用户名: 密码: 验证码:
不同土地覆被下表层岩溶带水文地球化学特征及其碳汇效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表层岩溶带处于大气圈、生物圈、岩石圈、水圈四大圈层的交汇地带,是岩溶动力系统四大圈层间有关水资源和能量转换重要的前沿阵地。其中的表层岩溶水是我国西南岩溶山区居民生产和生活的重要水源。同时表层岩溶系统也因碳酸盐岩-水-C02-生物圈四相的动态平衡而产生特殊的碳循环,成为大气CO2汇的重要组成部分。但随着土地利用/土地覆被的变化,石漠化加剧,对环境变化反应敏感的表层岩溶生态系统正发生显著的变化,这不仅包括表层岩溶水资源的变化也包括表层岩溶碳汇效应的变化。因此土地利用/土地覆被变化引起的表层岩溶水资源变化和岩溶碳汇效应都需要进行有效的评估,以为岩溶山区人们的生产生活提供保障,也为全球碳循环研究提供一定的科学依据。
     本文以此为题,选取了重庆市南川区3个不同土地覆被下的表层岩溶水对其水文地球化学特征及碳汇效应进行研究。3个泉水分别为灌草丛地的柏树湾泉、耕地的兰花沟泉和石漠化地的后沟泉。通过研究得出以下初步结论:
     (1)对不同土地覆被下表层岩溶泉水化学性质进行研究,结果发现:不同土地覆被下表层岩溶泉水水温受气温变化影响表现明显的季节变化,但变化幅度不一。各泉水pH都表现为雨季低、旱季高,后沟泉水pH值略高于另外两个泉水。随着土地覆被的转变,基岩裸露率增加,植被覆盖率降低,下伏泉水中的HC03-浓度及HC03-和Ca2+的比例都逐渐减少。三个泉水的电导率和N03-、SO42-、C1-、Na+浓度都是后沟泉水>兰花沟泉水>柏树湾泉水,这和基岩裸露率有很好的正相关,和植被覆盖状况呈负相关。这些发现说明,电导率、N03-、SO42-、C1-、Na+、HC03-等泉水水化学指标可以作为不同土地利用方式和植被覆盖变化的重要指标。对不同土地覆被下表层岩溶泉水进行的水质综合评价结果显示,三个泉水的水质综合指数P都小于1,泉水水质均达到生活饮用水Ⅰ级标准,但柏树湾泉水水质优于兰花沟泉水,兰花沟泉水水质好于后沟泉水。
     (2)通过对不同土地覆被下表层岩溶带上覆土壤水水文地球化学特征进行研究,结果发现:受降雨、地表植被及土壤物理性质等的影响,不同月份不同土地覆被下表层岩溶带上覆土壤水获取量不同,同一种土地覆被下不同层次士壤水的获取量也不同。柏树湾土壤水的获取量最多,兰花沟次之,后沟最少。在富钙偏碱的岩溶土壤环境中,Ca2+是土壤水中主要的阳离子。受溶蚀强度和土壤淋失作用影响,柏树湾和后沟土壤水Ca2+和SO42-含量随土层加深而递增,而兰花沟受施肥影响,C2+和SO42-含量出现相反的现象。不同土地覆被下土壤水Na+和Mg2+变化规律不同。随着土层的加深,三个泉域土壤水N03-、K+、全Fe、A13+和Ba2+都逐渐减少。土壤水的N03-、SO42-和P043-平均含量从大到小依次为:后沟>兰花沟>柏树湾。通过土壤水中的各种地球化学元素和下伏表层岩溶泉水的相同元素相关分析得出,表层岩溶泉水水文地球化学元素受到土壤水一定的影响,但是由于不同土地覆被土壤物质来源不同以及各种元素的形态和运动形式不同,所以不同土地覆被土壤水的水文地球化学元素和泉水中相应元素的相关性存在差异。
     (3)对不同土地覆被下表层岩溶泉水文地球化学特征昼夜动态变化进行观测,结果发现:在降雨条件下,主要有三个效应控制着表层岩溶泉水的水化学动态,一是活塞效应;二是稀释效应;三是水-岩-气效应,但是对于不同土地覆被下表层岩溶泉水,其控制效应不同。通过对兰花沟泉和后沟泉水降雨条件下短时间尺度水文地球化学特征的研究,进一步论证了土地利用及地表植被覆盖在提高表层岩溶泉水流量上的重要作用。同时,良好的植被覆盖和较厚的土层有利于碳酸盐岩溶蚀的进行,也有利于水土保持。降雨条件下,兰花沟泉水离子来源主要为碳酸盐岩溶蚀和雨水对士壤的淋溶,而后沟泉水离子来源主要为雨水对土壤的淋溶和水士流失作用。
     (4)对不同土地覆被下表层岩溶泉水碳汇效应进行研究,结果发现:泉水溶解无机碳(DIC)含量和其碳稳定同位素组成(δ13CDIC)表现出明显的季节变化,雨季泉水具有低DIC含量和低δ13CDIC值,旱季则相反。但是不同士地覆被下泉水具有不同的DIC含量和δ13CDIC值,总体上,随着土地向耕地的转变和石漠化的发展,泉水的参13CDIC越重。柏树湾和兰花沟泉水的DIC和δ13CDIC值成正相关关系,而后沟泉水两者成负相关关系。对泉水水化学指标和δ13CDIC值之间相关关系分析得出,碳酸溶蚀碳酸盐岩是泉水DIC的主要来源,硫酸和硝酸也参与了碳酸盐岩的溶蚀,对泉水DIC有一定的贡献。但不同土地覆被下泉水受到的影响因素不同,各泉水硝酸和硫酸参与碳酸盐岩的溶蚀比例不同,柏树湾泉、兰花沟泉和后沟泉硝酸和硫酸溶蚀碳酸盐岩的比例范围分别为:2%-7%、9%31%和10%~46%。另外,不同土地覆被下表层岩溶泉水中HCO3-来自土壤CO2的比例体现了碳酸盐岩溶解的HCO3-输出中并非是50%的士壤(大气)CO2消耗及50%的碳酸盐岩的溶解。灌草丛地的柏树湾泉水中HC03-来自土壤CO2的比例为53%,而有农业活动的兰花沟和后沟泉水,其泉水中HC03-来自士壤CO2的比例分别为45%和40%,可见随着农业耕作面积的增大及泉域肥料输入量的增加,泉水HCO3-来自土壤CO2的比例逐渐下降。植被的恢复有利于增强岩溶碳汇,而耕地和石漠化则会减少岩溶碳汇量。柏树湾泉、兰花沟泉和后沟泉水对大气CO2沉降的年贡献分别为:2303Kg/a、1284Kg/a和176Kg/a。
The epikarst zone is in the convergence zone of atmosphere, lithosphere, biosphere and hydrosphere. And it is the important forward position about the water resources and energy conversion of karst dynamic system. The epikarst water which is in the epikarst zone is the importance water resources for production and living to the people in southwest karst mountains area. At the same time, because the carbonate rock-water-CO2-biology four-phase is dynamic balance, the epikarst system have a special carbon cycle, and as an important part of the atmospheric CO2sinking. But with the change of the land cover and the development of karst rocky desertification, the epikarst ecosystem which is sentitive to the change of the environment is changing. This includes not only the change of the epikarst water resources but also the change of the epikarst carbon sinking effect. Therefore, the change of epikarst water resources and karst carbon sinking effect which caused by land use and land cover change are needed to assess effectively.This not only can provide the security for the people's production and life in karst mountainous area, but also can provide a scientific basis for the global carbon cycle research.
     The author chose this as the topic of the dissertation. Three sites which had different land cover in Nanchuan city of Chongqing were selected for this research. They are:Boshuwan spring with shrud-grass land cover, Lanhuagou spring with agriculture land cover and Hougou spring with rocky desertification land cover. In the study, the hydrological geochemistry characteristics and carbon sinking effect of these there sites were researched. The following conclusions are obtained through this research.
     The chemical properties of epikarst springs under different land cover were studied. The results showed that water temperature, pH, EC and major ions in springs all exhibited obvious variations. The water temperature which affected by the air temperature had obvious seasonal variation. But the seasonal variation extent of epikarst springs was different. The pH of springs showed lower in the rainy season and higher in the dry season. And the pH of Hougou spring is slightly higher than the other two springs. Under the order of land cover from shrud-grass land, agricultural land to rocky desertification land, pH, EC and the contents of NO3-、SO42-、Cl-、Na+were significantly enhanced, while the content of HCO3-and the percentage of HCO3-+Ca+were markly decreased. With the changed of land cover and reduced of vegetation coverage, the purification and water conservation of soil decreased. At the same time, the contents of the major ions in epikaist springs were significantly enhanced. Therefore, all these indicate that the karst hydrochemical parameters, e.g., electronic conductivity, NO3-, SO42-, Cl-, Na+, HCO3-, can serve as indicators of different land use patterns and land cover change. And during the processes of protecting water resource and water environment, it has important significance to considering the change of land cover.
     The hydrological geochemistry of soil water in epikarst zone which had different land cover were studied. The results showed that: due to rainfall, vegetation and different soil physical properties and so on, the soil water quantity under different land cover was different. And the soil water quantity in different depth was also different. In the lime-stone soil environment that was rich in calcium, Ca2+was the major cation ion in soil water. By the effect of erosion intensity and soil leaching, the Ca2+and SO42-contents of soil water in Boshuwan and Hougou was increased with the increased of soil depth. But by the effect of fertilization, the the Ca2+and SO42-contents of soil water in Lanhuagou appeared opposite phenomenon. The Na+and Mg2+contents of soil water changed differently under different land cover. With the increase of soil depth, the contents of NO3-, K+, Total Fe, Al3+and Ba2+all reduced gradually. Under the order from Boshuwan spring, Lanhuagou spring to Hougou spring, the average contents of NO3-, SO42-and PO43-in soil water were significantly enhanced. According the correlation analysis between hydrological geochemistry of soil water and spring water, it showed that the hydrogeochemical elements of epikarst springs were affected by infiltration of soil water. But because of the different material sources in soil and the different morphology and motility of elements, the correlation between hydrogeochemical elements of soil water and epikarst spring was different.
     The diurnal variations of hydrological geochemistry characteristics of epikarst spring under different land cover were observed. The result showed the chemical dynamics of epikarst spring water were controlled by there main effects under rainfall condition. There were piston effect, dilution effect and water-rock-gas effect. But for the epikarst springs under different land cover, the effect which controled it was different.Through the research on the short time scale of hydrological and geochemical characteristics in Lanhuagou spring and Hougou spring, it further discussed the important role of land use and vegetation cover in improving the epikarst spring flow. At the same time, good vegetation and thick soil layer were benefit for the carbonate dissolution and the soil and water conservation. Under the condition of rainfall, for Lanhuagou spring, the carbonate rock dissolution and rainfall on soil leaching were the main sources of the water ions. While for Hougou spring, the rainfall on soil leaching and the erosion effect were the main sources of the water ions.
     The DIC concentrations and the δ13CDIC values showed seasonal variations, with lower DIC concentrations and δ13CDIC values in wet season. However, due to the different land cover of the spring catchments, the DIC concentrations and δ13CDIC values in springs were different. The relationship between DIC and δ13CDIC values showed positive in Boshuwan and Lanhuagou spring, while showed negative in Hougou springs.Through the correlation analysis between hydrochemistry and δ13CDIC values of springs, the dissolution of carbonate rock by carbonate is the major source of DIC in springs. Sulfuric acid and nitric acid also took park in the dissolution of carbonate rock. But the springs under different land cover affected by different factors. So the ratios of nitric and sulfuric acid in carbonate rock dissolution was different. The ratios of nitrate and sulfate in carbonate rock dissolution in Boshuwan spring, Lanhuagou spring and Hougou spring ranged from2%to7%,9%to13%,10%to46%, respectively. In addition, the HCO3-of springs from the soil was not like that the karst carbonate dissolved HCO3-in springs involved50%of soils or atmospheric CO2consumption and50%of the carbonate rock dissolution. In Boshuwan spring, the HCO3-of spring had53%from the soil CO2. While in the Lanhuagou and Hougou spring, the HCO3-of spring had45%and40%from the soil CO2respectively. So, as the increase of farming area and fertilizer input in the spring catchments, the ratios of the water HCO3-from the soil CO2decreased gradually. Vegetation restoration is conductive to enhancing the karst carbon sinking, while the cultivated land and rocky desertification will reduce the carbon sequestration.The annual atmospheric CO2deposition of Boshuwan,Lanhuagou and Hougou spring were2303Kg/a,1284Kg/aand176Kg/a, respectively.
引文
Aucour A-M,Sheppard S.M,Guyomar O,et al.Use of13C to trace origin and cycling of inorganic carbon in the Rhone river system[J].Chem Geol,1999,159:87-105.
    Barnes R.T., Raymond P.A. The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds[J]. Chemical Geology,2009,266:318-327.
    Boyer D.G.,Pasquarell G.C.Nitrate concentrations in karst springs in an extenswely grazed area[J] Journal of the American water resources association.1995,31(4):729-736.
    Broecker W.S., Takahashi T., Simpson H.J., et al.. Fate of fossil fuel carbon dioxide and the global carbon budget[J].Science,1979,206:409-418.
    Brunet F.,Potot A.,Probst A.,Probst J.-L.Stable carbon isotope evidence for nitrogenous fertilizer impact on carbonate weathering in a small agricultural watershed[J].Rapid Communications in Mass Spectrometry,2011,25(19):2682-2690.
    Chen J.S.,Chu X.L.Sulphur isotope composition of Triassic marine sulfates of South China[J].Chemical Geology,1988,72 (2):155-161.
    Collins R.,Jenkins A..The impact of agricultural land use on stream chemistry in the Middle Hilles of the Himalayas[J].Nepal.J.Hydrol.185(1-4):71-86.
    Conceicao F.T., Bonotto D.M. Weathering rates and anthropogenic influences in a sedimentary basin, Sao Paulo State, Brazil[J]. Applied Geochemistry,2004,19:575-591.
    De Vries w.,Reinds G.J.,Vel E..Intensive monitoring of forest ecosystems in Europe.2-Atmospheric deposition and its impacts on soil solution chemistry[J].Forest Ecol.Manag.2003,174(1-3):97-115.
    Drew D. Glossary of karst terminology [A]. In Cost Action 65 Report Hydrogeological aspects of groundwater protection in karstic areas[C]. European Commission.1995.
    Dreybrodt W.,Buhmann D.,Michaelis J.,et al.Geochemically controlled calcite precipitation by CO2 outgassing:Field measurements of precipitation rates to theoretical predictions[J].Chemical Geology,1992,97:287-296.
    Fritz P,Fontes J.C,Franpe S.K, et al.The isotope geochemistry of carbon in groundwater at stripa[J].Geochim CosmochimActa,1989,53(8):1765-1775.
    Gandois L.,Perrin A.-S.Probst Anne.Impact of nitrogenous fertilizer-induced proton release on cultivated soils with contrasting carbonate contents:A column experiment[J].Geochimicate Cosmochimica Acta,2011,75:1185-1198.
    Habicht K.S.,Canfield D.E.,Rechmeier J.R.Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite[J].Geochimica et Cosmochimica Acta,198,62(15):2585-2595.
    Haefner R.J..A sulfur-isotope mixing model to trace leachate from pressurized fluidized bed combustion byproducts in an abandoned-coal-mine setting[J].Fuel,2001,80(6):829-836.
    Helie J-F,Hillaire-Marcel C,Rondeau B.Seasonal changes in the sources and fluxes of dissolved inorganic carbon through the St.Lawrence River-Isotopic and chemical constraint[J].Chem Geol,2002,186,117-138.
    Herczeg A.L..A stable carbon isotope study of dissolved inorganic carbon cycling in a softwater lake[J].Biogeochemistry,1987,4(3):231-261.
    Herman J.,Lorah M..CO2 outgassing and calcite precipitation in Falling Spring Creek.USA[J].Chemical Geology,1987,62:251-262.
    Houghton R.A.,Hackler J.L.,Lawrence K.T.The U.S.carbon budget:Contributions from land-use change[J].Science,1999,285:574-578.
    Houghton R.A.Is carbon accumulating in the northern temperate zone[J].Global Biogeochem Cycle,1993,7:611-617.
    Jiang YJ.,Yuan D.X.,Zhang C.,et al.Impact of land use change on groundwater quality in a typical karst watershed of southwest China[J].Hydrogeology Journal.2008.16(4):727-735.
    Jiang Z.C.,Yuan D.X.Dynamics features of the epikarst zone and their significance in environments and resources[J].Acta Geoscientia Sinica,1999,20:302-308.
    Joos F. Imbalance in the budget[J]. Nature,1994,370:181-182.
    Kauppi P.E., et al.. Biomass and carbon budget of European foreasts,1971-1990[J]. Science,1992, 256:70-74.
    Knoller K.,Fauville A.,Mayer B.,et al.Sulfur cycling in an acid mining lake and ite vicinity in Lusatia,Germany[J].Chemical Geology,2004,204(3-4):303-323.
    Li S.L., Damien C., Han G.L., Jerome G., Liu C.Q. Sulfuric acid as an agent of carbonate weathering constrained by δ13CDIC:Examples from Southwest China[J]. Earth and Planetary Science Letters,2008,270:189-199.
    Li S.L., Liu C.Q., Li J., Lang Y.C., Ding H., Li L. Geochemistry of dissolved inorganic carbon and carbonate weathering in a small typical karstic catchment of Southwest China: Isotopic and chemical constraints[J]. Chemical Geology,2010,77:301-309.
    Li X.D.,Masuda H.,Kusakabe M.,et al.Degradation of groundwater quality due to anthropogenic sulfur and nitrogen contamination in the Sichuan basin,China[J].Geochemical Journal,2006,40(4):309-332.
    Liu Z H, Li Q, Sun H L, et al. Seasonal, diurnal and storm-scale hydrochemistry variations of typical epikarst springs in subtropical karst areas of SW China: Soil CO2 and dilution effects[J]. Journal of Hydrology,2007,337:207-223.
    Liu Z.,Dreybrodt W.,Wang H.A new direction in effective accounting for the atmospheric CO2 budget:considering the combined action of carbonate dissolution,the global water cycle and photo synthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews,2010,99:162-172.
    Mahvi A.H.,Nouri J.,Babaei A.A.,et al.Agricultural activities impact on groundwater nitrate pollution[J].Int.J.Environ.Sci.Tech.2005.2(1):41-47.
    Mangin A.. Contribution a I'etude hydrodynamique des aquiferes karstiques[J]. Annales de Speleologie.1974,(29):283-332.
    Melnikov N.B.,O'Neill B.C..Learning about the carbon cycle from glogal budget data[J].Geophysiacl Research Letters,2006,33,L02705.doi:10.1029/2005GL023935.
    Myrbo A.Shap ley M.D..Seasonal water-column dynamics of dissolved inorganic carbon stable isotopic compositions in small hardwater lakes in Minnesota and Montana[J].Geochimicaca et Cosmochim ica Acta,2006,70(11):2699-2714.
    Nascimenta C,Atekwana E.A,Krishnamurthy R.V.Concentrations and isotope ratios of dissolved inorganic carbon in denitrifying environments[J].Geophys Res Lett,1997,24(12):1511-1514.
    Otero N.,Soler A..Sulphur isotopes as tracers of the influence of potash mining in groundwater salinisation in the Llobregat Basin(NE Spain)[J].Water Research,2002,36 (16):3989-4000.
    Pacheco F.A.,Van der Weijden C.H..Mineral weathering rates calculated from spring water data:a case study in an area with intensive agriculture,the Morais Massif,northeast Portugal[J].Appl.Geochem,17(5):583-603.
    Pan Genxing,Tao Yuxiang,Teng Yongzhong,et al.Influence of pedo-chemical field on epikarstfication in subtropical humid region:Field monitoring and laboratory experiment [J].Acta Carsolica,1998,27(1):175-186.
    Perrin A.S., Probst A., Probst J.L. Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments:implications for weathering CO2 uptake at regional and global scales[J]. Geochimica Cosmochimica Acta,2008,72:3105-3123.
    Probst A.,El Gh'mari.,Aubert D..Strontium as tracer of weathering processes in a silicate catchment polluted by acid atmospheric inputs,Strengbach,France[J].Chem.Geol.170:203-219.
    Probst A.,Viville D.,Fritz B.et al..Hydrochemical budgets of a small forested granitic catchment exposed to acid deposition:the Strenbach catchment case study(Vosges Massif,France)[J].Water Air Soil Polltu.1992,62:337-347.
    Raymond P.A., Oh N-H., Turner R.E., Broussard W. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River[J].Nature,2008,451:449-452.
    Schindler,D.W.,Bayley,S.E..The biosphere as an increasing nitrogen deposition[J].Global Biogeochem Cycle,1993,7:717-733.
    Schindler.D.W.The mysterious missing sink[J].Nature,1999,398:105-106.
    Semhi k., Amiotte Suchet P., Clauer N. and Probst J.-L. Impact of nitrogen fertilizers on the natural weathering-erosion processes and fluvial transport in the Garonne basin[J]. Applied Geochemistry, 2000,15(6):865-874.
    Song C.,Liu C.,Wang J.,Zhang Y.,Hou H.Impact of the addition of a compound fertilizer on the dissolution of carbonate rock tables:A column experiment[J].Applied Geochemistry,2011,26:S170-S173.
    Sundquist E.T. The global carbon dioxide budget[J]. Science,1993,259:934-941.
    Tans P.P., Fung I.Y., Takahashi T.. Observational constraints on the global atmospheric CO2 budget[J].Science,1990,247:1413-1438.
    Trettin R.,Glacer H.R.,Schultze M.,et al.Sulfur isotope studies to quantify sulfate components in water of flooded lignite open pits-Lake Goitsche,Germany[J].Applied Geochmistry,2007,22(1):69-89.
    West T.Q., McBride A.C. The contribution of agricultural lime to carbon dioxide emissions in the United States:dissolution, transport, and net emissions[J]. Agriculture, Ecosystems and Environment,2005,108:145-154.
    Wigley T.M.Plummer L.N,Pearson F J.Mass transfer and carbon isotope evolutionin water systems[J].Geochim Cosmoshim Acta,1978,42(8):1117-1139.
    Williams P.W.. Subcutaneous hydrology and the development of doline and cockpit karst[J]. Z. Geomorph. N.F..1985,29(4).
    Wright R.F.,Lotse E.,Semb A.Reversibility of acidification shown by whole-catchment experiment.Nature,334:670-675.
    Yuan D.1997.The carbon cycle in karst[J].Z.Geomorph.N.F.,108:91-102.
    Yuan Daoxian. Contribution of IGCP379"karst processes and carbon cycle" to glogal change[J].Episodes,1998,21(3):198.
    Yuan Daoxian.The carbon cycle in karst.Zeitschrift fur Geomorphologie Neue Folge[J],1997,108(Suppl-Bd):91-102.
    Zhang C,Yuan D.X.Cao J.H.Analysis of the environmental sensitivities of a typical dynamic epikarst system at the Nongla monitoring site,Guangxi,China[J].Environ Geol,2005,47:615-619.
    Zhao M., Zeng C., Liu Z.H., Wang S.J. Effect of different land use/land cover on karst hydrogeochemistry:A paired catchment study of Chenqi and Dengzhanhe,Puding,Guizhou,SW China[J].Journal of Hydrology,2010.
    曹建华,袁道先,潘根兴.岩溶生态系统中的土壤[J].地球科学进展,2003,18(1):37-44.
    曹建华,袁道先,潘根兴,等.不同植被下士壤碳转移对岩溶动力系统中碳循环的影响[J].地球与 环境,2004,32(1):90-96.
    查学芳.岩溶地下水的水化学特征及重金属分布研究[A].贵州:贵州大学,2006.
    陈广生,田汉勤.土地利用/覆盖变化对陆地生态系统碳循环的影响[J].植物生态学报.2007,31(2):189~204.
    陈怀满.环境土壤学[M].北京:科学出版社,2005.
    陈克亮,朱晓东,朱波,等.川中小流域地下水硝态氮的时空变化特征[J].农业环境科学学报.2006,25(4):1060~1064.
    陈植华,陈刚,靖娟利,等.西南岩溶石山表层带岩溶水资源调蓄能力初步评价[A].中国岩溶地下水与石漠化研究[C].南宁:广西科学技术出版社,2003:148-154.
    邓新辉,蒋忠诚,覃小群,等.广西弄拉岩溶植被的表层水文地球化学效应[J].山地学报,2008,26(2):170-179.
    邓新辉,蒋忠诚.广西弄拉森林植被的喀斯特效应[J].地球与环境.2007,35(2):128-133.
    方精云,郭兆迪,朴世龙,等.1981~2000年中国陆地植被碳汇的估算[J].中国科学:D辑,2007,37(6):804-812.
    高海鹰,黄丽江,张奇等.不同降雨强度对农田土壤氮素淋失的影响及LEACHM模型验证[J].农业环境科学学报.2008,27(4):1346-1352.
    何师意,潘根兴,曹建华,等.表层岩溶生态系统碳循环特征研究[J].第四纪研究,2000,20(4):383-389.
    何寻阳,李强.表层岩溶带岩溶泉的水化学动态变化及其环境效应[J].广西师范大学学报,2005,6(23):2.
    洪业汤,张鸿斌,朱泳煊,等.中国煤的硫同位素组成特征及燃煤过程硫同位素分馏[J].中国科学B辑,1992,(8):868-873.
    黄界颍,马友华,张继榛.农田生态系统中硫平衡的研究——地下水中硫的作用[J].土壤通报.2003,34(3):233-237.
    贾亚男,刁承泰,袁道先.土地利用对埋藏型岩溶区岩溶水质的影响[J].自然资源学报,2004,19(4):455-461.
    蒋勇军,袁道先,谢世友,等.典型岩溶流域土壤有机质空间变异[J].生态学报.2007,27(5):2041-2046.
    蒋勇军,袁道先,谢世友,等.典型岩溶农业区地下水质与土地利用变化分析[J].地理学报.2006,61(5):471-481.
    蒋勇军,袁道先,章程,等.典型岩溶农业区土地利用变化对土壤性质的影响[J].地理学报.200,5,60(5):751-760.
    蒋忠诚,王瑞江,裴建国等.我国南方表层岩溶带及其对岩溶水的调蓄功能[J].中国岩溶.2001,20(2):106-110.
    蒋忠诚,袁道先.中国南方表层岩溶带的结构、岩溶动力学特征及其意义[J].地球学报,1999,20(3).
    蒋忠诚,袁道先.表层岩溶带的岩溶动力学特征及其环境和资源意义[J].地球学报,1999,20(3):302-308.
    蒋忠诚.中国南方表层岩溶带的特征及形成机理[J].热带地理,1998,18(4):322-326.
    蒋忠诚.中国南方表层岩溶系统的碳循环及其生态效应[J].第四纪研究.2000,20(4):316-323.
    焦树林,高全洲,刘昆.珠江流域西江、北江河流溶解无机碳及其稳定同位素组成特征[J].中山大学学报(自然科学版).2009,48(2):99-105.
    焦树林,陶贞,高全洲,等.西江河口段溶解无机碳稳定同位素组成的时空变化[J].地理学报.2008,63(5):553-560.
    金洁,杨京.从水环境角度探析农田氮素流失及控制对策[J].应用生态学报.2005,16(3):579-582.
    郎斌超,刘丛强,Satake H.,等.贵阳地表水-地下水的硫和氯同位素组成特征及其污染物示踪意义[J].地球科学进展,2008,23(2):151-159.
    劳文科,祁晓凡,刘慧敏,等.广西果化龙何地区表层带岩溶水系统及其水资源特征[J].中国岩溶,2008,27(2):122-128.
    劳文科,吴孔运.喀斯特地区不同土地利用方式下包气带土壤水分动态特征[J1.地球与环境,2008,36(2):119-124.
    李军,刘丛强,李龙波,等.硫酸侵蚀碳酸盐岩对长江河水DIC循环的影响[J].地球化学.2010,39:305-313.
    李俊云,李林立,谢世友,等.人类活动对川东平行岭谷区岩溶地下水化学性质季节变化的影响[J].长江流域资源与环境.2007,16(4):514-518.
    李林立,况明生,张远瞩,等.典型表层岩溶泉水短时间尺度动态变化规律[J].水科学进展,2006,17(2):222-226.
    李强,孙海龙,韩军,等.降水对广西马山兰电堂泉水化学动态变化观测研究[J].水科学进展,,2006,17(5):733-737.
    李强,孙海龙,汪进良.典型表层岩溶泉水化学对暴雨响应特征研究[J].水资源保护,2008,24(2):14-17.
    李思亮,韩贵琳,张鸿翔,等.硫酸参与喀斯特流域(北盘江)风化过程的碳同位素证据[J].地球与环境.2006,34(2):57-60.
    李思亮,刘丛强,陶发祥,等.碳同位素和水化学在示踪贵阳地下水碳的生物地球化学循环及污染中的应用[J].地球化学,2004,33(2):165-169.
    李思亮.喀斯特城市地下水C、N同位素地球化学[D].中国科学院研究生院.2004.
    李正兆,高海鹰,张奇等.抚仙湖流域典型农田区地下水硝态氮污染及其影响因素[J].农业环境科学学报.2008,27(1):0286-0290.
    李政红,王东升.人为因素影响下的浅层地下淡水氮浓度的演变[J].勘察科学技术.1999,1:37-41.
    梁小平,朱志伟,梁彬,等.湖南洛塔表层岩溶带水文地球化学特征初步分析[J].中国岩溶,2003,22(2):103-109.
    刘丛强,蒋颖魁,陶发祥,等.西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J].地球化学,2008,37(4):404-414.
    刘丛强,郎斌超,李思亮,等.喀斯特生态系统生物地球化学过程与物质循环研究:重要性、现状与趋势[J],地学前缘,2009,16(6):1-11.
    刘丛强.生物地球化学过程与地表物质循环-西南喀斯特流域侵蚀与生物要素循环[M].北京:科学出版社,2007.
    刘方,罗海波,刘鸿雁,等.土地利用方式对喀斯特浅层地下水质量的影响[J].矿物学报,2007,27(3/4):540-544.
    刘方,罗海波,刘元生,等.喀斯特石漠化区农业土地利用对浅层地下水质量的影响[J].中国农业科学,2007,40(6):1214-1221.
    刘方,王世杰,罗海波,等.喀斯特森林群落退化对浅层岩溶地下水化学的影响[J].林业科学,2007,43(2):21-24.
    刘方,王世杰,罗海波,等.喀斯特石漠化过程中植被演替及其对径流水化学的影响[J].土壤学报,2007,54(2):37-43.
    刘芳,王世杰,刘元生,等.喀斯特石漠化过程土壤质量变化及生态环境影响评价[J].生态学报,25(3):639-644.
    刘鸿雁,黄建国.缙云山森林群落次生演替中土壤理化性质的动态变化[J].应用生态学报,2005,16(11):2041-2046.
    刘晓晨,孙占祥.地下水硝态氮污染现状及研究进展[J].辽宁农业科学,2008(5):41-45.
    刘玉,李林立,赵柯,等.岩溶山地石漠化地区不同土地利用方式下的土壤物理性状分析[J].水土保持学报,2004,18(5):142-145.
    刘再华.岩石风化碳汇研究的最新进展和展望[J].科学通报,2012,57(2-3):95-102.
    刘再华,Chris GROVES,袁道先,等.水-岩-气相互作用引起的水化学动态变化研究[J].水文地质工程地质,2003(4):13-18.
    刘再华,Dreybrodt W.,王海静.一种由全球水循环产生的可能重要的CO2汇[J].科学通报,2007,52(20):2418-2422.
    刘再华,Wolfgang Dreybrodt岩溶作用动力学与环境[M].北京:地质出版社,2007,151-159.
    刘再华,何师意,袁道先,等.土壤中的CO2及其对岩溶作用的驱动.水文地质工程地质[J].1998,4:42-45.
    刘再华,李强,汪进良,等.桂林岩溶试验场钻孔水化学暴雨动态和垂向变化解译[J].中国岩溶,2004,23(3):169-176.
    刘再华,袁道先,何师意.岩溶动力系统水化学动态变化规律分析[J].中国岩溶,1999,18(2):103-108.
    刘再华.碳酸盐岩岩溶作用对大气CO2沉降的贡献[J].中国岩溶.2000,19(4):293-300.
    刘长礼,张云,宋超,等.施用农肥对岩溶溶蚀作用的影响及其生态环境意义[J].中国地质,2009,36(6):1395-1403.
    龙健,李娟,邓启琼,等.贵州喀斯特山区石漠化土壤理化性质及分形特征研究[J].土壤通报.2005,46(5):746-750.
    龙健,李娟,汪境仁,等.典型喀斯特地区石漠化演变过程对土壤质量性状的影响[J].水士保持学报,2006,20(2):77-81.
    龙健,李鹃,黄吕勇.我国西南地区的喀斯特环境与土壤退化及其恢复[J].水士保持学报,2002,16(5):5-8.
    潘根兴,曹建华,何师意,等.桂林丫吉村岩溶试验场岩溶土壤碳转移与水排碳作用[J].自然科学进展,2001,11(7):704-709.
    潘根兴,曹建华,何师意,等.土壤碳作为湿润亚热带表层岩溶作用的动力机制:系统碳库及碳转移特征[J].南京农业大学学报,1999,22(3):49-52.
    潘根兴,曹建华,何师意,等.岩溶土壤系统对空气CO2的吸收及其对陆地系统碳汇的意义[J].地学前缘,2000,7(4):580-587.
    潘根兴,曹建华.表层带岩溶作用:以士壤为媒介的地球表层生态系统过程——以桂林峰丛洼地岩溶系统为例[J].中国岩溶.1999,18(4):287-296.
    潘根兴,何师意,曹建华,等.桂林丫吉村表层带岩溶士壤系统中δ13C值得变异[J].科学通报,2001,46(22):1919-1922.
    潘根兴,孙玉华,滕永忠,等.湿润亚热带峰丛洼地岩溶土壤系统中碳分布及其转移[J].应用生态学报,2000,11(1):69-72.
    潘根兴,滕永忠,陶于祥,等.土壤化学场对桂林地球表层岩溶的影响——野外监测与实验室模拟[J].土壤,2000,4:173-177.
    潘根兴,滕永忠.土壤-灰岩岩溶系统中水文地球化学动力学过程模拟及其意义.地球化学,2000,29(3):273-276.
    邱贵江,朱俊,李霞,等.内江市城区地下水硝酸盐污染研究[J].内江师范学院学报.2008,23(2):104~106.
    任伯帜,熊正为.水资源利用与保护[M].北京:机械工业出版社,2007:117-125.
    任丽萍,宋玉芳,许华夏,等.旱田养分淋溶规律及对地下水影响的研究[J].农业环境保护.2001,20(3):133-136.
    时梦熊,车用太.漫谈地下水[M].北京:科学出版社,1985,86-87.
    世界卫生组织.饮用水质标准[M].(第三版).瑞士:日内瓦,2006.
    宋建治,胡书礼,刘同义,等.地下水中N03-对环境保护的影响[J].矿产保护与利用.2005(5):52-54.
    宋敏.地下水氯盐污染的治理[J].科技情报开发与经济.2005,15(24):246-247.
    孙永丽,梅再美.贵阳市白云岩地区不同土地利用方式对土壤物理性质的影响[J].贵州师范大学学报,2006,24(2):27-31.
    覃小群,蒋忠诚.表层岩溶带及其水循环的研究进展与发展方向[J].中国岩溶.2005,24(3):250-254.
    汪智军.青木关岩溶流域水-土系统碳氮同位素特征研究[D].西南大学,2011,58-59.
    王道涵,梁成华.农业磷素流失途径及控制方法研究进展[J].土壤与环境.2002,11(2):183-188.
    王冬银,章程,谢世友.山区岩溶作用对土地利用方式的响应[J].地学前缘.2007,14(4):222-230.
    吴建平,吴天乐,田育新,等.坡耕地不同植被恢复对士壤理化性质的影响[J].湖南林业科技,2006,33(6):41-43.
    吴孔运,何寻阳,罗华彪.重庆金佛山碧潭泉岩溶泉水的物理化学特征[J].桂林工学院学报,2005,25(4):423-425.
    肖德安,王世杰.土壤水研究进展与方向评述[J].生态环境学报.2009,18(3):1182-1188.
    杨景成,韩兴国,黄建辉,等.土地利用变化对陆地生态系统碳贮量的影响[J].应用生态学报.2003,14(8):1385~1390.
    杨林章,徐琪.土壤生态系统[M].北京:科学出版社,2005.
    杨平恒,李林立,蒲俊兵.垂直气候带表层岩溶泉昼夜动态变化研究[J].人民长江,2007,38(11):160-162.
    杨荣,苏永中.黑河中游绿洲农区地下水硝态氮污染调查研究[J].冰川冻土.2008,30(6):983-990.
    姚冠荣.西江溶解无机碳时空变异特征及其物源的同位素示踪[D].中山大学,2001,6:50.
    姚昕,夏日元,唐健生.湘西洛塔岩溶生态微景观结构对表层岩溶泉的影响[J].中国水土保持,2006,11:35-37.
    袁道先,蒋忠诚IGCP379"岩溶作用与碳循环”在中国的研究进展[J].水文地质工程地质,2000,1:49-51.
    袁道先.“岩溶作用与碳循环”研究进展[J].地球科学进展,1999.14(3):425-432.
    袁道先.岩溶地区的地质环境和水文生态问题[J].南方国土资源,2003,1:22-25.
    袁道先.岩溶作用对环境变化的敏感性及其记录[J].科学通报,1995,40(13):1210-1213.
    袁道先.地球系统的碳循环与资源环境效应[J].第四纪研究,2001,21(3):223-232.
    袁新民,同延安,杨学云,等.有机肥对土壤N03-N累积的影响[J].土壤与环境.2000,9(3):197-200.
    张鸿斌,陈毓蔚,刘德平.广州地区酸雨硫源的硫同位素示踪研究[J].地球化学,1995,24:126-133.
    张莉平,习晋.特殊水质处理技术[M].北京:化学工业出版社,2005:243-250.
    张伟,陈洪松,王克林,等.种植方式和裸岩率对喀斯特洼地土壤养分空间分异特征的影响[J].应 用生态学报,2007,18(7):1459-1463.
    张伟,刘丛强,李晓东,等.喀斯特坡地土壤硫同位素变化指示的土壤硫循环[J].环境科学,2010,31(2):415-422.
    张伟,刘丛强,刘涛泽,等.喀斯特坡地石灰土硫形态分布及其同位素组成特征[J].地球化学,2010,39(3):251-256.
    章程,曹建华.不同植被条件下表层岩溶泉动态变化特征对比研究[J].中国岩溶,2003,22(1):1-5.
    章程,蒋忠诚,何师意,等.垂直气候带岩溶动力系统特征研究[J].地球学报,2006,27(5):510-514.
    章程,谢运球,吕勇等.不同土地利用方式对岩溶作用的影响[J].地理学报.2006,61(11):1181-1188.
    章程,袁道先,曹建华,等.典型表层岩溶泉短时间尺度动态变化规律研究[J].地球学报,2004,25(4):467-417.
    章程,袁道先.典型岩溶地下河流域水质变化与土地利用的关系[J].水土保持学报,2004,18(5):134-137.
    章程.不同土地利用土下溶蚀速率季节差异及其影响因素[J].地质论评.2010,56(1):136-140.
    赵敏,曾成,刘再华.土地利用变化对岩溶地下水溶解无机碳及其稳定同位素组成的影响[J].地球化学.2009,38(6):565-572.
    赵新峰,陈法锦,陈建耀,等.城市地下水硝酸盐污染及其成因分析——以珠海香洲区为例[J].水文地质工程地质.2008(3):87-92.
    赵新峰,杨丽蓉,施茜,等.东别海伦地区农村地下饮用水硝态氮污染特征及其影响因素分析[J].环境科学.2008,29(11):2993-2998.
    中华人民共和国卫生部,中国国家标准化管理委员会.生活饮用水卫生标准(GB5794-2006).[S].2006(12).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700