水压综合试验台的研制及水压双缸同步控制试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水压传动技术由于其环保、安全及节能等突出优点,在诸如食品、饮料、医药、电子、包装等对环境污染要求严格及在冶金、热轧、铸造等高温明火场合以及煤矿井下等易燃易爆环境具有广阔的应用前景。本文源于日元贷款甘肃人才培养项目的需求,研制开发了一套水压元件综合试验台。同时,利用该试验台的动力源,搭建了水压双缸同步控制试验系统并进行了试验研究。
     本文的主要研究工作如下:
     分析了水压综合试验台的工作原理和性能要求,确定了采用模块化的方法对系统进行设计,对其各部分结构进行了详细介绍和设计,完成了系统的搭建和试验。
     针对系统提出的控制要求,确定了主要的电气元器件的选型,并对各控制模块进行了详细的分析和设计。分析了可能产生的干扰并提出了硬件和软件抗干扰措施,并对试验台的测试精度进行了设计和评定。
     基于VB的开发环境对控制系统的软件进行设计编程,详细介绍了软件的通信模块、数据采集模块和双缸同步模块的设计。
     建立了比例流量阀及水压缸的模型并对其响应性能和双缸同步性能进行了仿真分析,仿真结果表明在空载的情况下采用PID控制可以达到很好的同步精度。
     对水压双缸同步控制系统进行了现场试验,并对实验结果进行了分析。实验结果表明采用自适应型PID控制可以很好的实现双缸的位置同步,控制精度达到技术要求。
     该试验台已经过专家验收,主要技术性能指标达到国际先进水平,为水压技术的研究提供有力的实验平台。
Since the water hydraulic technology has many prominent advantages such as environmental protection, security and energy saving it has extensively application prospects in many fields which has a stringent requirement of anti-contamination, such as food industry, beverages, medicine, electron, packing and so on. Moreover, it was widely used in some inflammable and explosive environment and high-temperature occasions as well such as colliery, metallurgy, casting, etc. This subject comes from the Japanese yen loans supporting training project in Gansu province, in which a comprehensive hydraulic components test-rig need to be developed. At the same time, water hydraulic parallel cylinders synchronous control testing system has been established and tests were implemented by using the power source of the test-rig.
     The main researches of this article are as follows:
     The working principle and performance requirements of the water hydraulic comprehensive test-rig are analyzed. The methods of module were used to design the system and every parts of its structure are introduced, and then the system’s building and tested
     The paper has determined the main electrical components, and designed each module to meet the control requests. At the same time, it has analyzed possible interferences and brought out anti-interferences measures on hardware and software, and assessed the test precision of the test-rig.
     The software of control system has been programmed by exploring environment based on the VB and the paper has introduced detailedly the design of communications module, data module and double cylinder Synchronous module.
     The model of proportional hydraulic flow valve and water hydraulic cylinder were established, whose response performance and parallel cylinders synchronous performance were simulated and analyzed. The results show that adopting PID control can achieve good synchronization accuracy in the case of no-load.
     The test-rig had been accepted by experts. The main technical specifications have reached the international advanced level. It can provide an experimental platform for the research of water hydraulic technology.
引文
[1] ZhuangYun Li. The Development and Perspective of Water Hydraulics, Keynote Lecture for Fourth JHPS International Symposium on Fluid Power. Tokyo, 1999
    [2]杨曙东,李壮云.水压传动技术及其发展前景.湖北省机械工程学会“世纪之交工程技术的回顾与展望”论文集,2005.5.
    [3] K.T.Koskinen. Water Hydraulics—A Versatile Technology[J]. Journal of the Japan Hydraulics & Pneumatics Society, 1998 (11): 42~45
    [4] W. Backe. Water- or Oil- Hydraulics in the future[C]. Proc. The 6th Scandinavian International Conf. on Fluid Power. SICFP, 1999, vol.1: 51~65.
    [5] Louis Cassens,Michael F.Thomas,Gary Krutz.Water hydraulic energy savings vehicle.The 8 Scandinavian international conference on fluid power,SICFP'03 Tampere,Finland:May 7-9 2003:117~128
    [6]刘银水,朱玉泉,李壮云.水压传动技术的特征与新进展[J].液压与气动2006,2
    [7]贺小峰,黄国勤,朱碧海等.海水液压动力驱动的水下作业工具系统[J].液压与气动2004,8:49~51
    [8]刘银水,王晓斌,吴德发等.移动式海水液压水下作业工具系统[J].机床与液压. 2008,10:14~17
    [9] E. Varandili. Properties of Tap Water as a Hydraulic Pressure Medium, Proc. The Sixth Scandinavian International Conf. on Fluid Power (SICFP'99), Vol.1, pp.113-127, 1999
    [10] Koskinen K.T., Vilenius M.J.. Water as a Pressure Medium in Fluid Power Systems[J]. IFAC Workshop on Trend in Hydraulic and Pneumatic Components and Systems,1994, 9:8~9.
    [11] Ter?v? J., Kuikko T. and Vilenius M. Development of Seawater Hydraulic Power Pack. Proc. of 4th Scandinavian Int. Conf. on Fluid Power, Finland, Sept. 26-29, 1995: 978~991
    [12] Kunsemiller J.P.,Black S. A. .Seawater Hydraulics: A multifunction tool system for U.S. navy construction drivers[C].California: Naval Civil Engineering Laboratory ,AD-A237947,May,1991
    [13] Brookes C.A. The Development of Water Hydraulic Pumps Using Advanced Engineering Ceramics. The 4th Scandinavian International Conference on Fluid Power,1995: 965~977
    [14] Vilenius M. J., Koskinen K. T. and Virvalo T.K. Water and Mobile Hydraulics Research in Finland. Proceedings of 5th ICFP'2001, Hangzhou April, 3~5, 2001:(12)~(27)
    [15] Taylor P. M., Kieffer J., Oldaker R., et al. A water hydraulic robot[C]. Proc. of the 32nd Conference on Decision and Control, Part 2 (of 4), 1993 (2): 1911~1912
    [16] Kitagawa A..Co-operation Between Universities and Water Hydraulic Companies in Japan.The Sixth Scandinavian International Conference on Fluid Power,Tampere,Finland,May 26-28, 1999, pp35-50
    [17]安维胜,水压泵性能试验及双缸同步控制系统的研究[D].西南交通大学,2003
    [18]程文芳,水压双缸位置同步控制系统的研究[D].华中科技大学,2008
    [19]张英婵.液压同步控制回路简析与应用[J].重型机械科技,2006,4:42~44
    [20]韩波,王庆丰,路甬祥.电液比例位置同步控制系统的控制结构研究[J].机床与液压. 1997,1:7~10
    [21]苏东海,韩国惠,于江华等.液压同步控制系统及其应用[J].沈阳工业大学学报,2005,27(4): 364~367.
    [22]曾晨阳,双弹车双缸同步系统液压综合试验台的设计与研究[D].中南大学,2004
    [23]黄琳,基于虚拟仪器的液压试验台CAT系统设计[D],浙江大学,2006
    [24] ADVANTECH PCI-1710 User’s Manual. Advantech co. Ltd. 2005
    [25]李辉,S7-200PLC编程原理与工程实训[M].北京:北京航空航天大学出版社,2008
    [26]龚仲华,S7-200/300/400PLC应用技术[M].北京:人民邮电出版社,2008
    [27]赵勇,重型越野车转向系统液压CAT的研制[D].华中科技大学,2003
    [28]徐晶晶,船用舵机电液伺服调节器CAT试验台的研制[D].华中科技大学,2007
    [29]马明建,周长城.数据采集与处理技术[M].西安:西安交通大学出版社,1998:59-125
    [30]金昊,柯冬香.如何实现计算机数据采集系统的信号调理[J].电子技术应用,1998
    [31]晁阳,可编程控制器原理应用与实例解析[M].北京:清华大学出版社,2007
    [32]李薇.基于VB的PLC与上位机的通讯.机床电气[J],1999,(3):17~19
    [33]王福明,贺正辉,索瑾.应用数值计算方法[M].北京:科学出版社, 1992
    [34]何国伟.误差分析方法[M].北京:国防工业出版社,1978
    [35]倪善生.液压试验中的误差分析与计算[J]
    [36]徐益民.电液比例控制系统分析与设计[M].北京:机械工业出版社,2005
    [37]李壮云.液压元件与系统[M],机械工业出版社,2005.
    [38]雷天觉.新编液压工程手册[M].北京理工大学出版社,1998.
    [39] KOSKINEN K.T., VILENIUS M.J., VIRCALO T., et al. Water as a Pressure Medium in Position Servo Systems[C]. Fluid Power. 4th JHPS International Symposium,1999.
    [40]倪敬,项占琴,潘晓弘.双缸同步提升电液系统建模和控制[J].机械工程学报,2007,43(2),81~86
    [41]白金,韩俊伟.基于MATLAB-Simulink环境下的PID参数整定[J].哈尔滨商业大学学报(自然科学版),2007,23(6):673~677.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700