抗蛋白质非特异性吸附材料内在机理和特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗蛋白质非特异性吸附材料可以有效减少材料表面的蛋白质吸附从而提高材料的生物相容性。传统的聚乙二醇(PEG)材料在复杂的生物环境中,其长效性和稳定性非常有限,已有研究发现PEG分子能够激活部分人体的免疫,PEG修饰的蛋白质药物活性急剧下降。而两性离子材料如聚甲基丙烯酰氧基乙基磷酰胆碱(pMPC).聚磺基甜菜碱甲基丙烯酸酯(pSBMA)和聚羧基甜菜碱甲基丙烯酸酯(pCBMA)越来越多地被证实比PEG有更加长效的生物相容性。因此研究PEG以及两性离子材料抗蛋白质非特异性吸附的机理不仅有助于更加了解材料抗蛋白质吸附的机制,优先选择合适的抗蛋白质非特异性材料,更有助于设计并发现更优秀的抗蛋白质非特异性吸附材料。本论文围绕抗蛋白质非特异性吸附材料的内在机理和特性,首先创建了低场核磁方法学考察PEG和具有代表性的两性离子聚合物pSBMA不同的水合能力,以及大分子PEG与蛋白质的作用情况;进一步探索溶液状态下长短链PEG以及pSBMA对比PEG和蛋白质不同的作用特性;最后设计蛋白质在水凝胶中的扩散直接体现PEG和SBMA与蛋白质不同的作用力。主要内容和结论包括以下六个部分:
     1、利用低场核磁采集不同浓度的PEG水溶液CPMG序列反演得到T2横向弛豫时间,定量计算PEG紧密结合的水分子量,结果表明一个EG单元结合一个水分子,并得到DSC方法验证,同时跟踪聚合物的溶解过程中自身链段的物理行为。
     2、利用低场核磁T2反演技术定量研究pSBMA和PEG不同的水合能力以及材料周围水分子的状态。证明pSBMA每个单元比PEG结合更多的水(SB-8个,EG-1个),同时pSBMA的水合层水分子排列比PEG更加紧密,而饱和水层形成后pSBMA周围的水分子比PEG周围的水分子更自由。
     3、利用低场核磁T2反演技术定量研究不同分子量的PEG与蛋白质的相互作用,发现PEG与蛋白质在溶液中存在较强的相互作用,且该相互作用和PEG分子量以及蛋白质类型相关,并定量计算PEG与蛋白质的结合常数在104到105M-1。
     4、通过荧光、高场核磁共振、原子力显微镜进一步研究不同分子量PEG与蛋白质相互作用的方式及对结合区域的影响。验证了PEG和蛋白质的相互作用与分子量密切相关,小分子量PEG (400Da)由于较高的亲水性和较短的分子链,无法与蛋白质形成多点接触,从而急剧降低了和蛋白质分子的相互作用力。
     5、通过荧光、高场核磁共振、原子力显微镜对比研究大分子量的pSBMA和PEG与蛋白质分子不同的相互作用。证明pSBMA和蛋白质的相互作用不明显,而PEG和蛋白质之间的疏水相互作用有可能导致蛋白质分子结构的变化。
     6、研究荧光标记蛋白质在PEG和SBMA不同配比的水凝胶中的扩散行为,发现蛋白质分子在PEG水凝胶中扩散的速度明显低于在SBMA水凝胶中的扩散速度,进一步证明了PEG和蛋白质存在较大的相互作用,而SBMA与蛋白质几乎没有相互作用。
Nonfouling materials could effectively prevent nonspecific protein adsorption on the surface and thus improve the biocompatibility. Polyethylene glycol (PEG) is a well-known nonfouling materials in biomedical applications. However, its long-term effectiveness and stability is very limited especially in biological applications due to the extremely complicated internal environment. It is observed that certain people could generate immunoresponse to PEG and the PEG modification would dramatically decrease the activity of protein. Nowadays, zwitterionic materials, poly(2-methacryloyloxyethyl phosphorylcholine)(pMPC), poly(sulfobetaine methacylate)(pSBMA) and poly(carboxybetaine methacylate)(pCBMA), have demonstrated excellent resistance to nonspecific protein adsorption and long-term biocompatibility over PEG. A comprehansive understanding of the difference of nonspecific protein adsorption mechanism between PEG and zwitterionic materials will not only help us to provide the insight of the protein resistance and also select and design more appropriate materials to resist nonspecific protein adsorption. This paper mainly focuses on two typical nonfouling materials through comparatively investigating the hydration water layer of PEG and the representive of zwitterionic polymer pSBMA, as well as the binding behavior of PEG and pSBMA with protein, and last the diffusion behavior of the protein in PEG, PEG-pSBMA mixed and pSBMA hydrogels. The main contents and conclusions of this dissertation include the following six parts:
     1. The strong interaction between water molecules and PEG was investigated through each T2component in water/PEG mixtures using multi-exponential inversion of T2relaxation time measured by the Can—Purcell—Meiboom—Gill (CPMG) sequence of low-field nuclear magnetic resonance (LF-NMR). Results show that about one water molecule is tightly bound with one ethylene glycol (EG) unit. This result was also supported by the endothermic behavior of water/PEG mixtures measured by differential scanning calorimetry (DSC).
     2. Eight water molecules are tightly bound with one sulfobetaine (SB) unit, and additional water molecules over8:1ratio mainly swell the pSBMA matrix, which is obtained through the measurement of T2relaxation time by LF-NMR. This result was also supported by the endothermic behavior of water/pSBMA mixtures measured by DSC. Furthermore, by comparing both results of pSBMA and PEG, it is found that (1) the hydrated water molecules on the SB unit are more tightly bound than on the ethylene glycol (EG) unit before saturation, and (2) the additional water molecules after forming the hydration layer in pSBMA solutions show higher freedom than those in PEG.
     3. The interactions of bovine serum albumin (BSA) and lysozyme (LYZ) with different molecular weight (MW) PEGs was investigated through the T2relaxation time of PEGs measured by LF-NMR. The results show that a large number of PEG molecules could associate with protein molecules with association constants in the range~104to105M-1.
     4. The interactions between PEG and proteins in aqueous solution were investigated using fluorescence spectroscopy, atomic force microscopy (AFM), and nuclear magnetic resonance (NMR). The molecular weight effect of each on PEG-protein interactions as well as binding characteristics were examined. In contrast to too long and too short PEG chains, collective results indicated that the PEG with optimal MW exhibits the highest interacting with proteins.
     5. The interactions between two model proteins (BSA and LYZ) and two typical antifouling polymers of PEG and pSBMA in aqueous solution were investigated using fluorescence spectroscopy, AFM and NMR. Collective data clearly demonstrate the existence of medium interactions between PEG and proteins through multiple weak hydrophobic interaction, while there are no detectable interactions between pSBMA and proteins.
     6. The protein-polymer interaction was investigated through the diffusion behavior of the labeled protein in the PEG, PEG-pSBMA mixed and pSBMA hydrogel. It was observed that the protein diffusion rate through PEG hydrogel is much smaller than pSBMA hydrogel, indicating the interaction between the protein-PEG is stronger than protein-pSBMA.
引文
[1]Du, H., P. Chandaroy, and S.W. Hui, Grafted poly-(ethylene glycol) on lipid surfaces inhibits protein adsorption and cell adhesion. Biochimica et Biophysica Acta (BBA)-Biomembranes,1997.1326(2):p.236-248.
    [2]Hoffman, A.S., Non-fouling surface technologies. Journal of Biomaterials Science, Polymer Edition,1999.10(10):p.1011-1014.
    [3]Chapman, A.P., PEGylated antibodies and antibody fragments for improved therapy:a review. Advanced drug delivery reviews,2002.54(4):p.531-545.
    [4]Jiang, S. and Z. Cao, Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications. Advanced Materials,2010.22(9):p.920-932.
    [5]Chen, S. and S. Jiang, An new avenue to non fouling materials. Advanced Materials,2008.20(2):p.335-338.
    [6]Wu, J., W. Lin, Z. Wang, S. Chen, and Y. Chang, Investigation of the hydration of nonfouling material poly (sulfobetaine methacrylate) by low-field nuclear magnetic resonance. Langmuir,2012.28(19):p.7436-7441.
    [7]Zheng, J., L.Y. Li, H.K. Tsao, Y.J. Sheng, S.F. Chen, and S.Y. Jiang, Strong repulsive forces between protein and oligo (ethylene glycol) self-assembled monolayers:A molecular simulation study. Biophysical Journal,2005.89(1): p.158-166.
    [8]Chen, S., L. Li, C. Zhao, and J. Zheng, Surface hydration:Principles and applications toward low-fouling/nonfouling biomaterials. Polymer,2010. 51(23):p.5283-5293.
    [9]Ostuni, E., R.G. Chapman, R.E. Holmlin, S. Takayama, and G.M. Whitesides, A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir,2001.17(18):p.5605-5620.
    [10]Chapman, R.G., E. Ostuni, S. Takayama, R.E. Holmlin, L. Yan, and G.M. Whitesides, Surveying for surfaces that resist the adsorption of proteins. Journal of the American Chemical Society,2000.122(34):p.8303-8304.
    [11]Chen, Y. and S. Thayumanavan, Amphiphilicity in Homopolymer Surfaces Reduces Nonspecific Protein Adsorptionf. Langmuir,2009.25(24):p.13795-13799.
    [12]Prime, K.L. and G.M. Whitesides, Self-assembled organic monolayers:model systems for studying adsorption of proteins at surfaces. Science (New York, NY),1991.252(5009):p.1164-1167.
    [13]Zhang, Z., S. Chen, Y. Chang, and S. Jiang, Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. The Journal of Physical Chemistry B,2006.110(22):p.10799-10804.
    [14]Gao, C, G. Li, H. Xue, W. Yang, F. Zhang, and S. Jiang, Functionalizable and ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages. Biomaterials,2010.31(7):p.1486-1492.
    [15]Johnston, E.E., J.D. Bryers, and B.D. Ratner, Plasma deposition and surface characterization of oligoglyme, dioxane, and crown ether nonfouling films. Langmuir,2005.21(3):p.870-881.
    [16]Malisova, B., S. Tosatti, M. Textor, K. Gademann, and S. Ziircher, Poly (ethylene glycol) adlayers immobilized to metal oxide substrates through catechol derivatives:Influence of assembly conditions on formation and stability. Langmuir,2010.26(6):p.4018-4026.
    [17]Schuler, M., D.W. Hamilton, T.P. Kunzler, C.M. Sprecher, M. de Wild, D.M. Brunette, M. Textor, and S.G. Tosatti, Comparison of the response of cultured osteoblasts and osteoblasts outgrown from rat calvarial bone chips to nonfouling KRSR and FHRRIKA-peptide modified rough titanium surfaces. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2009. 91(2):p.517-527.
    [18]Tugulu, S. and H.A. Klok. Surface modification of polydimethylsiloxane substrates with nonfouling poly (poly (ethylene glycol) methacrylate) brushes. in Macromolecular symposia.2009:Wiley Online Library.
    [19]Wang, J., M.I. Gibson, R. Barbey, S.J. Xiao, and H.A. Klok, Nonfouling Polypeptide Brushes via Surface-initiated Polymerization of Nε-oligo (ethylene glycol) succinate-L-lysine N-carboxyanhydride. Macromolecular rapid communications,2009.30(9-10):p.845-850.
    [20]Tan, J., W. McClung, and J. Brash, Nonfouling biomaterials based on polyethylene oxide-containing amphiphilic triblock copolymers as surface modifying additives:Protein adsorption on PEO-copolymer/polyurethane blends. Journal of Biomedical Materials Research Part A,2008.85(4):p.873-880.
    [21]Sheu, M., A. Hoffman, and J. Feijen, A glow discharge treatment to immobilize poly (ethylene oxide)/poly (propylene oxide) surfactants for wettable and non-fouling biomaterials. Journal of adhesion science and technology,1992.6(9):p.995-1009.
    [22]Leckband, D., S. Sheth, and A. Halperin, Grafted poly (ethylene oxide) brushes as nonfouling surface coatings. Journal of Biomaterials Science, Polymer Edition,1999.10(10):p.1125-1147.
    [23]Arakawa, T. and S.N. Timasheff, Mechanism of polyethylene glycol interaction with proteins. Biochemistry,1985.24(24):p.6756-6762.
    [24]Sharma, S., R.W. Johnson, and T.A. Desai, Evaluation of the stability of nonfouling ultrathin poly (ethylene glycol) films for silicon-based microdevices. Langmuir,2004.20(2):p.348-356.
    [25]Hyun, J., H. Jang, K. Kim, K. Na, and T. Tak, Restriction of biofouling in membrane filtration using a brush-like polymer containing oligoethylene glycol side chains. Journal of membrane science,2006.282(1):p.52-59.
    [26]Satomi, T., K. Ueno, Y. Fujita, H. Kobayashi, J. Tanaka, Y. Mitamura, T. Tateishi, and H. Otsuka, Synthesis of polypyridine-graft-PEG copolymer for protein repellent and stable interface. Journal of nanoscience and nanotechnology,2006.6(6):p.1792-1796.
    [27]Chawla, K., S. Lee, B.P. Lee, J.L. Dalsin, P.B. Messersmith, and N.D. Spencer, A novel low-friction surface for biomedical applications:Modification of poly (dimethylsiloxane)(PDMS) with polyethylene glycol (PEG)-DOPA-lysine. Journal of Biomedical Materials Research Part A,2009.90(3):p.742-749.
    [28]Dalsin, J.L., B.-H. Hu, B.P. Lee, and P.B. Messersmith, Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. Journal of the American Chemical Society,2003.125(14):p.4253-4258.
    [29]Wyszogrodzka, M. and R. Haag, Synthesis and characterization of glycerol dendrons, self-assembled monolayers on gold:A detailed study of their protein resistance. Biomacromolecules,2009.10(5):p.1043-1054.
    [30]Zhou, Y., W. Huang, J. Liu, X. Zhu, and D. Yan, Self-Assembly of Hyperbranched Polymers and Its Biomedical Applications. Advanced Materials,2010.22(41):p.4567-4590.
    [31]Shen, M., M.S. Wagner, D.G. Castner, B.D. Ratner, and T.A. Horbett, Multivariate surface analysis of plasma-deposited tetraglyme for reduction of protein adsorption and monocyte adhesion. Langmuir,2003.19(5):p.1692-1699.
    [32]He, Y., J. Hower, S. Chen, M.T. Bernards, Y. Chang, and S. Jiang, Molecular simulation studies of protein interactions with zwitterionic phosphoiylcholine self-assembled monolayers in the presence of water. Langmuir,2008.24(18): p.10358-10364.
    [33]McArthur, S.L., K.M. McLean, P. Kingshott, H.A. St John, R.C. Chatelier, and H.J. Griesser, Effect of polysaccharide structure on protein adsorption. Colloids and Surfaces B:Biointerfaces,2000.17(1):p.37-48.
    [34]Zhang, Z., S. Chen, and S. Jiang, Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules,2006.7(12):p.3311-5.
    [35]Zhang, Z., J.A. Finlay, L. Wang, Y. Gao, J.A. Callow, M.E. Callow, and S. Jiang, Polysulfobetaine-grafted surfaces as environmentally benign ultralow fouling marine coatings. Langinuir,2009.25(23):p.13516-13521.
    [36]Morisaku, T., J. Watanabe, T. Konno, M. Takai, and K. Ishihara, Hydration of phosphorylcholine groups attached to highly swollen polymer hydrogels studied by thermal analysis. Polymer,2008.49(21):p.4652-4657.
    [37]Chen, S., Z. Cao, and S. Jiang, Ultra-low folding peptide surfaces derived from natural amino acids. Biomaterials,2009.30(29):p.5892-5896.
    [38]Harder, P., M. Grunze, R. Dahint, G.M. Whitesides, and P.E. Laibinis, Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption. Journal of Physical Chemistry. B,1998.102(2):p.426-436.
    [39]Li, L., S. Chen, J. Zheng, B.D. Ratner, and S. Jiang, Protein adsorption on oligo (ethylene glycol)-terminated alkanethiolate self-assembled monolayers: the molecular basis for nonfouling behavior. The Journal of Physical Chemistry B,2005.109(7):p.2934-2941.
    [40]Cheng, T.-L., P.-Y. Wu, M.-F. Wu, J.-W. Chern, and S.R. Roffler, Accelerated clearance of polyethylene glycol-modified proteins by anti-polyethylene glycol IgM. Bioconjugate chemistry,1999.10(3):p.520-528.
    [41]Yang, W., H. Xue, W. Li, J. Zhang, and S. Jiang, Pursuing "zero" protein adsorption of poly (carboxybetaine) from undiluted blood serum and plasma. Langmuir,2009.25(19):p.11911-11916.
    [42]Umeda, T., T. Nakaya, and M. Imoto, Polymeric phospholipid analogues,14. The convenient preparation of a vinyl monomer containing a phospholipid analogue. Die Makromolekulare Chemie, Rapid Communications,1982.3(7): p.457-459.
    [43]Nakabayashi, N. and D. Williams, Preparation of non-thrombogenic materials using 2-methacryloyloxyethyl phosphorylcholine. Biomaterials,2003.24(13): p.2431-2435.
    [44]Ishihara, K., Y. Iwasaki, S. Ebihara, Y. Shindo, and N. Nakabayashi, Photoinduced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on polyethylene membrane surface for obtaining blood cell adhesion resistance. Colloids and Surfaces B:Biointerfaces,2000.18(3):p. 325-335.
    [45]Bernards, M.T., G. Cheng, Z. Zhang, S. Chen, and S. Jiang, Nonfouling polymer brushes via surface-initiated, two-component atom transfer radical polymerization. Macromolecules,2008.41(12):p.4216-4219.
    [46]Huxtable, R., Physiological actions of taurine. Physiological reviews,1992. 72(1):p.101-163.
    [47]Zhang, Z., H. Vaisocherova, G. Cheng, W. Yang, H. Xue, and S. Jiang, Nonfouling behavior of polycarboxybetaine-grafted surfaces:structural and environmental effects. Biomacromolecules,2008.9(10):p.2686-2692.
    [48]Cheng, G., L. Mi, Z. Cao, H. Xue, Q. Yu, L. Carr, and S. Jiang, Functionalizable and ultrastable zwitterionic nanogels. Langmuir,2010. 26(10):p.6883-6886.
    [49]Zhang, L., H. Xue, C. Gao, L. Carr, J. Wang, B. Chu, and S. Jiang, Imaging and cell targeting characteristics of magnetic nanoparticles modified by a functionalizable zwitterionic polymer with adhesive 3,4-dihydroxyphenyl-l-alanine linkages. Biomaterials,2010.31(25):p.6582-6588.
    [50]Li, G., H. Xue, G. Cheng, S. Chen, F. Zhang, and S. Jiang, Ultralow fouling zwitterionic polymers grafted from surfaces covered with an initiator via an adhesive mussel mimetic linkage. The Journal of Physical Chemistry B,2008. 112(48):p.15269-15274.
    [51]Yang, W., T. Bai, L.R. Carr, A.J. Keefe, J. Xu, H. Xue, C.A. Irvin, S. Chen, J. Wang, and S. Jiang, The effect of lightly crosslinked poly(carboxybetaine) hydrogel coating on the performance of sensors in whole blood. Biomaterials, 2012.33(32):p.7945-7951.
    [52]Ratner, B.D. and S.J. Bryant, Biomaterials:where we have been and where we are going. Annu. Rev. Biomed. Eng.,2004.6:p.41-75.
    [53]Zhang, X.a., W. Lin, S. Chen, H. Xu, and H. Gu, Development of a Stable Dual Functional Coating with Low Non-specific Protein Adsorption and High Sensitivity for New Superparamagnetic Nanospheres. Langmuir,2011.27(22): p.13669-13674.
    [54]Yang, W., L. Zhang, S. Wang, A.D. White, and S. Jiang, Functionalizable and ultra stable nanoparticles coated with zwitterionic poly (carboxybetaine) in undiluted blood serum. Biomaterials,2009.30(29):p.5617-5621.
    [55]Knop, K., R. Hoogenboom, D. Fischer, and U.S. Schubert, Poly (ethylene glycol) in drug delivery:pros and cons as well as potential alternatives. Angewandte Chemie International Edition,2010.49(36):p.6288-6308.
    [56]Cao, Z., Q. Yu, H. Xue, G. Cheng, and S. Jiang, Nanoparticles for drug delivery prepared from amphiphilic PLGA zwitterionic block copolymers with sharp contrast in polarity between two blocks. Angewandte Chemie,2010. 122(22):p.3859-3864.
    [57]Zhang, L., H. Xue, Z. Cao, A. Keefe, J. Wang, and S. Jiang, Multifunctional and degradable zwitterionic nanogels for targeted delivery, enhanced MR imaging, reduction-sensitive drug release, and renal clearance. Biomaterials, 2011.32(20):p.4604-4608.
    [58]Carr, L.R. and S. Jiang, Mediating high levels of gene transfer without cytotoxicity via hydrolytic cationic ester polymers. Biomaterials,2010.31(14): p.4186-4193.
    [59]Lin, W., H. Zhang, J. Wu, Z. Wang, H. Sun, J. Yuan, and S. Chen, A novel zwitterionic copolymer with a short poly (methyl acrylic acid) block for improving both conjugation and separation efficiency of a protein without losing its bioactivity. Journal of Materials Chemistry B,2013.1(19):p.2482-2488.
    [60]Keefe, A.J. and S. Jiang, Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nature Chemistry, 2012.4(1):p.59-63.
    [61]Herrwerth, S., W. Eck, S. Reinhardt, and M. Grunze, Factors that determine the protein resistance of oligoether self-assembled monolayers-Internal hydrophilicity, terminal hydrophilicity, and lateral packing density. Journal of the American Chemical Society,2003.125(31):p.9359-9366.
    [62]Chen, S., L. Li, C.L. Boozer, and S. Jiang, Controlled chemical and structural properties of mixed self-assembled monolayers of alkanethiols on Au (111). Langmuir,2000.16(24):p.9287-9293.
    [63]Chen, S., F. Yu, Q. Yu, Y. He, and S. Jiang, Strong resistance of a thin crystalline layer of balanced charged groups to protein adsorption. Langmuir, 2006.22(19):p.8186-8191.
    [64]Jeon, S. and J. Andrade, Protein—surface interactions in the presence of polyethylene oxide:II. Effect of protein size. Journal of Colloid and Interface Science,1991.142(1):p.159-166.
    [65]Jeon, S., J. Lee, J. Andrade, and P. De Gennes, Protein—surface interactions in the presence of polyethylene oxide:I. Simplified theory. Journal of Colloid and Interface Science,1991.142(1):p.149-158.
    [66]Szleifer, I., Protein adsorption on surfaces with grafted polymers:a theoretical approach. Biophysical Journal,1997.72(2):p.595-612.
    [67]Wang, R., H. Kreuzer, and M. Grunze, Molecular conformation and solvation of oligo (ethylene glycol)-terminated self-assembled monolayers and their resistance to protein adsorption. The Journal of Physical Chemistry B,1997. 101(47):p.9767-9773.
    [68]Pertsin, A.J. and M. Grunze, Computer simulation of water near the surface of oligo (ethylene gly col)-terminated alkanethiol self-assembled monolayers. Langmuir,2000.16(23):p.8829-8841.
    [69]Zheng, J., L. Li, S. Chen, and S. Jiang, Molecular simulation study of water interactions with oligo (ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir,2004.20(20):p.8931-8938.
    [70]Zheng, J., Y. He, S. Chen, L. Li, M.T. Bernards, and S. Jiang, Molecular simulation studies of the structure of phosphorylcholine self-assembled monolayers. The Journal of Chemical Physics,2006.125(17):p.174714.
    [71]Shao, Q., Y. He, A.D. White, and S. Jiang, Difference in hydration between carboxybetaine and sulfobetaine. The Journal of Physical Chemistry B,2010. 114(49):p.16625-16631.
    [72]Tanaka, M., A. Mochizuki, N. Ishii, T. Motomura, and T. Hatakeyama, Study of blood compatibility with poly (2-methoxyethyl acrylate). Relationship between water structure and platelet compatibility in poly (2-methoxyethylacrylate-co-2-hydroxyethylmethacrylate). Biomacromolecules, 2002.3(1):p.36-41.
    [73]Zhao, C, J. Zhao, X. Li, J. Wu, S. Chen, Q. Chen, Q. Wang, X. Gong, L. Li, and J. Zheng, Probing structure-antifouling activity relationships of polyacrylamides and poly aaylates. Biomaterials,2013.34(20):p.4714-4724.
    [74]Kitano, H., K. Sudo, K. Ichikawa, M. Ide, and K. Ishihara, Raman spectroscopic study on the structure of water in aqueous polyelectrolyte solutions. The Journal of Physical Chemistry B,2000.104(47):p.11425-11429.
    [75]Fick, J., R. Steitz, V. Leiner, S. Tokumitsu, M. Himmelhaus, and M. Grunze, Swelling behavior of self-assembled monolayers of alkanethiol-terminated poly (ethylene glycol):a neutron reflectometry study. Langmuir,2004.20(10): p.3848-3853.
    [76]Zolk, M, F. Eisert, J. Pipper, S. Herrwerth, W. Eck, M. Buck, and M. Grunze, Solvation of oligo (ethylene glycol)-terminated self-assembled monolayers studied by vibrational sum frequency spectroscopy. Langmuir,2000.16(14):p. 5849-5852.
    [77]Kitano, H., T. Mori, Y. Takeuchi, S. Tada, M. Gemmei-Ide, Y. Yokoyama, and M. Tanaka, Structure of Water Incorporated in Sulfobetaine Polymer Films as Studied by ATR-FTIR. Macromolecular Bioscience,2005.5(4):p. 314-321.
    [78]Katayama, S. and S. Fujiwara, NMR study of the freezing/thawing mechanism of water in polyacrylamide gel. The Journal of Physical Chemistry,1980. 84(18):p.2320-2325.
    [79]Lusse, S. and K. Arnold, The interaction of poly (ethylene glycol) with water studied by H-1 and H-2 NMR relaxation time measurements. Macromolecules, 1996.29(12):p.4251-4257.
    [80]Efremova, N., S. Sheth, and D. Leckband, Protein-induced changes in poly (ethylene glycol) brushes:molecular weight and temperature dependence. Langmuir,2001.17(24):p.7628-7636.
    [81]Sheth, S. and D. Leckband, Measurements of attractive forces between proteins and end-grafted poly (ethylene glycol) chains. Proceedings of the National Academy of Sciences,1997.94(16):p.8399-8404.
    [82]Chen, S., J. Zheng, L. Li, and S. Jiang, Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption:insights into nonfouling properties of zwitterionic materials. Journal of the American Chemical Society,2005.127(41):p.14473-14478.
    [83]Green, R.J., R.A. Frazier, K.M. Shakesheff, M.C. Davies, C.J. Roberts, and S.J. Tendler, Surface plasmon resonance analysis of dynamic biological interactions with biomaterials. Biomaterials,2000.21(18):p.1823-1835.
    [84]Chang, Y. and Y.J. Shih, Tunable Blood Compatibility of Poly sulfobetaine from Controllable Molecular-Weight Dependence of Zwitterionic Nonfouling Nature in Aqueous Solution. Langmuir,2010.26(22):p.17286-17294.
    [85]Feng, W., J.L. Brash, and S. Zhu, Non-bio fouling materials prepared by atom transfer radical polymerization grafting of 2-methacryloloxyethyl phosphorylcholine:separate effects of graft density and chain length on protein repulsion. Biomaterials,2006.27(6):p.847-855.
    [86]Kaminskas, L.M., B.J. Boyd, P. Karellas, G.Y. Krippner, R. Lessene, B. Kelly, and C.J. Porter, The impact of molecular weight and PEG chain length on the systemic pharmacokinetics of PEGylated polyl-lysine dendrimers. Molecular pharmaceutics,2008.5(3):p.449-463.
    [87]Wu, J., C. Zhao, R. Hu, W. Lin, Q. Wang, J. Zhao, S.M. Bilinovich, T.C. Leeper, L. Li, and H.M. Cheung, Probing the weak interaction of proteins with neutral and zwitterionic antifouling polymers. Acta biomaterialia,2014. 10(2):p.751-760.
    [88]Wu, J., C. Zhao, W. Lin, R. Hu, Q. Wang, H. Chen, L. Li, S. Chen, and J. Zheng, Binding Characteristics between Polyethylene Glycol (PEG) and Proteins in Aqueous Solution. Journal of Materials Chemistry B,2014.20(2): p.2983-2992.
    [89]Tubio, G., B. Nerli, and G. Pico, Relationship between the protein surface hydrophobicity and its partitioning behaviour in aqueous two-phase systems of polyethyleneglycol-dextran. Journal of Chromatography B,2004.799(2):p. 293-301.
    [90]Lee, L.L. and J.C. Lee, Thermal stability of proteins in the presence of poly (ethylene glycols). Biochemistry,1987.26(24):p.7813-7819.
    [91]Furness, E., A. Ross, T. Davis, and G. King, A hydrophobic interaction site for lysozyme binding to polyethylene glycol and model contact lens polymers. Biomaterials,1998.19(15):p.1361-1369.
    [92]Ragi, C., M. Sedaghat-Herati, A.A. Ouameur, and H. Tajmir-Riahi, The effects of poly (ethylene glycol) on the solution structure of human serum albumin. Biopolymers,2005.78(5):p.231-236.
    [93]Azegami, S., A. Tsuboi, T. Izumi, M. Hirata, P.L. Dubin, B. Wang, and E. Kokufuta, Formation of an intrapolymer complex from human serum albumin and poly (ethylene glycol). Langmuir,1999.15(4):p.940-947.
    [94]Xia, J., P.L. Dubin, and E. Kokufuta, Dynamic and electrophoretic light scattering of a water-soluble complex formed between pepsin and polyethylene glycol. Macromolecules,1993.26(24):p.6688-6690.
    [95]Shao, Q., Y. He, A.D. White, and S. Jiang, Different effects of zwitterion and ethylene glycol on proteins. The Journal of Chemical Physics,2012.136(22): p.225101.
    [96]Shao, Q., A.D. White, and S. Jiang, Difference of Carboxybetaine and Oligo (Ethylene Glycol) Moieties in Altering Hydrophobic Interactions:a Molecular Simulation Study. The Journal of Physical Chemistry B,2013.118(1):p,189-194.
    [1]Horbett, T.A., Proteins at interfaces-An overview. Proteins at Interfaces Ii, 1995.602:p.1-23.
    [2]Ostuni, E., R.G. Chapman, R.E. Holmlin, S. Takayama, and G.M. Whitesides, A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir,2001.17(18):p.5605-5620.
    [3]Kane, R.S., P. Deschatelets, and G.M. Whitesides, Kosmotropes form the basis of protein-resistant surfaces. Langmuir,2003.19(6):p.2388-2391.
    [4]Chapman, R.G., E. Ostuni, S. Takayama, R.E. Holmlin, L. Yan, and G.M. Whitesides, Surveying for surfaces that resist the adsorption of proteins. Journal of the American Chemical Society,2000.122(34):p.8303-8304.
    [5]Murphy, E.F., J.R. Lu, J. Brewer, J. Russell, and J. Penfold, The reduced adsorption of proteins at the phosphoryl choline incorporated polymer-water interface. Langmuir,1999.15(4):p.1313-1322.
    [6]Tegoulia, V.A., W.S. Rao, A.T. Kalambur, J.R. Rabolt, and S.L. Cooper, Surface properties, fibrinogen adsorption, and cellular interactions of a novel phosphorylcholine-containing self-assembled monolayer on gold. Langmuir, 2001.17(14):p.4396-4404.
    [7]Zheng, J., L.Y. Li, S.F. Chen, and S.Y. Jiang, Molecular simulation study of water interactions with oligo (ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir,2004.20(20):p.8931-8938.
    [8]Zheng, J., L.Y. Li, H.K. Tsao, Y.J. Sheng, S.F. Chen, and S.Y. Jiang, Strong repulsive forces between protein and oligo (ethylene glycol) self-assembled monolayers:A molecular simulation study. Biophysical Journal,2005.89(1): p.158-166.
    [9]Besseling, N.A.M., Theory of hydration forces between surfaces. Langmuir, 1997.13(7):p.2113-2122.
    [10]Hower, J.C., Y. He, M.T. Bernards, and S.Y. Jiang, Understanding the nonfouling mechanism of surfaces through molecular simulations of sugar-based self-assembled monolayers. Journal of Chemical Physics,2006.125(21): P.
    [11]Vanderah, D.J., H.L. La, J. Naff, V. Silin, and K.A. Rubinson, Control of protein adsorption:Molecular level structural and spatial variables. Journal of the American Chemical Society,2004.126(42):p.13639-13641.
    [12]Morra, M., On the molecular basis of fouling resistance. Journal of Biomaterials Science-Polymer Edition,2000.11(6):p.547-569.
    [13]Kitano, H., T. Mori, Y. Takeuchi, S. Tada, M. Gemmei-Ide, Y. Yokoyama, and M. Tanaka, Structure of water incorporated in sulfobetaine polymer films as studied by ATR-FTIR. Macromolecular Bioscience,2005.5(4):p.314-321.
    [14]Morisaku, T., J. Watanabe, T. Konno, M. Takai, and K. Ishihara, Hydration of phosphorylcholine groups attached to highly swollen polymer hydrogels studied by thermal analysis. Polymer,2008.49(21):p.4652-4657.
    [15]Volke, F., S. Eisenblatter, and G. Klose, Hydration force parameters of phosphatidylcholine lipid bilayers as determined from 2H-NMR studies of deuterated water. Biophysical Journal,1994.67(5):p.1882-7.
    [16]Zubavichus, Y., M. Zhamikov, Y. Yang, O. Fuchs, E. Umbach, C. Heske, A. Ulman, and M. Grunze, X-ray photoelectron spectroscopy and near-edge X- ray absorption fine structure study of water adsorption on pyridine-terminated thiolate self-assembled monolayers. Langmuir,2004.20(25):p.11022-9.
    [17]Wang, R.L., H.J. Kreuzer, and M. Grunze, Theoretical modeling and interpretation of X-ray absorption spectra of liquid water. Phys Chem Chem Phys,2006.8(41):p.4744-51.
    [18]Jiang, S.Y., Q. Shao, Y. He, and A.D. White, Difference in Hydration between Carboxybetaine and Sulfobetaine. Journal of Physical Chemistry B,2010. 114(49):p.16625-16631.
    [19]Klose, G., S. Eisenblatter, J. Galle, A. Islamov, and U. Dietrich, Hydration and Structural-Properties of a Homologous Series of Nonionic Alkyl Oligo(Ethylene Oxide) Surfactants. Langmuir,1995.11(8):p.2889-2892.
    [20]Klose, G., S. Eisenblatter, and B. Konig, Ternary Phase-Diagram of Mixtures of Palmitoyl-Oleoyl-Phosphatidylcholine, Tetraoxyethylene Dodecyl Ether, and Heavy-Water as Seen by P-31 and H-2 Nmr. Journal of Colloid and Interface Science,1995.172(2):p.438-446.
    [21]Baumgartner, S., G. Lahajnar, A. Sepe, and J. Kristl, Investigation of the state and dynamics of water in hydrogels of cellulose ethers by 1H NMR spectroscopy. AAPS PharmSciTech,2002.3(4):p. E36.
    [22]Baumgartner, S., G. Lahajnar, A. Sepe, and J. Kristl, Quantitative evaluation of polymer concentration profile during swelling of hydrophilic matrix tablets using H-1 NMR and MRI methods. European Journal of Pharmaceutics and Biopharmaceutics,2005.59(2):p.299-306.
    [23]Blinc, R., V. Rutar, I. Zupancic, A. Zidansek, G. Lahajnar, and J. Slak, Proton Nmr Relaxation of Adsorbed Water in Gelatin and Collagen. Applied Magnetic Resonance,1995.9(2):p.193-216.
    [24]Zimmerman, J.R. and W.E. Brittin, Nuclear Magnetic Resonance Studies in Multiple Phase System-Lifetime of a Water Molecule in an Adsorbing Phase on Silica Gel. Journal of Physical Chemistry,1957.61(10):p.1328-1333.
    [25]Swift, T.J. and O.G. Fritz, A Proton Spin-Echo Study of State of Water in Frog Nerves. Biophysical Journal,1969.9(1):p.54-&.
    [26]Hazlewoo.Cf, D.C. Chang, B.L. Nichols, and D.E. Woessner, Nuclear Magnetic-Resonance Transverse Relaxation-Times of Water Protons in Skeletal-Muscle. Biophysical Journal,1974.14(8):p.583-606.
    [27]Vasilescu, V., E. Katona, V. Simplaceanu, and D. Demco, Water Compartments in Myelinated Nerve.3. Pulsed Nmr Results. Experientia,1978. 34(11):p.1443-1444.
    [28]Belton, P.S. and R.G. Ratcliffe, Nmr and Compartmentation in Biological Tissues. Progress in Nuclear Magnetic Resonance Spectroscopy,1985.17:p. 241-279.
    [29]Henkelman, R.M., G.J. Stanisz, J.K. Kim, and M.J. Bronskill, Anisotropy of Nmr Properties of Tissues. Magnetic Resonance in Medicine,1994.32(5):p. 592-601.
    [30]Xia, Y., Relaxation anisotropy in cartilage by NMR microscopy (mu MRI) at 14-mu m resolution. Magnetic Resonance in Medicine,1998.39(6):p.941-949.
    [31]Bailey, F.E.J. and J.V. Koleske, Poly(Ethylene Oxide).1984, Academic Press: New York.
    [32]Harris, J.M., Poly(Ethylene Glycol) Chemistry:Biotechnical and Biomedical Applications.1992, Plennum Press:New York.
    [33]Jeon, S.I. and J.D. Andrade, Protein Surface Interactions in the Presence of Polyethylene Oxide.2. Effect of Protein Size. Journal of Colloid and Interface Science,1991.142(1):p.159-166.
    [34]Feldman, K., G. Hahner, N.D. Spencer, P. Harder, and M. Grunze, Probing resistance to protein adsorption of oligo(ethylene glycol)-terminated self-assembled monolayers by scanning force microscopy. Journal of the American Chemical Society,1999.121(43):p.10134-10141.
    [35]Pertsin, A.J. and M. Grunze, Computer simulation of water near the surface of oligo(ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir,2000.16(23):p.8829-8841.
    [36]Pertsin, A.J., T. Hayashi, and M. Grunze, Grand canonical Monte Carlo Simulations of the hydration interaction between oligo(ethylene glycol)-terminated alkanethiol self-assembled monolayers. Journal of Physical Chemistry B,2002.106(47):p.12274-12281.
    [37]Luk, Y.Y., M. Kato, and M. Mrksich, Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir,2000.16(24):p.9604-9608.
    [38]Carr, H.Y. and E.M. Purcell, Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Physical Review,1954.94(3):p. 630-638.
    [39]Meiboom, S. and D. Gill, Modified Spin-Echo Method for Measuring Nuclear Relaxation Times. Review of Scientific Instruments,1958.29(8):p.688-691.
    [40]Blinc, A., G. Lahajnar, R. Blinc, A. Zidansek, and A. Sepe, Proton Nmr-Study of the State of Water in Fibrin Gels, Plasma, and Blood-Clots. Magnetic Resonance in Medicine,1990.14(1):p.105-122.
    [1]Ratner, B.D. and S.J. Bryant, Biomaterials:where we have been and where we are going. Annu. Rev. Biomed. Eng.,2004.6:p.41-75.
    [2]Harris, J.M., Poly(Ethylene Glycol) Chemistry:Biotechnical and Biomedical Applications.1992, Plennum Press:New York.
    [3]Cheng, G., Z. Zhang, S.F. Chen, J.D. Bryers, and S.Y. Jiang, Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials,2007.28(29):p.4192-4199.
    [4]Carr, L.R., H. Xue, and S. Jiang, Functionalizable and nonfoiding zwitterionic carboxybetaine hydrogels with a carboxybetaine dimethacrylate crosslinker. Biomaterials,2011.32(4):p.961-8.
    [5]Santini, J.T., M.J. Cima, and R. Langer, A controlled-release microchip. Nature,1999.397(6717):p.335-338.
    [6]Santini, J.T., A.C. Richards, R.A. Scheidt, M.J. Cima, and R.S. Langer, Microchip technology in drug delivery. Annals of Medicine,2000.32(6):p. 377-379.
    [7]Park, J., S. Kurosawa, J. Watanabe, and K. Ishihara, Evaluation of 2-methacryloyloxyethyl phosphoiylcholine polymeric nanoparticle for immunoassay of c-reactive protein detection. Analytical Chemistry,2004. 76(9):p.2649-2655.
    [8]Carr, L., G. Cheng, H. Xue, and S. Jiang, Engineering the polymer backbone to strengthen nonfoiding sulfobetaine hydrogels. Langmuir,2010.26(18):p. 14793-8.
    [9]Zhang, Z., S. Chen, and S. Jiang, Dual-functional biomimetic materials: nonfouling poly (carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules,2006.7(12):p.3311-5.
    [10]Zhang, Z., S. Chen, Y. Chang, and S. Jiang, Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. Journal of Physical Chemistry B,2006.110(22):p.10799-804.
    [11]He, Y., J. Hower, S.F. Chen, M.T. Bernards, Y. Chang, and S.Y. Jiang, Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water. Langmuir,2008.24(18):p.10358-10364.
    [12]Morisaku, T., J. Watanabe, T. Konno, M. Takai, and K. Ishihara, Hydration of phosphorylcholine groups attached to highly swollen polymer hydrogels studied by thermal analysis. Polymer,2008.49(21):p.4652-4657.
    [13]Jiang, S.Y., Q. Shao, Y. He, and A.D. White, Difference in Hydration between Carboxybetaine and Sulfobetaine. Journal of Physical Chemistry B,2010. 114(49):p.16625-16631.
    [14]Pertsin, A.J. and M. Grunze, Computer simulation of water near the surface of oligo(ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir,2000.16(23):p.8829-8841.
    [15]Wu, J. and S. Chen, Investigation of the Hydration of Nonfouling Material Poly(ethylene glycol) by Low-Field Nuclear Magnetic Resonance. Langmuir, 2012.
    [16]Jeon, S.I., J.H. Lee, J.D. Andrade, and P.G. Degennes, Protein Surface Interactions in the Presence of Polyethylene Oxide.1. Simplified Theory. Journal of Colloid and Interface Science,1991.142(1):p.149-158.
    [17]Hower, J.C., M.T. Bernards, S. Chen, H.K. Tsao, Y.J. Sheng, and S. Jiang, Hydration of "nonfouling" functional groups. Journal of Physical Chemistry B, 2009.113(1):p.197-201.
    [18]Jiang, S. and Z. Cao, Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Materials,2010.22(9):p.920-932.
    [19]Hower, J.C., Y. He, M.T. Bernards, and S.Y. Jiang, Understanding the nonfouling mechanism of surfaces through molecular simulations of sugar-based self-assembled monolayers. Journal of Chemical Physics,2006.125(21): p.-.
    [20]Wang, R.Y., M. Himmelhaus, J. Fick, S. Herrwerth, W. Eck, and M. Grunze, Interaction of self-assembled monolayers of oligo (ethylene glycolj-terminated alkanethiols with water studied by vibrational sum-frequency generation. Journal of Chemical Physics,2005.122(16):p.164702.
    [21]Zheng, J., L.Y. Li, H.K. Tsao, Y.J. Sheng, S.F. Chen, and S.Y. Jiang, Strong repulsive forces between protein and oligo (ethylene glycol) self-assembled monolayers:A molecular simulation study. Biophysical Journal,2005.89(1): p.158-166.
    [22]Zheng, J., L. Li, S. Chen, and S. Jiang, Molecular simulation study of water interactions with oligo (ethylene glycolj-terminated alkanethiol self-assembled monolayers. Langmuir,2004.20(20):p.8931-8938.
    [23]Baumgartner, S., G. Lahajnar, A. Sepe, and J. Kristl, Investigation of the state and dynamics of water in hydrogels of cellulose ethers by 1H NMR spectroscopy. AAPS Pharm SciTech,2002.3(4):p. E36.
    [24]Blinc, R., V. Rutar, I. Zupancic, A. Zidansek, G. Lahajnar, and J. Slak, Proton Nmr Relaxation of Adsorbed Water in Gelatin and Collagen. Applied Magnetic Resonance,1995.9(2):p.193-216.
    [25]Zheng, J., L.Y. Li, S.F. Chen, and S.Y. Jiang, Molecular simulation study of water interactions with oligo (ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir,2004.20(20):p.8931-8938.
    [26]McConville, P., M.K. Whittaker, and J.M. Pope, Water and polymer mobility in hydrogel biomaterials quantified by H-1 NMR:A simple model describing both T-1 and T-2 relaxation. Macromolecules,2002.35(18):p.6961-6969.
    [27]Carr, H.Y. and E.M. Purcell, Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Physical Review,1954.94(3):p. 630-638.
    [28]Meiboom, S. and D. Gill, Modified Spin-Echo Method for Measuring Nuclear Relaxation Times. Review of Scientific Instruments,1958.29(8):p.688-691.
    [29]Zimmerman, J.R. and W.E. Brittin, Nuclear Magnetic Resonance Studies in Multiple Phase System-Lifetime of a Water Molecule in an Adsorbing Phase on Silica Gel. Journal of Physical Chemistry,1957.61(10):p.1328-1333.
    [30]Wu, J. and S. Chen, Investigation of the Hydration of Nonfouling Material Poly(ethylene glycol) by Low-Field Nuclear Magnetic Resonance. Langmuir, 2012.28(4):p.2137-2144.
    [31]He, Y., J. Hower, S. Chen, M.T. Bernards, Y. Chang, and S. Jiang, Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water. Langmuir,2008.24(18): p.10358-64.
    [1]Knop, K., R. Hoogenboom, D. Fischer, and U.S. Schubert, Poly (ethylene glycol) in drug delivery:pros and cons as well as potential alternatives. Angewandte Chemie International Edition,2010.49(36):p.6288-6308.
    [2]Torchilin, V.P., V.G. Omelyanenko, M.I. Papisov, A.A. Bogdanov Jr, V.S. Trubetskoy, J.N. Herron, and C.A. Gentry, Poly (ethylene glycol) on the liposome surface:on the mechanism of polymer-coated liposome longevity. Biochimica et Biophysica Acta (BBA)-Biomembranes,1994.1195(1):p.11-20.
    [3]Veronese, F.M. and G. Pasut, PEGylation, successful approach to drug delivery. Drug discovery today,2005.10(21):p.1451-1458.
    [4]Torchilin, V.P. and V.S. Trubetskoy, Which polymers can make nanoparticulate drug carriers long-circulating? Advanced drug delivery reviews,1995.16(2-3):p.141-155.
    [5]Hasek, J., Poly (ethylene glycol) interactions with proteins. Zeitschrift fiir Kristallographie Supplements,2006.23(2006):p.613-618.
    [6]Xia, J., P.L. Dubin, and E. Kokufuta, Dynamic and electrophoretic light scattering of a water-soluble complex formed between pepsin and polyethylene glycol. Macromolecules,1993.26(24):p.6688-6690.
    [7]Rawat, S., C. Raman Suri, and D.K. Sahoo, Molecular mechanism of polyethylene glycol mediated stabilization of protein. Biochem Biophys Res Commun,2010.392(4):p.561-6.
    [8]Lundqvist, M., I. Sethson, and B.H. Jonsson, Protein adsorption onto silica nanoparticles:conformational changes depend on the particles'cumature and the protein stability. Langmuir,2004.20(24):p.10639-10647.
    [9]Walkey, C.D., J.B. Olsen, H. Guo, A. Emili, and W.C.W. Chan, Nanoparticle Size and Surface Chemistry Determine Serum Protein Adsorption and Macrophage Uptake. Journal of the American Chemical Society,2012.134(4): p.2139.
    [10]Laverman, P., A.H. Brouwers, E.T.M. Dams, W.J.G. Oyen, G. Storm, N. van Rooijen, F.H.M. Corstens, and O.C. Boerman, Preclinical and clinical evidence for disappearance of long-circulating characteristics of polyethylene glycol liposomes at low lipid dose. Journal of Pharmacology and Experimental Therapeutics,2000.293(3):p.996-1001.
    [11]Ishida, T., T. Ichikawa, M. Ichihara, Y. Sadzuka, and H. Kiwada, Effect of the physicochemical properties of initially injected liposomes on the clearance of subsequently injected PEGylated liposomes in mice. Journal of Controlled Release,2004.95(3):p.403-412.
    [12]Parrott, M.C. and J.M. DeSimone, Drug delivery:Relieving PEGylation. Nature Chemistry,2011.4(1):p.13-14.
    [13]Houk, K., A.G. Leach, S.P. Kim, and X. Zhang, Binding Affinities of Host-Guest, Protein-Ligand, and Protein-Transition-State Complexes. Angewandte Chemie International Edition,2003.42(40):p.4872-4897.
    [14]Furness, E., A. Ross, T. Davis, and G. King, A hydrophobic interaction site for lysozyme binding to polyethylene glycol and model contact lens polymers. Biomaterials,1998.19(15):p.1361-1369.
    [15]Bromberg, L., Salt-mediated miscibility of proteins and polymers. The Journal of Physical Chemistry,1994.98(41):p.10628-10633.
    [16]Carter, D.C. and J.X. Ho, Structure of serum albumin. Advances in protein chemistry,1994.45:p.153-204.
    [17]Mandeville, J. and H. Tajmir-Riahi, Complexes of dendrimers with bovine serum albumin. Biomacromolecules,2010.11(2):p.465-472.
    [18]Rezaei Behbehani, G., A. Divsalar, A. Saboury, and A. Hekmat, A thermodynamic study on the binding of PEG-stearic acid copolymer with lysozyme. Journal of solution chemistry,2009.38(2):p.219-229.
    [19]Hoq, M.I., K. Mitsuno, Y. Tsujino, T. Aoki, and H.R. Ibrahim, Triclosan-lysozyme complex as novel antimicrobial macromolecule:A new potential of lysozyme as phenolic drug-targeting molecule. International journal of biological macromolecules,2008.42(5):p.468-477.
    [20]Blake, C., D. Koenig, G. Mair, A. North, D. Phillips, and V. Sarma, Structure of hen egg-white lysozyme, a three dimensional fourier synthesis at 2-Angstroms resolution. Nature,1965.206(4986):p.757-761.
    [21]Takahashi, K., X.F. Lou, Y. Ishii, and M. Hattori, Lysozyme-glucose stearic acid monoester conjugate formed through the Maillard reaction as an antibacterial emulsifier. Journal of agricultural and food chemistry,2000. 48(6):p.2044-2049.
    [22]Parrot, J.L. and G. Nicot, Antihistaminic action of lysozyme. Nature,1963.197: p.496.
    [23]Ragi, C., M. Sedaghat-Herati, A.A. Ouameur, and H. Tajmir-Riahi, The effects of poly (ethylene glycol) on the solution structure of human serum albumin. Biopolymers,2005.78(5):p.231-236.
    [24]Pico, G., G. Bassani, B. Farruggia, and B. Nerli, Calorimetric investigation of the protein-flexible chain polymer interactions and its relationship with protein partition in aqueous two-phase systems. International journal of biological macromolecules,2007.40(3):p.268-275.
    [25]Bloustine, J., T. Virmani, G. Thurston, and S. Fraden, Light scattering and phase behavior of lysozyme-poly (ethylene glycol) mixtures. Physical review letters,2006.96(8):p.87803.
    [26]Wu, J. and S. Chen, Investigation of the Hydration of Nonfouling Material Poly(ethylene glycol) by Low-Field Nuclear Magnetic Resonance. Langmuir, 2012.28(4):p.2137-2144.
    [27]Zimmerman, J.R. and W.E. Brittin, Nuclear Magnetic Resonance Studies in Multiple Phase System-Lifetime of a Water Molecule in an Adsorbing Phase on Silica Gel. Journal of Physical Chemistry,1957.61(10):p.1328-1333.
    [28]Zhong, W., Y. Wang, J.S. Yu, Y. Liang, K. Ni, and S. Tu, The interaction of human serum albumin with a novel antidiabetic agent—SU-118. Journal of pharmaceutical sciences,2004.93(4):p.1039-1046.
    [1]Cheng, Z. and Y. Zhang, Fluorometric investigation on the interaction of oleanolic acid with bovine serum albumin. Journal of molecular structure, 2008.879(1):p.81-87.
    [2]Lee, J.C. and L.L. Lee, Interaction of calf brain tubulin with poly (ethylene glycols). Biochemistry,1979.18(24):p.5518-5526.
    [3]Zalipsky, S., Functionalized poly (ethylene glycols) for preparation of biologically relevant conjugates. Bioconjugate chemistry,1995.6(2):p.150-165.
    [4]Francis, G., D. Fisher, C. Delgado, F. Malik, A. Gardiner, and D. Neale, PEGylation of cytokines and other therapeutic proteins and peptides:the importance of biological optimisation of coupling techniques. International journal of hematology,1998.68(1):p.1-18.
    [5]Bergstrom, K., K. Holmberg, A. Safranj, A.S. Hoffman, M.J. Edgell, A. Kozlowski, B.A. Hovanes, and J.M. Harris, Reduction of fibrinogen adsorption on PEG-coated polystyrene surfaces. Journal of biomedical materials research,1992.26(6):p.779-790.
    [6]Gref, R., A. Domb, P. Quellec, T. Blunk, R. Muller, J. Verbavatz, and R. Langer, The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Advanced drug delivery reviews,1995. 16(2):p.215-233.
    [7]Hansson, K.M., S. Tosatti, J. Isaksson, J. Wettero, M. Textor, T.L. Lindahl, and P. Tengvall, Whole blood coagulation on protein adsorption-resistant PEG and peptide functionalised PEG-coated titanium surfaces. Biomaterials, 2005.26(8):p.861-872.
    [8]Roosjen, A., H.C. van der Mei, H.J. Busscher, and W. Norde, Microbial adhesion to poly (ethylene oxide) brushes:influence of polymer chain length and temperature. Langmuir,2004.20(25):p.10949-10955.
    [9]Zalipsky, S. and J. Milton Harris. Introduction to chemistry and biological applications of poly (ethylene glycol). in ACS Symposium Series.1997:ACS Publications.
    [10]Cunningham-Rundles, C., Z. Zhuo, B. Griffith, and J. Keenan, Biological activities of polyethylene-glycol immunoglobulin conjugates resistance to enzymatic degradation. Journal of immunological methods,1992.152(2):p. 177-190.
    [11]Fuertges, F. and A. Abuchowski, The clinical efficacy of poly (ethylene glycol)-modified proteins. Journal of controlled release,1990.11(1):p.139-148.
    [12]Chapman, A.P., PEGylated antibodies and antibody fragments for improved therapy:a review. Advanced drug delivery reviews,2002.54(4):p.531-545.
    [13]Scott, M.D. and K.L. Murad, Cellular camouflage:fooling the immune system with polymers. Current pharmaceutical design,1998.4(6):p.423-438.
    [14]Webb, M.S., D. Saxon, F.M. Wong, H.J. Lim, Z. Wang, M.B. Bally, L.S. Choi, P.R. Cullis, and L.D. Mayer, Comparison of different hydrophobic anchors conjugated to poly (ethylene glycol):effects on the pharmacokinetics of liposomal vincristine. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1998.1372(2):p.272-282.
    [15]Du, H., P. Chandaroy, and S.W. Hui, Grafted poly-(ethylene glycol) on lipid surfaces inhibits protein adsorption and cell adhesion. Biochimica et Biophysica Acta (BBA)-Biomembranes,1997.1326(2):p.236-248.
    [16]Veronese, F.M. and G. Pasut, PEGylation, successful approach to drug delivery. Drug discovery today,2005.10(21):p.1451-1458.
    [17]Jeon, S.I., J.H. Lee, J.D. Andrade, and P.G. De Gennes, Protein-surface interactions in the presence of polyethylene oxide:I. Simplified theory. Journal of Colloid and Interface Science,1991.142(1):p.149-158.
    [18]Szleifer, I., Protein adsorption on surfaces with grafted polymers:a theoretical approach. Biophysical Journal,1997.72(2):p.595-612.
    [19]Leckband, D., S. Sheth, and A. Halperin, Graftedpoly(ethylene oxide) brushes as nonfouling surface coatings. Journal of Biomaterials Science, Polymer Edition,1999.10:p.1125-1147.
    [20]Prime, K.L. and G.M. Whitesides, Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide):a model system using self- assembled monolayers. Journal of the American Chemical Society,1993. 115(23):p.10714-10721.
    [21]Rosenhahn, A., S. Schilp, H.J.A.r. Kreuzer, and M. Grunze, The role of inert surface chemistry in marine biofouling prevention. Physical Chemistry Chemical Physics,2010.12(17):p.4275-4286.
    [22]Harder, P., M. Grunze, R. Dahint, G.M. Whitesides, and P.E. Laibinis, Molecular conformation in oligo (ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption. Journal of Physical Chemistry. B,1998.102(2):p.426-436.
    [23]Ostuni, E., R.G. Chapman, R.E. Holmlin, S. Takayama, and G.M. Whitesides, A sun'ey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir,2001.17(18):p.5605-5620.
    [24]Shao, Q., Y. He, A.D. White, and S. Jiang, Different effects of zwitterion and ethylene glycol on proteins. The Journal of chemical physics,2012.136(22):p. 225101.
    [25]Gref, R., M. Luck, P. Quellec, M. Marchand, E. Dellacherie, S. Harnisch, T. Blunk, and R. Muller,'Stealth'corona-core nanoparticles surface modified by polyethylene glycol (PEG):influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids and Surfaces B:Biointerfaces,2000.18(3):p. 301-313.
    [26]Kaminskas, L.M., B.J. Boyd, P. Karellas, G.Y. Krippner, R. Lessene, B. Kelly, and C.J. Porter, The impact of molecular weight and PEG chain length on the systemic pharmacokinetics of PEGylated poly 1-lysine dendrimers. Molecular pharmaceutics,2008.5(3):p.449-463.
    [27]Jeon, S., J. Lee, J. Andrade, and P. De Gennes, Protein—surface interactions in the presence of polyethylene oxide:I. Simplified theory. Journal of Colloid and Interface Science,1991.142(1):p.149-158.
    [28]Jeon, S. and J. Andrade, Protein—surface interactions in the presence of polyethylene oxide:Ⅱ. Effect of protein size. Journal of Colloid and Interface Science,1991.142(1):p.159-166.
    [29]Chen, S., J. Zheng, L. Li, and S. Jiang, Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption:insights into nonfouling properties of zwitterionic materials. Journal of the American Chemical Society,2005.127(41):p.14473-14478.
    [30]Chen, S., L. Li, C. Zhao, and J. Zheng, Surface hydration:Principles and applications toward low-fouling/nonfouling biomaterials. Polymer,2010. 51(23):p.5283-5293.
    [31]Zheng, J., L. Li, S. Chen, and S. Jiang, Molecular simulation study of water interactions with oligo (ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir,2004.20(20):p.8931-8938.
    [32]Hankett, J.M., Y. Liu, X. Zhang, C. Zhang, and Z. Chen, Molecular level studies of polymer behaviors at the water interface using sum frequency generation vibrational spectroscopy. Journal of Polymer Science Part B: Polymer Physics,2013.51(5):p.311-328.
    [33]Cheng, X., H.E. Canavan, D.J. Graham, D.G. Castner, and B.D. Ratner, Temperature dependent activity and structure of adsorbed proteins on plasma polymerized N-isopropyl acrylamide. Biointerphases,2006.1(1):p.61-72.
    [34]Zhao, C, J. Zhao, X. Li, J. Wu, S. Chen, Q. Chen, Q. Wang, X. Gong, L. Li, and J. Zheng, Probing structure-antifouling activity relationships of polyacrylamides and poly acrylates. Biomaterials,2013.34(20):p.4714-4724.
    [35]Zhao, C. and J. Zheng, Synthesis and characterization of poly(N-hydroxyethylacrylamide) for long-term antifouling ability. Biomacromolecules, 2011.12(11):p.4071-4079.
    [36]Zhao, C, L. Li, Q. Wang, Q. Yu, and J. Zheng, Effect of film thickness on the antifouling performance of poly (hydroxy functional methacrylates) grafted surfaces. Langmuir,2011.27(8):p.4906-4913.
    [37]Zhao, C, L. Li, and J. Zheng, Achieving highly effective nonfouling performance for surface-grafted poly(HPMA) via atom-transfer radical polymerization. Langmuir,2010.26(22):p.17375-17382.
    [38]Liu, Q., A. Singh, R. Lalani, and L. Liu, Ultralow fouling polyacrylamide on gold surfaces via surface-initiated atom transfer radical polymerization. Biomacromolecules,2012.13(4):p.1086-1092.
    [39]He, Y., J. Hower, S. Chen, M.T. Bernards, Y. Chang, and S. Jiang, Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water. Langmuir,2008.24(18): p.10358-10364.
    [40]Hoffman, A.S., Non-fouling surface technologies. Journal of Biomaterials Science, Polymer Edition,1999.10(10):p.1011-1014.
    [41]Morisaku, T., J. Watanabe, T. Konno, M. Takai, and K. Ishihara, Hydration of phosphorylcholine groups attached to highly swollen polymer hydrogels studied by thermal analysis. Polymer,2008.49(21):p.4652-4657.
    [42]Chang, Y., W. Yandi, W.-Y. Chen, Y.-J. Shih, C.-C. Yang, Y. Chang, Q.-D. Ling, and A. Higuchi, Tunable bioadhesive copolymer hydrogels of thermoresponsive poly(N-isopropyl acrylamide) containing zwitterionic polysulfobetaine. Biomacromolecules,2010.11(4):p.1101-1110.
    [43]Lin, W., H. Zhang, J. Wu, Z. Wang, H. Sun, J. Yuan, and S. Chen, A novel zwitterionic copolymer with a short poly (methyl acrylic acid) block for improving both conjugation and separation efficiency of a protein without losing its bioactivity. Journal of Materials Chemistry B,2013.1(19):p.2482-2488.
    [44]Pop-Georgievski, O., C. Rodriguez-Emmenegger, A. de los Santos Pereira, V. Proks, E. Brynda, and F. Rypacek, Biomimetic non-fouling surfaces:extending the concepts. Journal of Materials Chemistry B,2013.1(22):p.2859-2867.
    [45]Gaberc-Porekar, V., I. Zore, B. Podobnik, and V. Menart, Obstacles and pitfalls in the PEGylation of therapeutic proteins. Current opinion in drug discovery & development,2008.11(2):p.242.
    [46]Hammes, G.G. and P.R. Schimmel, An investigation of water-urea and water-urea-polyethylene glycol interactions. Journal of the American Chemical Society,1967.89(2):p.442-446.
    [47]Parrott, M.C. and J.M. DeSimone, Drug delivery:relieving PEGylation. Nature Chemistry,2011.4(1):p.13-14.
    [48]Cao, Z. and S. Jiang, Super-hydrophilic zwitterionic poly (carboxybetaine) and amphiphilic non-ionic poly (ethylene glycol) for stealth nanoparticles. Nano Today,2012:p.404-413.
    [49]Shao, Q., A.D. White, and S. Jiang, Difference of Carboxybetaine and Oligo (Ethylene Glycol) Moieties in Altering Hydrophobic Interactions:a Molecular Simulation Study. The Journal of Physical Chemistry B,2013:p.189-194.
    [50]Keefe, A.J. and S. Jiang, Poly (zwitterionic) protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nature Chemistry, 2011.4(1):p.59-63.
    [51]Israelachvili, J., The different faces of poly (ethylene glycol). Proceedings of the National Academy of Sciences,1997.94(16):p.8378-8379.
    [52]Privalov, P.L. and S.J. Gill, Stability of protein structure and hydrophobic interaction. Advances in protein chemistry,1988.39:p.191-234.
    [53]Zhou, H.X., Protein folding and binding in confined spaces and in crowded solutions. Journal of Molecular Recognition,2004.17(5):p.368-375.
    [54]Chi, E.Y., S. Krishnan, T.W. Randolph, and J.F. Carpenter, Physical stability of proteins in aqueous solution:mechanism and driving forces in nonnative protein aggregation. Pharmaceutical research,2003.20(9):p.1325-1336.
    [55]Wei, Z. and J. Song, Molecular mechanism underlying the thermal stability and pH-induced unfolding of CHABII. Journal of molecular biology,2005. 348(1):p.205-218.
    [56]Liu, J. and J. Song, NMR evidence for forming highly populated helical conformations in the partially folded hNck2 SH3 domain. Biophysical journal, 2008.95(10):p.4803-4812.
    [57]Furness, E., A. Ross, T. Davis, and G. King, A hydrophobic interaction site for lysozyme binding to polyethylene glycol and model contact lens polymers. Biomaterials,1998.19(15):p.1361-1369.
    [58]Wu, J., Z. Wang, W. Lin, and S. Chen, Investigation of the interaction between poly (ethylene glycol) and protein molecules using low field nuclear magnetic resonance. Acta biomaterialia,2013.9(5):p.6414-6420.
    [59]Wu, J., C. Zhao, R. Hu, W. Lin, Q. Wang, J. Zhao, S.M. Bilinovich, T.C. Leeper, L. Li, and H.M. Cheung, Probing the weak interaction of proteins with neutral and zwitterionic antifouling polymers. Acta biomaterialia,2014. 10(2):p.751-760.
    [1]Totrov, M. and R. Abagyan, Flexible protein-ligand docking by global energy optimization in internal coordinates. Proteins Structure Function and Genetics, 1997.29(s1):p.215-220.
    [2]Looger, L.L., M.A. Dwyer, J.J. Smith, and H.W. Hellinga, Computational design of receptor and sensor proteins with novel functions. Nature,2003. 423(6936):p.185-190.
    [3]Watanabe, N., P. Madaule, T. Reid, T. Ishizaki, G. Watanabe, A. Kakizuka, Y. Saito, K. Nakao, B.M. Jockusch, and S. Narumiya, pl40mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. The EMBO journal,1997.16(11):p.3044-3056.
    [4]Wang, W., O. Donini, C.M. Reyes, and P.A. Kollman, Biomolecular simulations:recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annual review of biophysics and biomolecular structure,2001.30(1):p.211-243.
    [5]Ruoslahti, E. and M.D. Pierschbacher, New perspectives in cell adhesion: RGB and integrins. Science,1987.238(4826):p.491-497.
    [6]Stolnik, S., S.E. Dunn, M.C. Garnett, M.C. Davies, A.G. Coombes, D. Taylor, M. Irving, S. Purkiss, T.F. Tadros, and S.S. Davis, Surface modification of poly (lactide-co-glycolide) nanospheres by biodegradable poly (lactide)-poly (ethylene glycol) copolymers. Pharmaceutical research,1994.11(12):p.1800-1808.
    [7]Keefe, A.J. and S. Jiang, Poly (zwitterionic) protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nature Chemistry, 2011.4:p.59-63.
    [8]Jiang, S. and Z. Cao, Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications. Advanced Materials,2010.22(9):p.920-932.
    [9]Ishihara, K., K. Fukumoto, Y. Iwasaki, and N. Nakabayashi, Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 2. Protein adsorption and platelet adhesion. Biomaterials, 1999.20(17):p.1553-1559.
    [10]Liu, S., J.T. Kim, and S. Kim, Effect of polymer surface modification on polymer-protein interaction via hydrophilic polymer grafting. Journal of food science,2008.73(3):p. E143-E150.
    [11]Baszkin, A. and D.J. Lyman, The interaction of plasma proteins with polymers. I. Relationship between polymer surface energy and protein adsorption/desorption. Journal of biomedical materials research,1980.14(4): p.393-403.
    [12]Knoll, D. and J. Hermans, Polymer-protein interactions. Comparison of experiment and excluded volume theory. Journal of Biological Chemistry, 1983.258(9):p.5710-5715.
    [13]Yin, L., Z. Zhao, Y. Hu, J. Ding, F. Cui, C. Tang, and C. Yin, Polymer-protein interaction, water retention, and biocompatibility of a stimuli-sensitive superporous hydrogel containing interpenetrating polymer networks. Journal of applied polymer science,2008.108(2):p.1238-1248.
    [14]Holmlin, R.E., X. Chen, R.G. Chapman, S. Takayama, and G.M. Whitesides, Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir,2001.17(9):p.2841-2850.
    [15]Ladd, J., Z. Zhang, S. Chen, J.C. Hower, and S. Jiang, Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules,2008.9(5):p.1357-1361.
    [16]Chen, S., L. Liu, and S. Jiang, Strong resistance of oligo (phosphorylcholine) self-assembled monolayers to protein adsorption. Langmuir,2006.22(6):p. 2418-2421.
    [17]Aguilar, M.R., A. Gallardo, L.M. Lechuga, A. Calle, and J. San Roman, Modulation of proteins adsorption onto the surface of chitosan complexed with anionic copolymers. Real time analysis by surface plasmon resonance. Macromolecular bioscience,2004.4(7):p.631-638.
    [18]Zhao, C., L. Li, Q. Wang, Q. Yu, and J. Zheng, Effect of film thickness on the antifouling performance of poly(hydroxy-functional methacrylates) grafted surfaces. Langmuir,2011.27(8):p.4906-4913.
    [19]Yang, W., S. Chen, G. Cheng, H. Vaisocherova, H. Xue, W. Li, J. Zhang, and S. Jiang, Film thickness dependence of protein adsorption from blood serum and plasma onto poly (sulfobetaine)-grafted surfaces. Langmuir,2008.24(17): p.9211-9214.
    [20]Jeon, S.I., J.H. Lee, J.D. Andrade, and P.G. Degennes, Protein Surface Interactions in the Presence of Polyethylene Oxide.1. Simplified Theory. Journal of Colloid and Interface Science,1991.142(1):p.149-158.
    [21]Szleifer, I., Protein adsorption on surfaces with grafted polymers:a theoretical approach. Biophysical Journal,1997.72(2):p.595-612.
    [22]Irvine, D., A. Mayes, S. Satija, J. Barker, S. Sofia-Allgor, and L. Griffith, Comparison of tethered star and linear poly (ethylene oxide) for control of biomaterials surface properties. Journal of biomedical materials research, 1998.40(3):p.498-509.
    [23]Gombotz, W.R., W. Guanghui, T.A. Horbett, and A.S. Hoffman, Protein adsorption to poly (ethylene oxide) surfaces. Journal of biomedical materials research,2004.25(12):p.1547-1562.
    [24]Keefe, A.J. and S. Jiang, Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nature Chemistry, 2012.4(1):p.59-63.
    [25]Cheng, G., Z. Zhang, S. Chen, J.D. Bryers, and S. Jiang, Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials,2007.28(29):p.4192-4199.
    [26]Jiang, S. and Z. Cao, Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Materials,2010.22(9):p.920-932.
    [27]Chen, S., L. Li, C. Zhao, and J. Zheng, Surface hydration:Principles and applications toward low-fouling/nonfouling biomaterials. Polymer,2010. 51(23):p.5283-5293.
    [28]Zhao, C., L. Li, M. Guo, and J. Zheng, Functional polymer thin films designed for antifouling materials and biosensors. Chemical Papers,2012.66(5):p. 323-339.
    [29]Greenwald, R.B., Y.H. Choe, J. McGuire, and C.D. Conover, Effective drug delivery by PEGylated drug conjugates. Advanced drug delivery reviews, 2003.55(2):p.217-250.
    [30]Chapman, A.P., PEGylated antibodies and antibody fragments for improved therapy:a review. Advanced drug delivery reviews,2002.54(4):p.531-545.
    [31]Lin, W., H. Zhang, J. Wu, Z. Wang, H. Sun, J. Yuan, and S. Chen, A novel zwitterionic copolymer with a short poly(methyl acrylic acid) block for improving both conjugation and separation efficiency of a protein without losing its bioactivity. J. Materials Chemistry B,2013.1(19):p.2482-2488.
    [32]Tagami, T., Y. Uehara, N. Moriyoshi, T. Ishida, and H. Kiwada, Anti-PEG IgM production by siRNA encapsulated in a PEGylated lipid nanocarrier is dependent on the sequence of the siRNA. Journal of Controlled Release,2011. 151(2):p.149-154.
    [33]Wu, J., Z. Wang, W. Lin, and S. Chen, Investigation of the interaction between poly (ethylene glycol) and protein molecules using low field nuclear magnetic resonance. Acta Biomaterialia,2013.9(5):p.6414-6420.
    [34]Bernards, M.T., G. Cheng, Z. Zhang, S. Chen, and S. Jiang, Nonfouling polymer brushes via surface-initiated, two-component atom transfer radical polymerization. Macromolecules,2008.41(12):p.4216-4219.
    [35]Wu, J., W. Lin, Z. Wang, S. Chen, and Y. Chang, Investigation of the hydration of nonfouling material poly (sulfobetaine methacrylate) by low-field nuclear magnetic resonance. Langmuir,2012.28(19):p.7436-7441.
    [36]Furness, E.L., A. Ross, T.P. Davis, and G.C. King, A hydrophobic interaction site for lysozyme binding to polyethylene glycol and model contact lens polymers. Biomaterials,1998.19(15):p.1361-1369.
    [37]Israelachvili, J., The different faces of poly (ethylene glycol). Proceedings of the National Academy of Sciences,1997.94(16):p.8378-8379.
    [38]Ragi, C, M. Sedaghat-Herati, A.A. Ouameur, and H. Tajmir-Riahi, The effects of poly (ethylene glycol) on the solution structure of human serum albumin. Biopolymers,2005.78(5):p.231-236.
    [39]Bloustine, J., T. Virmani, G. Thurston, and S. Fraden, Light scattering and phase behavior of lysozyme-poly (ethylene glycol) mixtures. Physical review letters,2006.96(8):p.087803.
    [40]Qu, P., Y. Wang, G. Wu, Z. Lu, and M. Xu, Effect of polyethylene glycols on the alkaline-induced molten globule intermediate of bovine serum albumin. Inter. J. Biological Macromolecules,2012.51(1-2):p.97-104.
    [41]Sen, D. and D.K. Mandal, Pea lectin unfolding reveals a unique molten globule fragment chain. Biochimie,2011.93(3):p.409-417.
    [42]Furness, E., A. Ross, T. Davis, and G. King, A hydrophobic interaction site for lysozyme binding to polyethylene glycol and model contact lens polymers. Biomaterials,1998.19(15):p.1361-1369.
    [43]Redfield, C. and C.M. Dobson, Sequential proton NMR assignments and secondary structure of hen egg white lysozyme in solution. Biochemistry,1988. 27(1):p.122-136.
    [1]Lin, W., J. Zhang, Z. Wang, and S. Chen, Development of robust biocompatible silicone with high resistance to protein adsorption and bacterial adhesion. Acta biomaterialia,2011.7(5):p.2053-2059.
    [2]Marion, K., J. Freney, G. James, E. Bergeron, F. Renaud, and J. Costerton, Using an efficient biofilm detaching agent:an essential step for the improvement of endoscope reprocessing protocols. Journal of Hospital Infection,2006.64(2):p.136-142.
    [3]Ratner, B.D. and S.J. Bryant, Biomaterials:where we have been and where we are going. Annu. Rev. Biomed. Eng.,2004.6:p.41-75.
    [4]Fujishita, S., C. Inaba, S. Tada, M. Gemmei-Ide, H. Kitano, and Y. Saruwatari, Effect of zwitterionic polymers on wound healing. Biological & pharmaceutical bulletin,2008.31(12):p.2309.
    [5]Yang, W., H. Xue, L.R. Carr, J. Wang, and S. Jiang, Zwitterionic poly (carboxybetaine) hydrogels for glucose biosensors in complex media. Biosensors and Bioelectronics,2011.26(5):p.2454-2459.
    [6]Wu, J., W. Lin, Z. Wang, S. Chen, and Y. Chang, Investigation of the hydration of nonfouling material poly (sulfobetaine methacrylate) by low-field nuclear magnetic resonance. Langmuir,2012.28(19):p.7436-7441.
    [7]Wu, J. and S. Chen, Investigation of the Hydration ofNonfouling Material Poly(ethylene glycol) by Low-Field Nuclear Magnetic Resonance. Langmuir, 2012.28(4):p.2137-2144.
    [8]Wu, J., Z. Wang, W. Lin, and S. Chen, Investigation of the interaction between poly (ethylene glycol) and protein molecules using low field nuclear magnetic resonance. Acta biomaterialia,2013.9(5):p.6414-6420.
    [9]Wu, J., C. Zhao, R. Hu, W. Lin, Q. Wang, J. Zhao, S.M. Bilinovich, T.C. Leeper, L. Li, and H.M. Cheung, Probing the weak interaction of proteins with neutral and zwitterionic antifouling polymers. Acta biomaterialia,2014. 10(2):p.751-760.
    [10]Wu, J., C. Zhao, W. Lin, R. Hu, Q. Wang, H. Chen, L. Li, S. Chen, and J. Zheng, Binding Characteristics between Polyethylene Glycol (PEG) and Proteins in Aqueous Solution. Journal of Materials Chemistry B,2014.
    [11]Yang, W., T. Bai, L.R. Carr, A J. Keefe, J. Xu, H. Xue, C.A. Irvin, S. Chen, J. Wang, and S. Jiang, The effect of lightly crosslinked poly(carboxybetaine) hydrogel coating on the performance of sensors in whole blood. Biomaterials, 2012.33(32):p.7945-7951.
    [12]Bhattarai, N., H.R. Ramay, J. Gunn, F.A. Matsen, and M. Zhang, PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. Journal of Controlled Release,2005.103(3):p.609-624.
    [13]Morisaku, T., J. Watanabe, T. Konno, M. Takai, and K. Ishihara, Hydration of phosphorylcholine groups attached to highly swollen polymer hydrogels studied by thermal analysis. Polymer,2008.49(21):p.4652-4657.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700