三江平原土地利用变化对露水凝结的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
露水是湿地、农田生态系统重要的水分输入项,露水凝结量及水质对湿地植物和农田作物生长有重要影响。近60年来,三江平原经历了大规模的湿地垦殖过程,农田已成为主要的景观类型。下垫面的剧烈变化对露水凝结过程、露水水质及露水水汽来源的影响程度尚不清楚。本研究选择三江平原典型沼泽湿地(季节积水、常年积水)及农田(旱田、水田)为研究对象,监测了露水在植株表面的凝结情况,辨析了影响露水形成的主要因子,阐明了土地利用方式变化对露水量、露水水质及露水水汽来源的影响,得出以下结论:
     1)三江平原湿地和农田生态系统日落1.5小时后露水开始在植株上凝结,至次日凌晨日出前0.5小时时停止,生长季露水日凝结历时约6~8小时。
     2)8月份露水凝结量最大,露水量与夜间相对湿度、露点温度、水汽压呈正相关,与风速呈负相关。露水凝结最适宜的条件是风速在2.0m/s左右、水汽压高于9hpa、相对湿度在90%-95%、露点温度高于6℃。
     3)旱田作物植株表面露水凝结强度略低于沼泽湿地与水田。沼泽和农田生态系统冠层露水强度大于近地表层。水田植株上露水凝结量最多,年露水凝结量在30mm左右,为湿地和旱田露水量的2~3倍。
     4)常年积水沼泽露水的pH为6.42±0.23,未监测到酸露现象;露水中金属元素种类丰富,K含量为29531μg/L,Ag、Th、U、Be和Tl的含量低于0.03μg/L;露水中的K、Ca、Na、Mg、Mn、Fe和Zn浓度远高于当地雨水,露水为湿地植物生长提供了丰富的营养元素和微量元素;露水中金属主要来源于地表积水和大气干沉降。露水中Pb、Ba、Se、As、Co、Cr和Cu等微量元素含量极低,研究区环境空气质量良好。
     5)农田露水pH在5.36~7.00,均值为6.36,总体偏酸性。相比雨水,露水为作物提供了更多的有效态N、P。水田露水中NO_3~--N含量显著高于NH_4~+-N(P<0.05)。露水是水稻重要的N、P输入源,7~9月通过露水凝结输入水田的NH_4~+-N,NO_3~--N和PO_4~(3-)-P量分别为0.10,0.22和0.04kg/hm~2,高于叶面肥输入的有效态N、P量。
     6)应用稳定同位素方法,发现雨季水田露水中约30%的水分来自于水稻蒸腾和作物吐水,约70%来源于空气中水汽和田面水蒸发的水汽;湿地露水主要来源于地表积水蒸发的水汽。露水与雨水中氢氧同位素组成与含量变化同步,利用露水同位素信息可反映降雨水汽的来源。
     7)沼泽开垦为旱田后,露水量接近,旱田改为水田后露水量大幅度上升。LAI是影响生态系统露水量的关键因素。水田露水N、P含量低于湿地露水。水田与湿地露水水汽来源主体均为地表积水蒸发水汽。
Dew is a crucial input for water balance and nutrients cycling of wetland orfarmland ecosystem. Dew could play important role in spaying leaf fertilizers inpaddy and drought-resisting and preventing the disease and pest in rainfed land andwetland. In the1960s, Sanjiang Plain was the largest concentrated area of freshwaterwetlands in China. Over the last60years, Sanjiang Plain was reclaimed four times.Most of its marsh wetland areas were turned into cultivated land. But it was still notclear that the process of dew formation, character of dew and vapor source of dewfrom different land types. Dew was monitored in situ on stem and leaf of plant inCarex lasiocarpa, Calamagrostis angustifolia, soybean or corn, and paddy fieldsduring the growing season from2008to2010. Method on dew condensationmonitoring in Wetland and farmland ecosystem was explored for the first time. Themethod including to set up a series of parameters about dew characterization, to selectthe proper collector, to identify the dew duration and to deduce the dewfall formula.The conclusions was list as following:
     1)Dew began to condense from one and a half hour after sunset and I reachedthe peak at about half an hour before sunrise. Dew duration was about6-8hours frommid-May to mid-October in mire wetland at Sanjiang Plain.
     2)Dew intensity reached peak at August. The higher relative humidity, dew pointtemperature, and vapor pressure were the important factors improving the dewintensity. In addition, wind speed is also a non-neglected factor. The dew productionin Carex lasiocarpa marsh more frequently occurred under the conditions of windspeed around2.0m/s, the water vapor pressure above9hPa; the relative humiditybetween90%and95%and dew point temperature above6℃.
     3)The annual Dewfall showed a distinct variety of the amount between paddyand rainfed land. The annual dewfall in rainfed land ranged from10mm to15mm. Inthe paddy Dewfall was about two to three times larger. The Dewfall increases rapidlywhen rainfed land reclaimed into paddy.
     4)pH of Carex lasiocarpa dew was6.42±0.23and the acid dew never occurredin the research area. Therefore, dew can not damage protective surfaces on leaves, interfere with guard cells and poison plant cells from the aspect of pH. The types ofmetal element in Carex lasiocarpa dew were abundant. K, Mg, Ca are the nutrientelements and Mn, Cu, Cr, Zn, Na, Mo, V, As, Fe, Ni are the trace elements. They wereall can be monitored in Carex lasiocarpa dew. The mean concentrations of Cd, Be, Co,Se, Mo, Th, U and Tl were below1.0μg/L. The mean concentrations of Pb, As, Ni, Cr,V, Ag, Cu and Zn were between1.0μg/L and100μg/L. The mean concentrations of00Na, Al, Fe and Ba were between100μg/L and1000μg/L. The meanconcentrations of K, Mg, Ca and Mn were higher than1000μg/L. Carex lasiocarpadew can provide nutrient elements and trace elements to plant. Dew can reveal the airpollution status and it is significant to monitor the chemistry character of dew. Thetrace amount of Pb, Ba, Se, As, Co, Cr, Cu in Carex lasiocarpa dew implied that thereis no automobile exhaust, coal combustion or industrial pollution in this area.
     5)pH was between5.36and7.0with a mean pH of6.36. Therefore, dew cannotdamage leaves in the paddy. The NO_3~--N concentration in dew was significantly(p<0.05) greater than NH_4~+-N and PO_4~(3-)-P concentrations. Dew can offer moreNH_4~+-N, NO_3~--N and PO_4~(3-)-P than rain. The deposition amount of NH_4~+-N, NO_3~--Nand PO_4~(3-)-P from July to October in paddy dew was0.10,0.22and0.04kg/hm~2,respectively. This amount was much larger than the volume of foliar fertilization, withthe deposition amount of essential nutrients in dew close to100times as much as thatin foliar fertilization.
     6) Based on isotopic mass conservation to partition quantitatively thecontribution of different vapour sources of dew, the guttation and transpiration fromthe plant accounted about30%and the evaporation of surface water mixed withvapour in air accounted the other partition of paddy dew in rainy season. As towetland dew, the evaporation of surface water took the most patition. The δ18O andδD values of dew exhibited the similar trend to the stable isotope in rain. Therefore,the stable isotope value of dew is a useful indicator as vapour resource of rain.
     7)The Dewfall did not change too much when wetland reclaimed into rainfedland but increase rapidly when rainfed land reclaimed into paddy. LAI was thedetermining factor that affected the annual dewfall. N and P content was lower in paddy dew than it in wetland. The main vapor of dew in wetland and paddy was boththe vapor evaporated from surface water.
引文
Adrie FG, Jacobs, Bert GH, et al. Dew measurements along a longitudinal sand dune transect,Negev Desert, Israel[J]. International Journal of Biometeorology,2000,43:184-190.
    Angus DE. Measurements of dew[J]. Arid Zone Research,1958,2:301-303.
    Anwar J. Chemical composition of dew in Amman, Jordan[J]. Atmospheric Research,2001,57:261-268.
    Barrie LA, Schemenauer. Wet deposition of heavy metals, control and fate of atmospheric tracemetals[J]. Atmospheric Research,1986,21:1389-1396.
    Beysens D, Milimouk I, Nikolayev V, et al. Using radiative cooling to condense atmosphericvapor: a study to improve water yield[J]. Journal of Hydrology,2003,276:1-11.
    Beysens D, Muselli M, Nikolayev V, et al. Measurement and modelling of dew in island, coastaland alpine areas[J]. Atmospheric Research,2005,73:1-22.
    Beysens. D, Ohayon C, Muselli M, et al. Chemical and biological characteristics of dew and rainwater in an urban coastal area (Bordeaux, France)[J]. Atmospheric Environment,2006,40:3710-3723.
    Beysens. The formation of dew[J]. Atmospheric Research,1995,39:215-237.
    Bloom AJ. Wild and cultivated barleys show similar affinities formineral nitrogen[J]. Oecologia,1985,65:555-557.
    Chang E, Zhang H, Zhang ZF, et al. Effects of nitrogen and phosphorus on root exudates duringgrain filling and their relation with grain quality of rice[J]. Acta Agronomica Sinca,2007,33(12):1949-1959.
    Chen HS, Kang YH. Condensed vapor and its role in the ecological environment of shapotouregion[J]. Journal of Arid Land Resources and Environment,1992,6(2):63-72.
    Chien TC, Irene TC, Ching HK. Senescence of rice leaves. xx. changes of proton secretion duringsenescence[J]. Plant Science,1990,66:29-34.
    Chiwa M, Oshiro N, Miyake T, et al. Dry deposition wash-off and dew on the surfaces of pinefoliage on the urban and mountain-facing sides of Mt. Gokurakuji, western Japan[J].Atmospheric Environment,2003,37:327-337.
    Clus O, Ortega P, Muselli M, et al. Study of dew water collection in humid tropical islands[J].Journal of Hydrology,2008,361:159-171.
    Duvdevani S. Dew in Israel and its effect on plants[J]. Soil Science,1964,2:14-21.
    Dansgaard W. Stable isotopes in precipitation[J]. Tellus,1964,16:436-468.
    Erik DK, Brian KH, Michael HC, et al. Dew frequency, duration, amount, and distribution incorn and soybean during SMEX05[J]. Agricultural and Forest Meteorology,2009,149:11-24.
    Esmaiel M, Greg M, Bradley G. Dew contribution to the annual water balances in semi-ariddesert valleys[J]. Journal of Arid Environments,1999,42:71-80.
    Feng Q, Gao QZ. Preliminary study on condensation water in semi-humid sandyland[J]. AridZone Research,1995,12(3):72-77.
    Foster JR, Pribush RA, Carter BH. The chemistry of dews and frosts in Indianapolis Indiana[J].Atmospheric Environment,1990,24A:2229-2236.
    Gammons CH, Poulson SR, Pellicori DA, et al. The hydrogen and oxygen isotopic compositionof precipitation, evaporated mine water, and river water in Montana, USA[J]. Journal ofHydrology,2006,328:319-330.
    Gandhidansan P, Abualhamayel HI. Modeling and testing of a dew collection system[J].Desalination,2005,180:47-51.
    Gat JR. Oxygen and hydrogen stable isotopes in the hydrological cycle[J]. Annual Review ofEarth and Planetaty Sciences,1996,24:225-262.
    Giora JK. Altitude dependent dew and fog in the Negev Desert, Israel[J]. Agricultural and ForestMeteorology,1999,96:1-8.
    Giora JK. Angle and aspect dew and fog p recip itation in the Negev Desert, Israel[J]. Journal ofHydrology,2005,301:66-74.
    Goossens D, Offer ZY. Comparisons of day-time and night-time dust accumulation in a desertregion[J]. Journal of Arid Environments,1995,31(3):253-281.
    Jackson IJ. Climate, water and agriculture in the tropics[M]. New York: Longman Inc.,1977.
    Janjit I, Su WY, Jae SR. Nutrient removals by21aquatic plants for vertical freesurface-flow(VFS) constructed wetland[J]. Ecological Engineering,2007,29:287-293.
    Jiries A. Chemical composition of dew in Amman, Jordan[J]. Atmospheric Research,2001,57:261-268.
    Kamila K, Costes S, Zaneta P, et al. Application of linear discriminant analysis to the study ofdew chemistry on the basis of samples collected in Poland(2004-2005)[J]. Central EuropeanJournal of Chemistry,2009,7:20-30.
    Karthikeyan S, Balasubramanian R, He J. Inter-laboratory study to improve the quality of theanalysis of nutrients in rainwater chemistry[J]. Atmospheric Environment,2009,43:3424-3430.
    Kidron GJ, Herrnstadt I, Barzilay E. The role of dew as a moisture source for sand microbioticcrusts in the Negev Desert,Israel[J]. Journal of Arid Environments,2002,52:517-533.
    Krupa SV. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: A review[J].Environmental Pollution,2003,124:179-221.
    Lee KS, Wenner DB, Lee I. Using H-and O-isotopic data for estimating the relativecontributions of rainy and dry season precipitation to groundwater: example from ChejuIsland, Korea[J]. Journal of Hydrology,1999,222:65-74.
    Leyton (卢其尧等译).植被与大气物理[M].北京:农业出版社,1985,144-149.
    Li XY. Effects of gravel and sand mulches on dew deposition in the semiarid region of China[J].Journal of Hydrology,2002,260:151-160.
    Liu SY, Yan BX, Wang LX. Study on relationship between ammonia nitrogen reaction and pHvariation in constructed wetlands[J]. Journal of Soil and Water Conservation,2010,24(3):243-246.
    Liu WJ, Li PJ, Li HM, et al. Estimation of evaporation rate from soil surface using stableisotopic composition of throughfall and stream water in a tropical seasonal rain forest ofXishuangbanna Southwest China[J]. Acta Ecologica Sinica,2006,26(5):1303-1311.
    Liu WJ, Liu WY, Li PJ, et al. Using stable isotopes to determine sources of fog drip in a tropicalseasonal rain forest of Xishuangbanna, SW China[J]. Agricultural and Forest Meteorology,2007,143:80-91.
    Luo WH, Goudriaan J. Dew formation on rice under varying durations of nocturnal radiativeloss[J]. Agricultural and Forest Meteorology,2000b,104:303-313.
    Luo WH, Goudriaan J. Effects of altering water temIerature on leaf wetness in paddy ricecrops[J]. Agricultural and Forest Meteorology,1999,97:33-42.
    Luo WH, Goudriaan J. Measuring dew formation and its threshold value for net radiation loss ontop leaves in a paddy rice crop by using the dew ball: a new and simple instrument[J].Original Article,2000a,44:167-171.
    Malek E, McCurdy G, Giles B. Dew contribution to the annual water balances in semi-arid desertvalleys[J]. Journal of Arid Environments,1999,42:71-80.
    Maria A, Rubio, Eduardo L, et al. Factors determining the concentration of nitrite in dew forSantiago, Chile[J]. Atmospheric Environment,2008,42:7651-7656.
    Mayr C, Lücke A, Stichler W, et al. Precipitation origin and evaporation of lakes in semi-aridPatagonia(Argentina) inferred from stable isotopes(δ18O, δ2H)[J]. Journal of Hydrology,2007,334:53-63.
    Monteith JL, Roy QJ. Dew[J]. Meteorological Society,1956,83:322-341.
    Monteith JL, Unsworth MH. Princip les of environmental physics[M]. Second Arnold, London,UK,1990.
    Muselli M, Beysens D, Mileta M, et al. Dew and rain water collection in the Dalmatian coast,Croatia[J]. Atmospheric Research,2009,92:455-463.
    Muselli M, Beysens D. Dew water collector for potable water in Ajaccio(Corsica Island,France)[J]. Atmospheric Research,2002,64:297-312.
    Norimichi T, Hiroyuki S, et al. Difference in amounts and composition of dew from differenttypes of dew collectors,Water, air, and Pollution[J]. Atmospheric Environment,2003,147:51-60.
    Oke TR. Boundary Layer Climates[M]. London: Routledge,1987.
    Perez T, Trumbore SE., Tyler SC, et al. Identifying the agricultural imprint on the global N2Obudget using stable isotopes[J]. Journal of Geophysical Research,2001,106:9869-9878.
    Richards K. Urban and Rural dewfall, surfacemoisture, and humidity measurements forVancouver[J]. Canada: Boundary LayerMeteorol,2005,114:143-163.
    Sharan G. Beysens D, Milimouk MI. A study of dew water yield on Galvanized iron roofs inKothara(North-West India)[J]. Journal of Arid Environments,2007,69:259-269.
    Singh SP, Khare P, Maharaj KK, et al. Chemical characterization of dew at a regionalreparesentative site of North-Central India[J]. Atmospheric Research,2006,80:239-249.
    Torbjorn N. Initial experiments on dew collection in Sweden and Tanzania[J]. Solar EnergyMaterials and Solar Cells,1996,40:23-32.
    Wagner GH, Steele KF, Peden ME. Dew and frost chemistry at a mid-continent site, UnitedStates[J]. Journal of Geophysical Research Atomospheres,1992,97:20591-20597.
    Wood D, McNairn H, Brown RJ, et al. The effect of dew on the use of RADARSAT-1for cropmonitoring; choosing between ascending and descending orbits[J]. Remote Sensing ofEnvironment,2002,80(2):241-247.
    Ye YH, Zhou K, Song LY, et al. Dew amounts and its correlations with meteorological factors inurban landscapes of Guangzhou, China[J]. Atmospheric Research,2007,86:21-29.
    卜坤.三江平原农业生态适宜性评价[D].2008.长春:中国科学院东北地理与农业生态研究所博士毕业论文.
    曹文炳,万力,周训.西北地区沙丘凝结水形成机制及对生态环境影响初步探讨[J].水文地质工程地质,2003,(2):6-10.
    曹燕丽,卢琦,林光辉.氢稳定性同位素确定植物水源的应用与前景[J].生态学报,2002,22(1):111-117.
    地区露水资源分析[J].自然资源学报,1998,13(1):40-42.
    段德玉,欧阳华.稳定氢氧同位素在定量区分植物水分利用来源中的应用[J].生态环境,2007,16(2):655-660.
    高连国,高洪娇,唐德东.玉米叶片集水抗旱效果的观测.气象[J],2001,27(1):56-57.
    郭占荣,刘建辉.中国干旱半干旱地区土壤凝结水研究综述[J].干旱区研究,2005,22(4):576-580.
    韩晓增,王守宇,宋春雨,等.黑土区水田化肥氮去向的研究[J].应用生态学报,2003,14(11):1859-1862.
    胡海英,包为民,瞿思敏,等.稳定性氢氧同位素在水体蒸发中的研究进展[J].水文,2007a,27(3):1-5.
    胡海英,包为民,王涛.水体蒸发中瑞利分馏公式的模拟及实验验证[J].水利学报,2007,10(增刊):314-317.
    蒋益民,曾光明,张龚,等.酸雨作用下的森林冠层盐基离子(Ca2+, Mg2+, K+)淋洗[J].热带亚热带植物学报,2004,12(5):425-430.
    靳华安,刘殿伟,王宗明,等.三江平原湿地植被叶面积指数遥感估算模型[J].生态学杂志,2008,27(5):803-808.
    乐毅全,戴学真,周斌斌.模拟酸露对植物影响的实验[J].上海环境科学,1998,17(2):33-34.
    李颖,张养贞,张树文.三江平原沼泽湿地景观格局变化及其生态效应[J].地理科学,2002,22(6):677-682.
    林俊城,田小海,殷桂香,等.人工调节籼型杂交水稻不育系花时的研究[J].中国农业科学,2008,41(8):2474-2479.
    刘德燕,宋长春.磷输入对湿地土壤有机碳矿化及可溶性碳组分的影响[J].中国环境科学,2008,28(9):769-774.
    刘文杰,李鹏菊,李红梅,等.西双版纳热带季节雨林林下土壤蒸发的稳定性同位素分析[J].生态学报,2006,26(5):1303-1311.
    刘文杰,曾觉民,王昌命,等.森林与雾露水关系研究进展[J].自然资源学报,2001b,16(6):517-575.
    刘文杰,张克映,张光明,等.西双版纳热带雨林干季林冠雾露水资源效益研究[J].资源科学,2001a,23(2):75-80.
    刘文杰,张一平,刘玉洪,等.热带季节雨林和人工橡胶林林冠截留雾水的比较研究[J].生态学报,2003,23(11):2379-2386.
    刘兴土,马学慧.三江平原自然环境变化与生态保育[M].北京:科学出版社,2002,97-97.
    刘兴土.三江平原湿地资源及其可持续利用[J].地理科学,1997,17(增刊).
    罗绪强,王世杰,刘秀明.陆地生态系统植物的氮源及氮素吸收[J].生态学杂志.2007,26(7):1094-1100.
    马学慧,刘兴土.中国湿地生态环境质量现状分析与评价方法[J].地理科学,1997,17(增刊).
    裘善文.中国东北地貌第四纪研究与应用[M].2008.长春:吉林科学技术出版社.
    石辉,刘世荣,赵晓广.稳定性氢氧同位素在水分循环中的应用[J].水土保持学报,2003,17(2):163-166.
    舒理等编.科学奥秘系列丛书:植物之谜[M].[2009-05-30]http://www.jyvec.com/Onlineaccess/book/ts066096.pdf
    宋长春,张丽华,王毅勇,等.淡水沼泽湿地CO2、CH4和N2O排放通量年际变化及其对氮输入的响应[J].环境科学,2006,27(12):2369-2375.
    宋开山,张柏,王宗明,等.玉米和大豆LAI高光谱遥感估算模型研究[J].中国农学通报,2005,21(1):318-322.
    孙淑芬.陆面过程的物理、生化机理和参数化模型[M].北京:气象出版社,2005,3-4.
    王华,马宁,杨晓静,等.成都市雨水中的重金属特征[J].地球与环境,2010,38(1):49-52.
    王杰,王文科,田华,等.环境同位素在三水转化研究中的应用[J].工程勘察,2007,3:31-39.
    卫克勤,林瑞芳.论季风气候对我国雨水同位素组成的影响[J].地球化学,1994,23(1):33-41.
    徐莹莹,阎百兴,王莉霞.三江平原露水水汽来源的氢氧稳定同位素辨析.环境科学.2011,32(6):1550-1556.
    徐振,刘玉虹,王中生,等.卧龙降水稳定同位素与季风活动的关系[J].环境科学,2008,29(4):1007-1012.
    薛利红,曹卫星,罗卫红,等.光谱植被指数与水稻叶面积指数相关性的研究[J].植物生态学报,2004,28(1):47-52.
    薛亚锋,周明耀,徐英,等.水稻叶面积指数及产量信息的空间结构性分析.农业工程学报[J],2005,21(8):89-92.
    阎百兴,邓伟.三江平原露水资源研究[J].自然资源学报,2004a,19(6):732-737.
    阎百兴,王毅勇,徐治国.三江平原沼泽生态系统中露水凝结研究[J].湿地科学,2004b,2(2):94-99.
    阎百兴,徐莹莹,王莉霞.三江平原农业生态系统露水凝结规律.生态学报,2010,30(20):5577-5584.
    叶有华,周凯,彭少麟,等.广东从化地区晴朗夜间露水凝结研究[J].热带地理,2009,29(1):26-30.
    于瑞莲,胡恭任,袁星,等.大气降尘中重金属污染源解析研究进展[J].地球与环境,2009,37(1):73-79.
    员建,陈轶,李琼,等. pH对剩余污泥中氮、磷释放的影响[J].中国给水排水,2010,26(1):96-98.
    张建山,仵彦卿,李哲.陕北沙漠滩区降水入渗与凝结水补给机理试验研究[J].水土保持学报,2005,19(5):124-126.
    张建山.沙漠滩区凝结水补给机理研究[J].地下水,1995,17(2):76-77.
    张强,胡隐樵.西北地区绿洲维持过程中水分的输送特征.西部资源环境科学研究中心论文集[C].兰州:兰州大学出版社,1998.
    张强,王胜.关于干旱和半干旱区陆面水分过程的研究[J].干旱气象,2007,25(2):3-6.
    张强,卫国安,黄荣辉.绿洲对其临近荒漠大气水分循环的影响—敦煌实验数据分析[J].自然科学进展,2002,12(2):195-200.
    张强,卫国安.邻近绿洲的荒漠表层土壤逆湿和对水分“呼吸”过程的分析[J].中国沙漠,2003,23(4):380-383.
    张芸,吕宪国,杨青.三江平原典型湿地水化学性质研究[J].水土保持学报,2005a,19(1):184-187.
    张芸,吕宪国,杨青.三江平原湿地水平衡结构研究[J].地理与地理信息科学,2005b,25(1):79-82.
    赵光影,刘景双,王洋,等. CO2浓度升高和氮输入影响下湿地生态系统CO2排放研究[J].农业现代化研究,2009,30(2):220-224.
    赵家成,魏宝华,肖尚斌.湖北宜昌地区大气降水中的稳定同位素特征[J].热带地理,2009,29(6):526-531.
    赵军.内蒙古典型草原露水资源研究初探[D].中国优秀硕士学位论文全文数据库,2006,74-79.
    赵魁义.中国沼泽志[M].北京:科学出版社,1999,55-56.
    郑琰明,钟巍,彭晓莹,等.粤西云浮市大气降水δ18O与水汽来源的关系[J].环境科学,2009,30(3):637-643.
    周淑贞.气象学与气候学(第三版)[M].北京:高等教育出版社,1997,59.
    朱炳海.气象学词典[M].上海:上海辞书出版社,1985.
    祝惠,阎百兴.三江平原水田氮的侧渗输出研究[J].湿地科学.2010,8(3):266-272.
    庄舜尧,曹志洪.叶面肥的研究与发展[J].土壤,1998,5:230-234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700