基于各种拆分方法的四氢异喹啉生物碱、手性亚磺酰胺和顺式哌虫啶的合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了半量拆分、循环拆分、自发结晶等各种高效拆分技术,并将它们运用到四氢异喹啉生物碱及其衍生物、手性亚磺酰胺和顺式哌虫啶的合成中,开展了下列三方面的工作:
     (1)以1-苯乙胺的拆分为模型反应,对半量拆分和全量拆分进行了详细的比较研究,发现半量拆分优于全量拆分。以高藜芦胺为原料,经过酰化反应、Bischler-Napieralski反应和亚胺的还原反应高收率地得到四个消旋的1-取代四氢异喹啉化合物(RS)-(±)-Ⅱ-4a-4d.然后,通过半量拆分技术分别以45%、40%、41%和38%的收率得到(S)-(-)-norcryptostyline Ⅰ[(S)-(-)-Ⅱ-4a]、(S)-(-)-norcryptostyline Ⅱ[(S)-(-)-Ⅱ-4b]、(R)-(+)-salsolidine[(R)-(+)-Ⅱ-4c]和(S)-(-)-norlaudanosine[(S)-(-)-Ⅱ-4d],并且使用手性溶剂化试剂(CAS,chiral solvating agents)通过1H NMR方法测定其光学纯度。对母液中不需要的异构体的碱催化消旋和氧化还原消旋进行了深入的研究,我们发现通过“一锅法”氧化还原消旋化可分别以98%、98%、97%和95%的收率得到消旋体1-取代四氢异喹啉(RS)-(±)-Ⅱ-4a-4d。同样地,我们利用半量拆分技术以38%的收率得到索非那新药物重要中间体(S)-Ⅱ-25,并利用同样的“一锅”氧化还原消旋化方法将不需要的异构体以98%的收率消旋化,所得的消旋体可再进一步拆分,这样的“拆分-消旋”过程可循环多次,称为“循环拆分”。
     (2)我们以四种亚磺酸钠Ⅲ-1a-1d为原料,先将其转化为酰氯,再与(R)-N-苄基-1-苯乙胺反应得到一对非对映异构体亚磺酰胺混合物Ⅲ-3a-3d,然后运用自发结晶技术在正己烷和乙酸乙酯(hexane/EtOAc=9:1)混合溶剂中分别以28%、29%、27%和31%的收率得到单一异构体(R,Ss)-Ⅲ-3a-3d,接着分别高收率地将它们转化为手性亚磺酸甲酯(RS)-Ⅲ-5,再转化为手性亚磺酰胺(Ss)-Ⅲ-6。这是一个新颖的、简便的制备光学纯的(SS)-苯亚磺酰胺(Ss)-Ⅲ-6a、(Ss)-对甲苯亚磺酰胺(Ss)-Ⅲ-6b、(Ss)-对氯苯亚磺酰胺(Ss)-Ⅲ-6c、(SS)-对氟苯亚磺酰胺(Ss)-Ⅲ-6d的方法。另外,在此研究过程中,我们还发现了一种运用水合肼在DMSO中还原亚磺酸酯和亚磺酰胺制备对称二芳基二硫醚的简便方法。
     (3)我们发展了一种顺式哌虫啶的高效合成方法。首先,使用三乙胺催化Michael加成稠环反应,将哌虫啶中间体Ⅳ-5的收率从67%大大提高到92%。对醚化反应采用氯化亚砜催化,几乎定量地得到哌虫啶的顺反立体异构体混合物Ⅳ-6,根据顺反异构体的溶解度不同,在正丙醇和水(n-PrOH:H2O=1:2)的混合溶剂中活性高的一对顺式异构体结晶析出,母液中活性较低的一对反式异构体通过酸催化差向异构化为等量的顺反立体异构体混合物。另外,我们还合成了一系列的哌虫啶类似物Ⅳ-15,并测试了其杀虫活性,结果发现其中Ⅳ-15d、Ⅳ-15f和Ⅳ-15m不但对刺吸式口器害虫褐飞虱具有较高活性,而且对同翅目蚜科害虫苜蓿蚜也表现出高活性。
This dissertation describes the study on some efficient resolution methods, such as half-equivalent resolution, recycling resolution and spontaneous crystallization. Syntheses of tetrahydroisoquinoline alkaloids, chiral arylsulfinamides and cis-IPP based on these efficient resolution methods are also discussed. The paper contains three parts as described below:
     Part one:A comparative study on resolution of1-phenylethylamine as a model reaction with half equivalent or one equivalent resolving agent was performed, and the results revealed that half-equivalent resolution is superior to the equal-equivalent. Then four racemic1-substituted1,2,3,4-tetrahydroisoquinolines (THIQs)(RS)-(±)-Ⅱ-4a-4d were efficiently prepared from homoveratrylamine in excellent yields by N-carboxylation, Bischler-Napieralski reaction and reduction of imines. Chiral resolution of these THIQs (RS)-(±)-Ⅱ-4a-4d with half equivalent of resolving agents smoothly afforded the desired enantiomerically pure (S)-(-)-norcryptostyline Ⅰ [(S)-(-)-Ⅱ-4a],(S)-(-)-norcryptostyline Ⅱ [(S)-(-)-Ⅱ-4b],(R)-(+)-salsolidine [(R)-(+)-Ⅱ-4c] and (S)-(-)-norlaudanosine [(S)-(-)-Ⅱ-4d] in45%,40%,41%and38%yields, respectively. The enantiomeric purities of the above obtained THIQs were determined by1H NMR method with CSAs. Base-catalyzed and redox methods were used for racemization of the undesired enantiomerically enriched THIQs,(R)-(+)-Ⅱ-4a,(R)-(+)-Ⅱ-4b,(S)-(-)-Ⅱ-4c and (R)-(+)-Ⅱ-4d, from the mother liquors, and the result indicated that undesired THIQs could be efficiently racemized via a one-pot redox protocol to afford the corresponding racemic THIQs (RS)-(±)-Ⅱ-4a-4d in98%,98%,97%and95%yields, respectively. Moreover,(S)-1-phenyl-1,2,3,4-tetrahydroisoquinoline (S)-Ⅱ-25, an important intermediate of solifenacin, was efficiently synthesized in38%yield by a half-equivalent resolution. The undesired (R)-II-25was efficiently racemized via the same method in98%yield. The obtained racemic Ⅱ-25could be used for further resolution. This "resolution-racemization" process could be conducted repetitively.
     Part two:Sodium arylsulfinates Ⅲ-1a-1d were converted into arysulfinyl chlorides, which were then treated with (R)-N-benzyl-l-phenylethanamine to afford diastereomeric mixtures of N-benzyl-N-(1-phenylethyl)-arylsulfinamides Ⅲ-3a-3d. By using a mixture of hexane and ethyl acetate (hexane/EtOAc=9:1) as the solvent, diastereomerically pure (R,Ss)-N-benzyl-N-(1-phenylethyl)-arylsulfinamides (R,Ss)-Ⅲ-3a-3d spontaneously crystallized in28%,29%,27%and31%yields, respectively. The diastereomerically pure compounds (R,Ss)-Ⅲ-3were then converted into four enantiopure (Rs)-methyl arylsulfinates (Rs)-Ⅲ-5, and finally into four enantiopure (Ss)-arylsulfinamides (Ss)-Ⅲ-6in good yields. Thus, a novel and simple process for the preparation of enantiomerically pure (Ss)-benzenesulfinamide (Ss)-Ⅲ-6a,(Ss)-p-toluenesulfinamide (Ss)-Ⅲ-6b,(Ss)-p-chlorobenzenesulfinamide (Ss)-Ⅲ-6c and (Ss)-p-fluorobenzenesulfinamide (Ss)-Ⅲ-6d has been developed. In addition, synthesis of diaryl disulfides via mild reduction of arylsulfinates and arylsulfinamides with hydrazine monohydrate in DMSO was achieved.
     Part three:A new process for the preparation of cis-IPP was developed. Using triethylamine as catalyst in a Michael addition, the yield of an intermediate compound Ⅳ-5was greatly increased from67%to92%. Mixture of cis and trans-IPP Ⅳ-6was obtained quantitatively via a thionyl chloride catalyzed etherification. The cis-IPP was readily precipitated from a mixed solvent of n-propanol and water (n-PrOH/H2O=1:2), which was based on the different of the solubility of the cis and trans diastereoisomers. The less active trans-IPP in the mother liquor could be epimerized into an equal-equivalent mixture of cis and trans-IPP under acidic conditions. In addition, a series of N-alkyl1-((6-chloropyridin-3-yl)methyl)-7-methyl-8-nitro-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridi n-5-amines Ⅳ-15were synthesized, and insecticidal activities of these compounds were evaluated. Compounds Ⅳ-15d, Ⅳ-15f and Ⅳ-15m showed high insecticidal activities against both sucking pest Nilaparvata lugens and lepidopteran Aphis medicaginis.
引文
[1]尤田耙,手性化合物的现代研究方法.中国科技大学出版社:1993.
    [2]Sheldon, R. Industrial synthesis of optically active compounds. Chem. Ind. (London) 1990, 37(7):212.
    [3]Fogassy, E.; Nogradi, M.; Kozma, D.; Egri, G.; Palovics, E.; Kiss, V. Optical resolution methods. Org. Biomol. Chem 2006,4(16):3011-3030.
    [4]Siedlecka, R. Recent developments in optical resolution. Tetrahedron 2013,69(31): 6331-6363.
    [5]Faigl, F.; Fogassy, E.; Nogradi, M.; Palovics, E.; Schindler, J. Strategies in optical resolution:a practical guide. Tetrahedron:Asymmetry.2008,19(5):519-536.
    [6]Leclercq, M.; Jacques, J. Study of optical antipode mixtures. X. separation of complex diastereoisomeric salts by isomorphism. Bull. Soc. Chim. Fr.1975,9-10:2052.
    [7]Pope, W. J.; Peachey, S. J. CVIII.-The application of powerful optically active acids to the resolution of externally compensated basic substances. Resolution of tetrahydroquinaldine. J. Chem. Soc. Trans 1899,75(0):1066-1093.
    [8]Harrington, P. J.; Lodewijk, E. Twenty Years of Naproxen Technology. Org. Process Res. Dev.1997,1(1):72-76.
    [9]Nishi, T.; Nakajima, K.; Iio, Y.; Ishibashi, K.; Fukazawa, T. Practical methods for the preparation of spiro[benzo[c]thiophene-1(3H),4'-piperidine]-(2S)-oxide by resolution and asymmetric sulfoxidation. Tetrahedron:Asymmetry.1998,9(15):2567-2570.
    [10]Lohse, O.; Spondlin, C. Efficient Preparation of (R)-and (S)-2-Amino-l-phenylethanol. Org. Process Res. Dev.1997,1(3):247-249.
    [11]Lu, X.; Xu, Z.; Tang, G. Process Development on the Preparation of trans-(+)-2-Methyla-minocyclohexanol:A Fascinating Resolution Example. Org. Process Res. Dev.2001,5(2): 184-185.
    [12]Fogassy, E.; Faigl, F.; Acs, M.; Simon, K.; Kozsda, E.; Podanyi, B.; Czugler, M.; Reck, G. Structural studies on optical resolution via diasteroisomeric salt formation. Enantiomer separation for cis-permethrinic acid [cis-2,2-dimethyl-3-(2,2-dichlorovinyl)cyclopropanecarb-oxylic acid]. J. Chem. Soc., Perkin Trans.2 1988, (8):1385-1392.
    [13]Simon, K.; Kozsda, E.; Bocskei, Z.; Faigl, F.; Fogassy, E.; Reck, G. Structural studies on optical resolution via diastereoisomeric salt formation, part 2. The conformational flexibility of (S)-2-benzylaminobutan-l-ol in enantiomer separation for permethrinic acids. J. Chem. Soc, Perkin Trans.2 1990, (8):1395-1400.
    [14]Tan, H.; Cui, S.; Gahm, K.; Luu, V.; Walker, S. D. Rational Screening Approach for Classical Chiral Resolution under Thermodynamic Equilibrium:A Case Study of Diphenyl-Substituted N-Methyl-Piperazine. Org. Process Res. Dev.2011,15(1):53-63.
    [15]Brossi, A.; Teitel, S. Synthesis and absolute configuration of cryptostylines Ⅰ, Ⅱ, and Ⅲ. Helv. Chim. Acta 1971,54(6):1564-1571.
    [16]Battersby, A. R.; Edwards, T. P.246. Chemical correlation of the absolute configurations of salsolidine, salsoline, and calycotomine with the amino-acids. J. Chem. Soc.1960,0(0): 1214-1221.
    [17]Munchhof, M. J.; Meyers, A. I. A novel asymmetric route to the 1,3-disubstituted tetrahydroisoquinoline, (-)-argemonine. J. Org. Chem.1996,61(14):4607-4610.
    [18]Naito, R.; Yonetoku, Y.; Okamoto, Y.; Toyoshima, A.; Ikeda, K.; Takeuchi, M. Synthesis and antimuscarinic properties of quinuclidin-3-yl 1,2,3,4-tetrahydroisoquinoline-2-carboxyl-ate derivatives as novel muscarinic receptor antagonists. J. Med. Chem.2005,48(21): 6597-6606.
    [19]Menachery, M. D.; Lavanier, G. L.; Wetherly, M. L.; Guinaudeau, H.; Shamma, M. Simple isoquinoline alkaloids. J. Nat. Prod.1986,49(5):745-778.
    [20]Hoogewerff, S.; von Dorp, W. A. Isoquinoline. Recl. Trav. Chim. Pays-Bas 1885,4: 125-129.
    [21]Gabriel, S. Synthese von derivaten des isochinolins. Ber. Dtsch. Chem. Ges 1885,18(2): 3470-3480.
    [22]Weiβgerber, R. Uber das isochinolin im steinkohlenteer. Ber. Dtsch. Chem. Ges 1914, 47(3):3175-3181.
    [23]Bergstrom, F. W. Heterocyclic nitrogen compounds, part IIA. hexacyclic compounds: pyridine, quinoline, and isoquinoline. Chem. Rev.1944,35(2):77-277.
    [24]Popp, F. D.; McEwen, W. E. Syntheses of papaverine, papaverinol and papaveraldine from reissert compounds.J. Am. Chem. Soc.1957,79(14):3773-3777.
    [25]Wu, W.-N.; Beal, J. L.; Doskotch, R. W. Alkaloids of thalictrum XXX. eleven minor alkaloids from thalictrum rugosum. J. Nat. Prod.1980,43(1):143-150.
    [26]Baser, K. H. C. Isolation and identification of anisaldehyde and three alkaloids from leaves of thalictrum minus var. microphyllum. J. Nat. Prod.1982,45(6):704-706.
    [27]Botega, C.; Pagliosa, F. M.; Bolzani, V. d. S.; Yoshida, M.; Gottlieb, O. R. Benzyl-isoquinoline alkaloids and eudesmane sesquiterpenes from Ocotea pulchella. Phytochemistry 1993,32(5):1331-1333.
    [28]Duan, X. H.; Jiang, J. Q. A new benzylisoquinoline alkaloid from stems of Nelumbo nucifera. Chin. Chem. Lett.2008,19(3):308-310.
    [29]Christopher, J. A.; Atkinson, F. L.; Bax, B. D.; Brown, M. J. B.; Champigny, A. C.; Chuang, T. T.; Jones, E. J.; Mosley, J. E.; Musgrave, J. R. 1-Aryl-3,4-dihydroisoquinoline inhibitors of JNK3. Bioorg. Med. Chem. Lett.2009,19(8):2230-2234.
    [30]Novak, Z.; Chlebek, J.; Opletal, L.; Jiros, P.; Macakova, K.; Kunes, J.; Cahlikova, L. Corylucinine, a new alkaloid from Corydalis cava (Fumariaceae), and its cholinesterase activity. Natural product communications 2012,7(7):859-860.
    [31]Kashiwaba, N.; Morooka, S.; Kimura, M.; Ono, M.; Toda, J.; Suzuki, H.; Sano, T. Stephaoxocanine, a novel dihydroisoquinoline alkaloid from Stephania cepharantha. J. Nat. Prod.1996,59(8):803-805.
    [32]Proskurnina, N.; Orekhov, A. The alkaloids of Salsola richteri. Ⅲ. The optically active salsoline and the isolation of two new alkaloids. Bull. Soc. Chim. Fr., Mem.1937,4: 1265-1271.
    [33]Leander, K.; Liining, B.; Ruusa, E. Studies on orchidaceae alkaloids. Ⅺ. three 1-phenyl-1,2,3,4-tetrahydroisoquinolines from Cryptostylis fulva Schltr. Acta Chem. Scand.1969,23(1): 244-248.
    [34]Schmutz, J. Die alkaloide von xylopia discreta (L. FIL.) Sprague et Hutchins. Helv. Chim. Acta 1959,42(1):335-343. [35] Gray, N. M.; Cheng, B. K.; Mick, S. J.; Lair, C. M.; Contreras, P. C. Phencyclidine-like effects of tetrahydroisoquinolines and related compounds. J. Med. Chem.1989,32(6): 1242-1248.
    [36]Gitto, R.; Barreca, M. L.; De Luca, L.; De Sarro, G.; Ferreri, G.; Quartarone, S.; Russo, E.; Constanti, A.; Chimirri, A. Discovery of a novel and highly potent noncompetitive AMPA receptor antagonist. J. Med. Chem.2002,46(1):197-200.
    [37]Li, Y.; Zhang, H. B.; Huang, W. L.; Zhen, X.; Li, Y. M. Synthesis and biological evaluation of tetrahydroisoquinoline derivatives as potential multidrug resistance reversal agents in cancer. Chin. Chem. Lett.2008,19(2):169-171.
    [38]Zou, Z.-h.; Lan, X.-b.; Qian, H.; Huang, W.-l.; Li, Y.-m. Synthesis and evaluation of furoxan-based nitric oxide-releasing derivatives of tetrahydroisoquinoline as anticancer and multidrug resistance reversal agents. Bioorg. Med. Chem. Lett.2011,21(19):5934-5938.
    [39]Pingaew, R.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis and cytotoxicity of novel N-sulfonyl-1,2,3,4-tetrahydroisoquinoline thiosemicarbazone derivatives. Med. Chem. Res.2013,22(1):267-277.
    [40]Cheng, P.; Huang, N.; Jiang, Z.-Y.; Zhang, Q.; Zheng, Y-T.; Chen, J.-J.; Zhang, X.-M.; Ma, Y.-B.1-Aryl-tetrahydroisoquinoline analogs as active anti-HIV agents in vitro. Bioorg. Med. Chem. Lett.2008,18(7):2475-2478.
    [41]Tsoyi, K.; Kim, H. J.; Shin, J.-S.; Kim, D.-H.; Cho, H.-J.; Lee, S. S.; Ahn, S. K.; Yun-Choi, H. S.; Lee, J. H.; Seo, H. G.; Chang, K. C. HO-1 and JAK-2/STAT-1 signals are involved in preferential inhibition of iNOS over COX-2 gene expression by newly synthesiz- ed tetrahydroisoquinoline alkaloid, CKD712, in cells activated with lipopolysacchride. Cell. Signal.2008,20(10):1839-1847.
    [42]Yun-Choi, H. S.; Pyo, M. K.; Park, K. M.; Chang, K. C.; Lee, D. H. Antithrombotic effects of YS-49 and YS-51—1-naphthylmethyl analogs of higenamine. Throm. Res 2001, 104(4):249-255.
    [43]Gitto, R.; Caruso, R.; Pagano, B.; De Luca, L.; Citraro, R.; Russo, E.; De Sarro, G.; Chimirri, A. Novel potent anticonvulsant agent containing a tetrahydroisoquinoline skeleton. J. Med. Chem.2006, 49(18):5618-5622.
    [44]Denmark, S. E.; Jacobsen, E. N. Catalytic asymmetric synthesis. Acc. Chem. Res.2000, 33(6):324-324.
    [45]Farina, V.; Reeves, J. T.; Senanayake, C. H.; Song, J. J. Asymmetric synthesis of active pharmaceutical ingredients. Chem. Rev.2006,106(1):2734-2793.
    [46]List, B. Introduction:Organocatalysis. Chem. Rev.2007,107(12):5413-5415.
    [47]Houk, K. N.; List, B. Asymmetric organocatalysis. Acc. Chem. Res.2004,37(8): 487-487.
    [48]Pellissier, H. Asymmetric organocatalysis. Tetrahedron 2007,63(38):9267-9331.
    [49]Shi, X.-X.; Ni, F.; Shang, H.-X.; Yan, M.-L.; Su, J.-Q. Racemization of (S)-(+)-10,11-dimethoxyaporphine and (S)-(+)-aporphine:efficient preparations of (R)-(-)-apomorphine and (R)-(-)-aporphine via a recycle process of resolution. Tetrahedron: Asymmetry.2006,17(15):2210-2215.
    [50]Liang, J. T.; Mani, N. S.; Jones, T. K. Design of concise, scalable route to a cholecystokinin 1 (CCK 1) receptor antagonist. J. Org. Chem.2007,72(22):8243-8250.
    [51]Li, X.; Branum, S.; Russell, R. K.; Jiang, W.; Sui, Z. An efficient process for synthesis of 3-(R)-3-(2,3-dihydrobenzofuran-5-yl)-1,2,3,4-tetrahydropyrrolo[3,4-b]quinolin-9-one. Org. Process Res. Dev.2005,9(5):640-645.
    [52]Park, O.-J.; Lee, S.-H.; Park, T.-Y.; Chung, W.-G.; Lee, S.-W. Development of a scalable process for a key intermediate of (R)-metalaxyl by enzymatic kinetic resolution. Org. Process Res. Dev.2006,10(3):588-591.
    [53]Pallavicini, M.; Bolchi, C.; Fumagalli, L.; Piccolo, O.; Valoti, E. Highly efficient racemisation of a key intermediate of the antibiotic moxifloxacin. Tetrahedron:Asymmetry. 2011,22(4):379-380.
    [54]Bolchi, C.; Pallavicini, M.; Fumagalli, L.; Straniero, V.; Valoti, E. One-pot racemization process of 1-phenyl-1,2,3,4-tetrahydroisoquinoline:a key intermediate for the antimuscarinic agent solifenacin. Org. Process Res. Dev.2013,17(3):432-437.
    [55]Gallo, K. A.; Tanner, M. E.; Knowles, J. R. Mechanism of the reaction catalyzed by glutamate racemase. Biochemistry 1993,32(15):3991-3997.
    [56]Glueck, S. M.; Pirker, M.; Nestl, B. M.; Ueberbacher, B. T.; Larissegger-Schnell, B.; Csar, K.; Hauer, B.; Stuermer, R.; Kroutil, W.; Faber, K. Biocatalytic racemization of aliphatic, arylaliphatic, and aromatic a-hydroxycarboxylic acids. J. Org. Chem.2005,70(10): 4028-4032.
    [57]Asano, Y.; Yamaguchi, S. Dynamic kinetic rsoution of amino acid amide catalyzed by D-aminopeptidase and a-amino-e-caprolactamracemase. J. Am. Chem. Soc.2005,127(21): 7696-7697.
    [58]Fadnavis, N. W.; Vedamayee Devi, A.; Swarnalatha Jasti, L. Resolution of racemic 2-chlorophenyl glycine with immobilized penicillin G acylase. Tetrahedron:Asymmetry.2008, 19(20):2363-2366.
    [59]Wu, Z.; Perez, M.; Scalone, M.; Ayad, T.; Ratovelomanana-Vidal, V. Ruthenium-catalyzed asymmetric transfer hydrogenation of 1-aryl-substituted dihydroisoquinolines: access to valuable chiral 1-aryl-tetrahydroisoquinoline scaffolds. Angew. Chem. Int. Ed.2013, 52(18):4925-4928.
    [60]Xie, J.-H.; Yan, P.-C.; Zhang, Q.-Q.; Yuan, K.-X.; Zhou, Q.-L. Asymmetric hydrogenation of cyclic imines catalyzed by chiral spiro iridium phosphoramidite complexes for enantioselective synthesis of tetrahydroisoquinolines. ACS Catalysis 2012,2(4):561-564.
    [61]Chang, M.; Li, W.; Zhang, X. A highly efficient and enantioselective access to tetrahydroisoquinoline alkaloids:asymmetric hydrogenation with an iridium catalyst. Angew. Chem. Int. Ed.2011,50(45):10679-10681.
    [62]Cox, E. D.; Cook, J. M. The Pictet-Spengler condensation:a new direction for an old reaction. Chem. Rev.1995,95(6):1797-1842.
    [63]Gremmen, C.; Wanner, M. J.; Koomen, G.-J. Enantiopure tetrahydroisoquinolines via N-sulfinyl Pictet-Spengler reactions. Tetrahedron Lett.2001,42(50):8885-8888.
    [64]Gluszynska, A.; Rozwadowska, M. D. Enantioselective modification of the Pomeranz-Fritsch-Bobbitt synthesis of tetrahydroisoquinoline alkaloids synthesis of (-)-salsolidine and (-)-carnegine. Tetrahedron:Asymmetry.2000,11(11):2359-2366.
    [65]Schonenberger, B.; Brossi, A. Fragmentation of optically active (1-phenylethyl)-and (1-naphthylethyl)ureas in refluxing alcohols:easy preparation of optically active amines of high optical purity. Helv. Chim. Acta 1986, 69(6):1486-1497.
    [66]Ding, W.; Li, M.; Dai, R.; Deng, Y. Lipase-catalyzed synthesis of the chiral tetrahydroisoquinoline (R)-salsolinol. Tetrahedron:Asymmetry.2012,23(18-19):1376-1379.
    [67]Amat, M.; Elias, V.; Llor, N.; Subrizi, F.; Molins, E.; Bosch, J. A general methodology for the enantioselective synthesis of 1-substituted tetrahydroisoquinoline alkaloids. Eur. J. Org. Chem.2010,2010(21):4017-4026.
    [68]Reddy, N. S. S.; Reddy, B. J. M.; Reddy, B. V. S. A convergent and stereoselective total synthesis of (-)-crispine A, (-)-benzo[a]quinolizidine and (-)-salsolidine. Tetrahedron Lett. 2013,54(32):4228-4231.
    [69]Wang, S.; Seto, C. T. Enantioselective addition of vinylzinc reagents to 3,4-dihydro-isoquinoline N-oxide. Org. Lett.2006,8(18):3979-3982.
    [70]Wang, S.; Onaran, M. B.; Seto, C. T. Enantioselective synthesis of 1-aryltetrahydro-isoquinolines. Org. Lett.2010,12(12):2690-2693.
    [71]Coskun, N.; Tuncman, S. Synthesis of stable azomethine ylides by the rearrangement of 1,3-dipolar cycloadducts of 3,4-dihydroisoquinoline-2-oxides with DMAD. Tetrahedron 2006, 62(7):1345-1350.
    [72]Shankar, R.; More, S. S.; Madhubabu, M. V.; Vembu, N.; Syam Kumar, U. K. Synthesis of isoquinoline alkaloids via oxidative amidation-Bischler-Napieralski reaction. Synlett 2012, 23(07):1013-1020.
    [73]Buck, J. S.1,2-Dihydropapaverine and modified syntheses of papaverine and papaveral-dine (xanthaline). J. Am. Chem. Soc.1930,52(9):3610-3614.
    [74]Pinet, S.; Chavant, P. Y.; Averbuch-Pouchot, M.-T.; se; Vall; e, Y. Total synthesis of bernumicine and bernumidine, two alkaloids from Berberis nummularia. J. Chem. Res., Synop.2001,2001(2):65-67.
    [75]Pope, W. J.; Peachey, S. J. XC.-The non-resolution of racemic tetrahydropapaverine by tartaric acid.J. Chem. Soc. Trans 1898,73(0):902-905.
    [76]Xue, L.; Sun, M.; Min, T.; Zhang, C.; Sun, H.1-Benzyl-1,2,3,4-tetrahydroisoquinoline derivatives and optically pure isomers as novel promising multidrug resistance (MDR) reversing agents. Lett. Drug. Des. Discov 2009,6(5):387-392.
    [77]Parker, D. NMR determination of enantiomeric purity. Chem. Rev.1991,91(7): 1441-1457.
    [78]Lewis, R. J.; Bernstein, M. A.; Chang, H.-F.; Chapman, D.; Pemberton, N. Enantiomeric purity determination by NMR:proving the purity of a single enantiomer. Tetrahedron: Asymmetry.2013,24(13-14):866-870.
    [79]Ebbers, E. J.; Ariaans, G. J. A.; Houbiers, J. P. M.; Bruggink, A.; Zwanenburg, B. Controlled racemization of optically active organic compounds:Prospects for asymmetric transformation. Tetrahedron 1997,53(28):9417-9476.
    [80]Tanner, M. E. Understanding nature's strategies for enzyme-catalyzed racemization and epimerization. Acc. Chem. Res.2002,35(4):237-246.
    [81]Dong, J.; Shi, X.-X.; Xing, J.; Yan, J.-J. Mild and efficient syntheses of 1-aryl-3,4-dihydroisoquinolines and 1-aryl-3,4-dihydro-β-carbolines via regiospecific β-Eliminations of the corresponding N-tosyl-1,2,3,4-tetrahydroisoquinolines and N-tosyl-1,2,3,4-tetrahydro-β-carbolines. Synth. Commun.2012, 42(19):2806-2817.
    [82]Zhong, Y.-L.; Zhou, H.; Gauthier, D. R.; Lee, J.; Askin, D.; Dolling, U. H.; Volante, R. P. Practical and efficient synthesis of N-halo compounds. Tetrahedron Lett.2005,46(7): 1099-1101.
    [83]Abrams, P.; Cardozo, L.; Fall, M.; Griffiths, D.; Rosier, P.; Ulmsten, U.; Van Kerrebroeck, P.; Victor, A.; Wein, A. The standardisation of terminology in lower urinary tract function: report from the standardisation sub-committee of the international continence society. Urology 2003,61(1):37-49.
    [84]Milsom, I.; Abrams, P.; Cardozo, L.; Roberts, R. G.; Thuroff, J.; Wein, A. J. How widespread are the symptoms of an overactive bladder and how are they managed? A population-based prevalence study. BJU International 2001,87(9):760-766.
    [85]Rovner, E.; Wein, A. Incidence and prevalence of overactive bladder. Curr Urol Rep 2002,3(6):434-438.
    [86]段继宏.北京地区尿失禁发病率调查.北京医科大学学报 2000,32(1):74-75.
    [87]Milsom, I.; Stewart, W.; Thiiroff, J. The prevalence of overactive bladder. Am, J. Manage. Care 2000,6(11 suppl):S565-573.
    [88]Hoebeke, P.; De Pooter, J.; De Caestecker, K.; Raes, A.; Dehoorne, J.; Van Laecke, E.; Vande Walle, J. Solifenacin for therapy resistant overactive bladder. J. Urol 2009,182(4, Suppl):2040-2044.
    [89]吴士良;肖云翔;段继红;丁强;孙颖浩;黄翼然;宋波;蔡松良;那彦群.索利那新治疗尿急及急迫性尿失禁的有效性和安全性分析.中华泌尿外科杂志 2009,30(9):630-634.
    [90]王涛.索利那新治疗膀胱过度活动症198例疗效分析.海南医学 2012,23(14).
    [91]Homma, Y.; Yoshida, M.; Seki, N.; Yokoyama, O.; Kakizaki, H.; Gotoh, M.; Yamanishi, T.; Yamaguchi, O.; Takeda, M.; Nishizawa, O. Symptom assessment tool for overactive bladder syndrome—overactive bladder symptom score. Urology 2006,68(2):318-323.
    [92]胡海峰;陈刚;岐宏政;汪自力;杨进;易炜;王云汉.琥珀酸索利那新治疗膀胱过度活动症的疗效及安全性研究.西部医学 2012,24(8):1525-1530.
    [93]Makoto, T.; Ryo, N.; Masahiko, H.; Yoshinori, O.; Yasuhiro, Y.; Ken, I.; Yasuo, I. Quinuclidine derivatives and medicinal composition thereof. US 6017927 A,2000.
    [94]Puig Serrano, J.; Camps, P. an improved process for the synthesis of solifenacin. WO 2008/120080 A2,2008.
    [95]Niphade, N.; Jagtap, K.; Mali, A.; Solanki, P.; Jachak, M.; Mathad, V. Efficient and single pot process for the preparation of enantiomerically pure solifenacin succinate, an antimuscarinic agent. Monatsh. Chem.2011,142(11):1181-1186.
    [96]Davis, F. A.; Zhang, Y.; Andemichael, Y.; Fang, T.; Fanelli, D. L.; Zhang, H. Improved synthesis of enantiopure sulfinimines (thiooxime S-Oxides) from p-toluenesulfinamide and aldehydes and ketones. J. Org. Chem.1999,64(4):1403-1406.
    [97]Davis, F. A.; Reddy, R. E.; Szewczyk, J. M.; Reddy, G. V.; Portonovo, P. S.; Zhang, H.; Fanelli, D.; Zhou, P.; Carroll, P. J. Asymmetric synthesis and properties of sulfinimines (thiooxime S-Oxides). J. Org. Chem.1997,62(8):2555-2563.
    [98]Zhou, P.; Chen, B.-C.; Davis, F. A. Recent advances in asymmetric reactions using sulfinimines (N-sulfinyl imines). Tetrahedron 2004,60(37):8003-8030.
    [99]Liu, G.; Cogan, D. A.; Ellman, J. A. Catalytic Asymmetric Synthesis of tert-Butane-sulfinamide. Application to the Asymmetric Synthesis of Amines. J. Am. Chem. Soc.1997, 119(41):9913-9914.
    [100]Zhong, Y.-W.; Izumi, K.; Xu, M.-H.; Lin, G.-Q. Highly diastereoselective and enantioselective synthesis of enantiopure C2-symmetrical vicinal diamines by reductive homocoupling of chiral N-tert-butanesulfinyl imines. Org. Lett.2004,6(25):4747-4750.
    [101]Davis, F. A.; Deng, J. Asymmetric synthesis of syn-(2R,3S)-and anti-(2S,3S)-ethyl diamino-3-phenylpropanoates from M-(benzylidene)-p-toluenesulfinamide and glycine enolates. Org. Lett.2004, 6(16):2789-2792.
    [102]Senanayake, C., H; Rubin, P., D; Jerussi, T., P Synthesis, methods of using, and compositions of hydroxylated cyclobutylalkylamines. WO 02/46138 A2,2001.
    [103]Kochi, T.; Tang, T. P.; Ellman, J. A. Development and application of a new general method for the asymmetric synthesis of syn-and anti-1,3-Amino Alcohols. J. Am. Chem. Soc. 2003,125(37):11276-11282.
    [104]Lu, B. Z.; Senanayake, C.; Li, N.; Han, Z.; Bakale, R. P.; Wald, S. A. Control of diastereoselectivity by solvent effects in the addition of grignard reagents to enantiopure t-butylsulfinimine:syntheses of the stereoisomers of the hydroxyl derivatives of sibutramine. Org. Lett.2005,7(13):2599-2602.
    [105]Davis, F. A.; Ramachandar, T.; Liu, H. Asymmetric synthesis of a-amino 1,3-dithioketals from sulfinimines (N-sulfinyl imines). synthesis of (2S,3R)-(-)-3-hydroxy-3-methylproline. Org. Lett.2004, 6(19):3393-3395.
    [106]Tang, T. P.; Ellman, J. A. The tert-butanesulfinyl group:an ideal chiral directing group and Boc-surrogate for the asymmetric synthesis and applications of β-amino acids. J. Org. Chem.1998,64(1):12-13.
    [107]Tang, T. P.; Ellman, J. A. Asymmetric synthesis of β-amino acid derivatives incorporating a broad range of substitution patterns by enolate additions to tert-butanesulfinyl imine9s.J. Org. Chem.2002,67(22):7819-7832.
    [108]Davis, F. A.; Chao, B.; Fang, T.; Szewczyk, J. M.δ-amino β-keto esters, a designed polyfunctionalized chiral building block for alkaloid synthesis. asymmetric synthesis of (R)-(+)-2-phenylpiperidine and (-)-SS20846A. Org. Lett.2000,2(8):1041-1043.
    [109]Li, B.-F.; Yuan, K.; Zhang, M.-J.; Wu, H.; Dai, L.-X.; Wang, Q. R.; Hou, X.-L. Highly diastereoselective strecker reaction of enolizable aliphatic sulfinimines. J. Org. Chem.2003, 68(16):6264-6267.
    [110]Chemla, F.; Ferreira, F. High kinetic resolution in the addition of a racemic allenylzinc onto enantiopure N-tert-butanesulfinimines:concise synthesis of enantiopure trans-2-ethynylaziridinesl. J. Org. Chem.2004,69(24):8244-8250.
    [111]Davis, F. A.; Lee, S. H.; Xu, H. Asymmetric synthesis of cyclic a-amino phosphonates using masked oxo sulfinimines (N-sulfinyl imines). J. Org. Chem.2004, 69(11):3774-3781.
    [112]Pei, D.; Wang, Z.; Wei, S.; Zhang, Y.; Sun, J. S-chiral sulfinamides as highly enantioselective organocatalysts. Org. Lett.2006,8(25):5913-5915.
    [113]Pei, D.; Zhang, Y.; Wei, S.; Wang, M.; Sun, J. Rationally-designed S-chiral bissulfinamides as highly enantioselective organocatalysts for reduction of ketimines. Adv. Synth. Catal.2008,350(4):619-623.
    [114]Huang, Z.; Lai, H.; Qin, Y. Syntheses of novel chiral sulfinamido ligands and their applications in diethylzinc additions to aldehydes(?). J. Org. Chem.2007,72(4):1373-1378.
    [115]Sola, J.; Reves, M.; Riera, A.; Verdaguer, X.N-Phosphino sulfinamide ligands:an efficient manner to combine sulfur chirality and phosphorus coordination behavior. Angew. Chem. Int. Ed.2007,46(26):5020-5023.
    [116]Reves, M.; Achard, T.; Sola, J.; Riera, A.; Verdaguer, X.N-phosphino-p-tolyl-sulfinamide ligands:synthesis, stability, and application to the intermolecular Pauson-Khand reaction.J.Org. Chem.2008,73(18):7080-7087.
    [117]Ji, Y.; Riera, A.; Verdaguer, X. Asymmetric intermolecular Pauson-Khand reaction of symmetrically substituted alkynes. Org. Lett.2009,11(19):4346-4349.
    [118]Low, D. W.; Pattison, G.; Wieczysty, M. D.; Churchill, G. H.; Lam, H. W. Enantioselective Rh(I)-catalyzed cyclization of arylboron compounds onto ketones. Org. Lett. 2012,14(10):2548-2551.
    [119]Wang, H.; Jiang, T.; Xu, M.-H. Simple branched sulfur-olefins as chiral ligands for Rh-catalyzed asymmetric arylation of cyclic ketimines:highly enantioselective construction of tetrasubstituted carbon stereocenters. J. Am. Chem. Soc.2013,135(3):971-974.
    [120]A. Davis, F.; Chen, B.-C. Asymmetric synthesis of amino acids using sulfinimines (thiooxime S-oxides). Chem. Soc. Rev.1998,27(1):13-18.
    [121]Ellman, J. A.; Owens, T. D.; Tang, T. P.N-tert-butanesulfinyl imines:versatile intermediates for the asymmetric synthesis of amines. Acc. Chem. Res.2002,35(11):984-995.
    [122]Liu, G.; Cogan, D. A.; Ellman, J. A. Catalytic asymmetric synthesis of tert-butane-sulfinamide. application to the asymmetric synthesis of amines. J. Am. Chem. Soc.1997, 119(41):9913-9914.
    [123]Weix, D. J.; Ellman, J. A. Improved synthesis of tert-butanesulfinamide suitable for large-scale production. Org. Lett.2003,5(8):1317-1320.
    [124]Blum, S. A.; Bergman, R. G.; Ellman, J. A. Enantioselective oxidation of di-tert-butyl disulfide with a vanadium catalyst:progress toward mechanism elucidation(?). J. Org. Chem. 2003,68(1):150-155.
    [125]Han, Z.; Krishnamurthy, D.; Grover, P.; Fang, Q. K.; Su, X.; Wilkinson, H. S.; Lu, Z.-H.; Magiera, D.; Senanayake, C. H. Practical and highly stereoselective technology for preparation of enantiopure sulfoxides and sulfinamides utilizing activated and functionally differentiated N-sulfonyl-1,2,3-oxathiazolidine-2-oxide derivatives. Tetrahedron 2005,61(26): 6386-6408.
    [126]Zhang, Y.; Chitale, S.; Goyal, N.; Li, G.; Han, Z. S.; Shen, S.; Ma, S.; Grinberg, N.; Lee, H.; Lu, B. Z.; Senanayake, C. H. Asymmetric synthesis of sulfinamides using (-)-Quinine as chiral auxiliary. J. Org. Chem.2011,77(1):690-695.
    [127]Savile, C. K.; Magloire, V. P.; Kazlauskas, R. J. Subtilisin-catalyzed resolution of N-acyl arylsulfinamides. J. Am. Chem. Soc.2005,127(7):2104-2113.
    [128]Pirkle, W. H.; Hoekstra, M. S. Chiral nuclear magnetic resonance solvating agents. Resolution, determination of enantiomeric purity, and assignment of absolute configuration of cyclic and acyclic sulfinate esters. J. Am. Chem. Soc.1976,98(1):1832-1839.
    [129]Drabowicz, J.; Pacholczyk, M. A new type of asymmetric synthesis of sulphinic acid derivatives using chiral carbodiimides. Phosphorus, Sulfur Relat. Elem.1987,29(2-4): 257-263.
    [130]Han, Z.; Krishnamurthy, D.; Grover, P.; Fang, Q. K.; Senanayake, C. H. Properly designed modular asymmetric synthesis for enantiopure sulfinamide auxiliaries from N-sulfonyl-1,2,3-oxathiazolidine-2-oxide agents. J, Am. Chem. Soc.2002,124(27): 7880-7881.
    [131]Fanelli, D. L.; Szewczyk, J. M.; Zhang, Y.; Reddy, G. V.; Burns, D. M.; Davis, F. A. Sulfinimines (thiooximine S-oxides):asymmetric synthesis of methyl (R)-(+)-beta-phenylalanate from (S)-(+)-N-(benzylidene)-p-toluenesulfinamide. Org. Synth.2000,77: 50-63.
    [132]Millar, N. S.; Denholm, I. Nicotinic acetylcholine receptors:targets for commercially important insecticides. Invertebr. Neurosci.2007,7(1):53-66.
    [133]Romanelli, M. N.; Gualtieri, F. Cholinergic nicotinic receptors:Competitive ligands, allosteric modulators, and their potential applications. Med. Res. Rev 2003,23(4):393-426.
    [134]Jones, A. K.; Sattelle, D. B. Functional genomics of the nicotinic acetylcholine receptor gene family of the nematode, Caenorhabditis elegans. Bioessays 2004,26(1):39-49.
    [135]Jones, A. K.; Brown, L. A.; Sattelle, D. B. Insect nicotinic acetylcholine receptor gene families:from genetic model organism to vector, pest and beneficial species. Invertebr. Neurosci.2007,7(1):67-73.
    [136]Jepson, J. E. C.; Brown, L. A.; Sattelle, D. B. The actions of the neonicotinoid imidacloprid on cholinergic neurons of Drosophila melanogaster. Invertebr. Neurosci.2006, 6(1):33-40.
    [137]Tomizawa, M.; Lee, D. L.; Casida, J. E. Neonicotinoid insecticides:Molecular features conferring selectivity for insect versus mammalian nicotinic receptors. J. Agric. Food. Chem. 2000,48(12):6016-6024.
    [138]Tomizawa, M.; Casida, J. E. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu. Rev. Entomol.2003,48(1): 339.
    [139]Lee, S.-J.; Caboni, P.; Tomizawa, M.; Casida, J. E. Cartap hydrolysis relative to its action at the insect nicotinic channel. J. Agric. Food. Chem.2004,52(1):95-98.
    [140]Bai, D.; Lummis, S. C. R.; Leicht, W.; Breer, H.; Sattelle, D. B. Actions of imidacloprid and a related nitromethylene on cholinergic receptors of an identified insect motor neurone. Pestic. Sci.1991,33(2):197-204.
    [141]Matsuda, K.; Buckingham, S. D.; Kleier, D.; Rauh, J. J.; Grauso, M.; Sattelle, D. B. Neonicotinoids:insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol. Sci.2001,22(11):573-580.
    [142]Tomizawa, M.; Casida, J. E. Neonicotinoid insecticide toxicology:mechanisms of selective action. Annu. Rev. Pharmacool. Toxicol.2005,45(1):247-268.
    [143]Yokota, T.; Mikata, K.; Nagasaki, H.; Ohta, K. Absorption, tissue distribution, excretion, and metabolism of clothianidin in rats. J. Agric. Food. Chem.2003,51(24):7066-7072.
    [144]Schroeder, M. E.; Flattum, R. F. The mode of action and neurotoxic properties of the nitromethylene heterocycle insecticides. Pestic. Biochem. Physiol.1984,22(2):148-160.
    [145]Shiokawa, K.; Tsuboi, S.; Kagabu, S.; Sasaki, S.; Moriya, K.; Hattori, Y. EP 235725 A2, 1987.
    [146]Uneme, H.; Iwanaga, K.; Higuchi, N.; Kando, Y.; Okauchi, T.; Akayama, A.; Minamida, I. Synthesis and insecticidal activity of nitroguanidine derivatives. Pestic. Sci.1999,55(2): 202-205.
    [147]Moriie, K.; Ootsu, J.; Hatsutori, Y.; Watanabe, A.; Ito, A. Preparation of nitroiminotetra-hydrooxadiazines as insecticides. JP 07224062 A,1995.
    [148]Maienfisch, P. Synthesis and properties of thiamethoxam and related compounds. Z. Naturforsch., B:Chem. Sci.2006,61(b):353-359.
    [149]Aoki, I.; Tabuchi, T.; Minamida, I. Preparation of pyridine derivatives and other heterocycles as insecticides. EP 381130 A2 1990.
    [150]Ishimitsu, K.; Suzuki, J.; Ohishi, H.; Yamada, T.; Hatano, R.; Takakusa, N.; Mitsui, J. Preparation of pyridylalkylamine derivatives as insecticides. WO 9104965 Al 1991.
    [151]Kiriyama, K.; Nishimura, K. Structural effects of dinotefuran and analogues in insecticidal and neural activities. Pest Manage. Sci.2002,58(7):669-676.
    [152]Babcock, J. M.; Gerwick, C. B.; Huang, J. X.; Loso, M. R.; Nakamura, G.; Nolting, S. P.; Rogers, R. B.; Sparks, T. C.; Thomas, J.; Watson, G. B.; Zhu, Y. Biological characterization of sulfoxaflor, a novel insecticide. Pest Manage. Sci.2011,67(3):328-334.
    [153]Scott, J. G.; Alefantis, T. G.; Kaufman, P. E.; Rutz, D. A. Insecticide resistance in house flies from caged-layer poultry facilities. Pest Manage. Sci.2000,56(2):147-153.
    [154]Nauen, R.; Denholm, I. Resistance of insect pests to neonicotinoid insecticides:Current status and future prospects. Arch. Insect Biochem. Physiol.2005,58(4):200-215.
    [155]Elbert, A.; Nauen, R. Resistance of Bemisia tabaci (Homoptera:Aleyrodidae) to insecticides in southern Spain with special reference to neonicotinoids. Pest Manage. Sci. 2000,56(1):60-64.
    [156]Zewen, L.; Zhaojun, H.; Yinchang, W.; Lingchun, Z.; Hongwei, Z.; Chengjun, L. Selection for imidacloprid resistance in Nilaparvata lugens:cross-resistance patterns and possible mechanisms. Pest Manage. Sci.2003,59(12):1355-1359.
    [157]Ninsin, K. D. Acetamiprid resistance and cross-resistance in the diamondback moth, Plutella xylostella. Pest Manage. Sci.2004,60(9):839-841.
    [158]Mota-Sanchez, D.; Hollingworth, R. M.; Grafius, E. J.; Moyer, D. D. Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera:Chrysomelidae). Pest Manage. Sci.2006,62(1): 30-37.
    [159]Gorman, K.; Devine, G.; Bennison, J.; Coussons, P.; Punchard, N.; Denholm, I. Report of resistance to the neonicotinoid insecticide imidacloprid in Trialeurodes vaporariorum (Hemiptera:Aleyrodidae). Pest Manage. Sci.2007,63(6):555-558.
    [160]Kristensen, M.; Jespersen, J. B. Susceptibility to thiamethoxam of Musca domestica from Danish livestock farms. Pest Manage. Sci.2008,64(2):126-132.
    [161]Kagabu, S.; Matsuno, H. Chloronicotinyl insecticides.8. crystal and molecular structures of imidacloprid and analogous compounds.J. Agric. Food. Chem.1997,45(1): 276-281.
    [162]Tomizawa, M.; Zhang, N.; Durkin, K. A.; Olmstead, M. M.; Casida, J. E. The neonicotinoid electronegative pharmacophore plays the crucial role in the high affinity and selectivity for the drosophila nicotinic receptor:an anomaly for the nicotinoid cation-π interaction model(?). Biochemistry 2003,42(25):7819-7827.
    [163]Kagabu, S.; Medej, S. Stability comparison of imidacloprid and related compounds under simulated sunlight hydrolysis conditions and to oxygen. Biosci. biotech. biochem 1995, 59(6):980-985.
    [164]Latli, B.; Tomizawa, M.; Casida, J. E. Synthesis of a novel [125I]neonicotinoid photoaffinity probe for the drosophila nicotinic acetylcholine receptor. Bioconjugate Chem. 1997,8(1):7-14.
    [165]Shao, X.; Zhang, W.; Peng, Y.; Li, Z.; Tian, Z.; Qian, X. cis-Nitromethylene neonicotinoids as new nicotinic family:synthesis, structural diversity, and insecticidal evaluation of hexahydroimidazo[1,2-alpha]pyridine. Bioorg. Med. Chem. Lett.2008,18(24): 6513-6516.
    [166]Xu, X.; Bao, H.; Shao, X.; Zhang, Y.; Yao, X.; Liu, Z.; Li, Z. Pharmacological characterization of cis-nitromethylene neonicotinoids in relation to imidacloprid binding sites in the brown planthopper, Nilaparvata lugens. Insect Mol. Biol.2010,19(1):1-8.
    [167]Kagabu, S.; Moriya, K.; Shibuya, K.; Hattori, Y.; Tsuboi, S.-i.; Shiokawa, K. 1-(6-Halonicotinyl)-2-nitromethylene-imidazolidines as potential new insecticides. Biosci., Biotechnol, Biochem.1992,56(2):362-363.
    [168]Tian, Z.; Shao, X.; Li, Z.; Qian, X.; Huang, Q. Synthesis, insecticidal activity, and QS AR of novel nitromethylene neonicotinoids with tetrahydropyridine fixed cis configuration and exo-ring ether modification. J. Agric. Food. Chem.2007,55(6):2288-2292.
    [169]Kang, G. J.; Cullen, W. R.; Fryzuk, M. D.; James, B. R.; Kutney, J. P. Rhodium(I)-catalyzed asymmetric hydrogenation of imines. J. Chem. Soc., Chem. Commun. 1988, (22):1466-1467.
    [170]de Gonzalo, G.; Torres Pazmino, D. E.; Ottolina, G.; Fraaije, M. W.; Carrea, G. 4-Hydroxyacetophenone monooxygenase from Pseudomonas fluorescens ACB as an oxidative biocatalyst in the synthesis of optically active sulfoxides. Tetrahedron:Asymmetry. 2006,17(1):130-135.
    [171]Davis, F. A.; Reddy, R. T.; Han, W.; Carroll, P. J. Chemistry of oxaziridines.17. N-(Phenylsulfonyl)(3,3-dichlorocamphoryl)oxaziridine:a highly efficient reagent for the asymmetric oxidation of sulfides to sulfoxides. J. Am. Chem. Soc.1992,114(4):1428-1437.
    [172]Schroeck, C. W.; Johnson, C. R. Chemistry of sulfoxides and related compounds. ⅩⅩⅩⅠ. Aluminum amalgam reduction of aryl sulfoximines and related compounds. J. Am. Chem. Soc. 1971,93(20):5305-5306.
    [173]Worch, C.; Atodiresei, I.; Raabe, G.; Bolm, C. Synthesis of enantiopure sulfonimidamides and elucidation of their absolute configuration by comparison of measured and calculated CD spectra and X-ray crystal structure determination. Chem. Eur. J.2010, 16(2):677-683.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700