159. 张云昌,水市场及水价形成机制浅析[J],中国水利,2003(6):44-45
    160. 赵海林,赵敏,郑垂勇,建立以水权理论为基础的水价机制的构思[J],经济师,2004(5):21-22
    161. 清华大学 21 世纪发展研究院,中国科学院联合课题组,水权和水市场:水管理发展新趋势[J].经济研究参考,2002(20):2-8.
    162. 钟玉秀,对水权交易价格和水市场立法原则的初步认识[J],水利发展研究,2001(4):14-16.
    163. 黄河,培育和发展水市场促进水资源优化配置[J],水利发展研究,2002(1):41-44.
    164. 焦爱华,杨高升,中国水市场的运作模型研究[J],水利水电科技进展,2001(4):37-40.
    165. 姜文来,水价和水市场[J],国土资源,2002(2):16-19.
    166. 徐方军,水资源配置的方法及建立水市场应注意的一些问题[J],水利水电技术,2001(8):6-9.
    167. 司红华,水市场的培育和规范问题[J],商业经济与管理,2002(8):25-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700