10(?)高岭石水合物的合成及其结构、形貌的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于天然埃洛石在自然界中分布不均匀、赋存少、开采条件差,而且不同地区间形貌差异较大,因此Costanzo提出用高岭石来合成10?-埃洛石—即10?高岭石水合物。在常见的Costanzo法和Raythatha法中最明显的差别在于是否添加了氟化铵。为了解释这个差异并进一步理解高岭石水合机理,本文中细化对比了两种方法的各个步骤,结果发现水合过程的各个因素对两种方法的影响类似,但Costanzo法生成了更多的其他物质,而且氟化铵量越多水合物产率越小;同时根据氟置换层间羟基的模拟结果,认为水合过程中氟化铵的加入是不必要的;得到了目前实验范围内的最佳工艺,制备出了产率为91%的10?高岭石水合物。
     通过KD分别与甲醇、水作用的研究,以及前面两种方法的实验结果提出了高岭石的水合机理:即KD复合物层间的DMSO分子有至少三种类型,各型分子所受的高岭石片层限制和脱除速率不同,而且由于DMSO和甲醇与水的亲和力的明显不同,所以KD在和他们依次作用时能够形成水分子在层间的吸附,进而在高岭石塌陷时形成了水分子承担层间距的新结构,即形成了10?水合物。
     为了研究10?高岭石水合物的结构,利用分子动力学方法对层间水分子排布进行了模拟,结果发现除了I型洞水和II型连接水外还存在层间垂直分布的III型水分子,而且这些分子在层间主要以I—III、II—III型交替排列为主。通过对10?高岭石水合物形貌的观察,不仅发现了沿片状颗粒一侧的卷曲、沿相对两侧的卷曲,还发现了沿相邻两侧的卷曲;进一步的衍射结果表明这些卷曲中包含有a、b轴方向以外的其它卷曲,通过分析得到所有这几种晶向发生卷曲的难易程度为[110]>[010]=[310]=[3-10]>[100]>[1-10]。
     通过对高岭石结构的分析澄清了几种结构无序的成因;通过对高岭石晶体中层间羟基氟置换的研究,得到了层间氢键削弱时结构无序的变化情况;通过对高岭石有限片层卷曲时结构无序变化的分析(第八章),得到这些结构无序的变化情况和周期性体系中类似,而且几种无序中四面体弯曲和四面体起皱起主要作用,所以认为Singh关于高岭石片层卷曲的解释在一定程度上是正确的。
     为了验证铁置换八面体铝能否引起埃洛石的平板化,对不同铁分数的三水铝石和高岭石进行了能量最小化模拟。结果发现铁置换分数存在极限范围,在这个范围内,计算得到的埃洛石管径随铁的增加而增加,表明铁置换确实能缓解1:1层的不匹配,铁置换对四面体旋转和弯曲的影响也表明了这一点,进而认为能否将自然界中的平板状埃洛石起因归结于铁置换的关键是铁置换是否容易发生。
     该论文有图110幅,表21个,参考文献252篇。
As the natural halloysite uneven distribution, less occurrence, poor mining conditions and large difference in morphology between different areas, Costanzo proposed to synthesize 10?-halloysite (viz. 10? kaolinite hydrate) from kaolinite. The most common methords of synthesizing hydrate are Costanzo method and Raythatha method, and the most obvious difference between them is whether ammonium fluoride will be added. In order to explain this difference and to further understand the mechanism of hydration of kaolinite, this work detailed and compared every step of two methods, it was found that every factor (except the quantity of ammonium fluoride) in the hydration process had similar impacts on two methods, but the Costanzo reaction generated more other products, and with the increase of ammonium fluoride, hydrate production decreased; according to the molecular simulation results author concluded that the adding of ammonium fluoride was not necessary in the hydration process of kaolinite; at the same time the optimum technics within the scope of the current experiment was gained to produce 10? hydrate with a yield high to 91%.
     Based on the study of the KD complex reaction with methanol and water respectively, and the results about two different methods, the hydration mechanism was proposed: DMSO molecules in KD complexe had at least three types, the restriction caused by kaolinite layers on each type and the speed removed from interlayer space were different, so water molecules would be absorbed on interlayer space, then the collapse of kaolinite layers stood by the interlayer water molecules resulting in a more stable 10? hydrate.
     In order to investigate the structure of 10? hydrate or 10?-halloysite, molcular dynamics method was used in simulating the arrangement of interlayer waters, the results showed that in addition to the hole water (type I) and connecting water (type II), there was also another water molecule, which almost keep vertical in interlayer space(type III); these three water molecules mainly arrange in I-III or II-III form alternately.
     By means of TEM observation, not only the curling along the single side, along the opposite sides were found, but also the curling along the adjacent sides,; further selected area diffraction analysis showed that the direction of these curling contain other orientations than a axis and b axis; the analysis of kaolinite structure revealed the degree of easiness to curl for all current orientations was [110]>[010] =[310] = [3-10 ]>[100]>[1-10].
     The cause of several disorders in kaolinite were clarified by means of analysizing of kaolinite structure; by means of study on the substitution of fluorine for interlayer hydroxyl in kaolinite crystal, the changing behavior of structure disorder was gained as the hydrogen bond was weakened; by means of analysizing the changing behavior of structure disorder in a single kaolinite layer the similar trend to the periodic system was gained for the changing of these disorders; tetrahedral bend and tetrahedral rotation might played the major roles in curling process, therefore author thought Singh's interpretation about the curling mechanism of kaolinite layer to be correct in some extent.
     In order to test whether the substitution Fe for octahedral Al would cause the flattening of curling halloysite, gibbsite and kaolinite with different content of Fe were studied with the energy minimization method. The result showed there was a limit range of Fe substitution, the calculated radius of halloysite increased with the improvement of Fe substitution in the range, which revealed Fe substitution for octahedral Al could alleviate the dismatch of kaolinite 1:1 layer certainly, and the affect of Fe substitution on tetrahedral rotation and tetrahedral corrudation also indicated this point. Thus author thought whether the flattening of halloysite could be attributed to iron substitution, the key was whether the substitution of iron was easy to happen.
     The dissertation includes 110 figures, 21 tables and 252 references.
引文
[1] Ada mo P., Violante P., Wilson M.J. Tubular and spheroidal halloysite in pyroclastic deposits in the area of the Roccamonfina volcano (southern Italy) [J]. Geoderma. 2001, 99: 295-316.
    [2] Adams J.M., Waltl G. Thermal decomposition of a kaolinite:dimethyl sulfoxide intercalate[J]. Clays and Clay Minerals. 1980,28:130-134.
    [3] Alberico A., Ferrando S., Ivaldi G., Ferraris G. X-ray single-crystal structure refinement of an OH-rich topaz from Sulu UHP terrane (Eastern China)– Structural foundation of the correlation between cell parameters and fluorine content[J]. European Journal of Mineralogy.. 2003, 15: 875-881.
    [4] Alexander L.T., Faust G.T., Hendricks S.B., Insley H., McMurdie H.F. Relationship of he clay minerals halloysite and endellite[J]. American Mineralogist, 1943, 28: 1-18.
    [5] Allen M.P., Tildesley, D.J. Computer simulation of liquids[M]. Clarendon Press/Oxford Science Publications: London. 1987.
    [6] Allinger N.L., Chen K., Lii J.-H. An improved force field (MM4) for saturated hydrocarbons[J]. Journal of Computational Chemistry, 1996. 17: 642-668.
    [7] Andersen, H. C. Molecular dynamics simulations at constant pressure and/or temperature[J]. Journal of Chemical Physics. 1980, 72: 2384-2393.
    [8] Aparicio P., Galan E. Mineralogical interference on kaolinite crystallinity index measurements [J]. Clays and Clay minerals 1999,47:12-27
    [9] Appelo C.A. Layer deformatioann and crystal energy of micas and related minerals.I. structural models for 1M and 2M1 polytypes[J]. American Mineralogist. 1978,63:782-792
    [10] Askenasy P. E., Dixon J. B., McKee T. R. Spheroidal halloysite in a Guatemalan soil[J]. Soil Science Society of America Proceedings. 1973,37:799-803.
    [11] Auzende A.L., Pellenq R. J. M., Devouard B., Baronnet A., Grauby O. Atomistic calculations of structural and elastic properties of serpentine minerals: the case of lizardite[J]. Physical Chemical Minerals. 2006,33:266-275.
    [12] Bailey S.W. Halloysite-a critical assessment. Farmer V.C., Tardy Y., editors. Surface Chemistry Structure and Mixed Layering of Clays[C]. Proceedings of the 9th International Clay Conference 1989. Strasbourg, France. Sciences Géologiques, Mémoire.86:89-98.
    [13] Bailey S.W. Summary of recommendations of AIPEA nomenclature committee on clay minerals[J]. American Mineralogist 1980, 65:1-7.
    [14] Baioumy H.M., Hassan M.S. Authigenic halloysite from El-Gideda iron ore, Bahria Oasis, Egypt: characterization and origin[J]. Clay Minerals. 2004, 39, 207-217.
    [15] Balan E., Lazzeri M., Morin G., Mauri F. First-principles study of the OH-stretching modes of gibbsite locality: hypothetical structure calculated with DFT[J]. American Mineralogist. 2006,91:115-119.
    [16] Banfield J.F., Eggleton R.A. Analytical transmission electron microscope studies of plagioclase, muscovite, and K-feldspar weathering[J]. Clays and Clay Minerals. 1990,38:77-89.
    [17] Baskaran S., Bolan N.S., Rahman N.A., Tillman R.W. Pesticide sorption by allophanic and non-allophanic soils of New Zealand[J]. New Zealand Journal of Agricultural Research, 1996, 39:297-310.
    [18] Bates T.E., Hildebrand F.A., Swineford A. Morphology and structure of endellite and halloysite [J]. American Mineralogist 1950, 35:463-484.
    [19] Bates T.F., Comer J. J. Further observations on the morphology of chrysotile and halloysite[J]. Clays and Clay Minerals. 1957, 6: 237-258.
    [20] Bates, T.E., Hildebrand, F.A., Swineford, A. Morphology and structure of endellite and halloysite [J]. American Mineralogist, 1950,35:463
    [21] Belokoneva, E.L., Smirnitskaya, Yu.Ya., Tsirel'son, V.G. Electron density distribution in topaz Al2[SiO4](F,OH)2 as determined from high-precision X-ray diffraction data[J]. Russian Journal of Inorganic Chemistry . 1993, 38: 1252-1256.
    [22] Ben Haj Amara A. X-ray diffraction, infrared and TGA/DTG analysis of hydrated nacrite[J]. Clay Minerals. 1997,32: 463-470
    [23] Berendsen H.J.C., Postma J. P. M., van Gunsteren W. F., Hermans, J. Interaction models for water in relation to protein hydration. In: Pullman, B., Reidel, D. Ed. Intermolecular Forces[M]: Amsterdam, 1981: 331-342
    [24] Berendsen H.J.C., Postma J. P. M., van Gunsteren W. F., DiNola A., Haak J. R. Molecular dynamics with coupling to an external bath[J], Journal of Chemical Physics. 1984, 81: 3684-3690.
    [25] Berthier P. Analyse de l’halloysite [J]. Annales de Chimie et de Physique 1826, 32: 332-335.
    [26] Birrell K.S., Fieldes M., Williamson K.I. Unsual forms of halloysite[J]. American Mineralogist. 1955, 40:122-124.
    [27] Bish D., Johnston C.T. Rietveld refinement and fourier-transform infrared spectroscopic study of the dickite structure at low temperature [J]. Clays and Clay Minerals 41:297-304.
    [28] Bish D. L. Rietveld refinement of the kaolinite structure at 1.5 K [J]. Clays and Clay Mineras, 1993,41:738-744.
    [29] Blount A.M., Threadgold I.M., Baileys W. Refinement of the crystal structure of nacrite[J]Clays and Clay Minerals, 1969, 17: 185
    [30] Bookin A.S., Drits V.A., Planc?on A., Tchoubar C. Stacking faults in kaolin-group minerals in the light of real structural features[J]. Clays and Clay Minerals 1989, 37:297-307.
    [31] Born M., Oppenheimer, J.R. Zur quantentheorie der molekeln[J]. Annalen der Physik. 1927, 84: 457-484.
    [32] Bougeard D., Smirnov K.S., Geidel. E. Vibrational Spectra and Structure of Kaolinite:A Computer Simulation Study[J]. Journal of Physical Chemistry B, 2000, 104: 9210-9217
    [33] Bradley W.F. Diagnostic criteria for clay minerals[J]. American Mineralogist 1945, 30:704-713
    [34] Brindley G.W. Kaolin, serpentine and kindred minerals 1961,51-131 in: X-ray identification and crystal structures of clay minerals (Brown G. editor)[M]. Mineralogical Society, London.
    [35] Brindley G.W. Order-disorder in clay mineral structures 1980,152-161 in: Crystal structures of clay minerals and their X-ray identification[M] (Brindley G. W. and Brown G. editors). Mineralogical Society, London.
    [36] Brindley G.W., Comer J.J. The structure and morphology of a kaolin clay form Les Eyzies (France) [J]. Clays and Clay Minerals 1955, 5: 61-66.
    [37] Brindley G.W., Pedro G. Meeting of the Nomenclature Committee of A.I.P.E.A., Mexico City, July 21, 1975. AIPEA Newsletter. 12, 5-6.
    [38] Brindley G.W., Googyear J. X-ray studies of halloysite and metahalloysite. Part II. The transition of halloysite to metahalloysite in relation to relative humidity [J]. Mineral Magzine 1948,28:407-422.
    [39] Brindley G.W. & Robinson K. Randomness in the structures of kaolinitic clay minerals[J]. Transactions of the Faraday Society, 1946, 42B: 198-205.
    [40] Brindley G.W., Brown G. Crystal structures of clay minerals and their X ray identification[M]. London: Mineralogical Society, 1982: 152-161
    [41] Brindley G.W., Nakahira M. Further consideration of the crystal structure of kaolinte[J]. Mineralogist Magazine., 1958, 31: 781
    [42] Brindley G.W., Robinson K. The structure of kaolinite. Mineral Magazine. 1946,27:242-253.
    [43] Brooks B.R., Bruccoleri R.E., Olfson B.D., States, D.J., Swaminathan S., Karplus M. Charmm: A program for macromolecular energy, minimization, and dynamics calculations[J]. Journal of Computational Chemistry. 1983, 4:187-217.
    [44] Burton W. Porcelain, a sketch of its nature, art and manufacture[J/OL]., Cassell & Company, Limitted, London, 1906. http://www.ceramicstoday.com/articles/entrecolles.htm
    [45] Busing W.R. Wmin, a computer program to model molecules and crystals in terms of potential energy functions[R]. Technical Report ORNL-5747, Oak Ridge National Laboratory, 1981.
    [46] Carson C.D., Kunze G.W. New occurrences of tabular halloysite[J]. Soil Science Society of America Proceedings. 1970,34: 538-540.
    [47] Christensen A.N., Lehmann M.S., Convert P. Deuteration of crystalline hydroxides, hydrogen bonds ofγ–AlOO(H,D) andγ–FeOO(H,D) [J]. Acta Chemica Scandinavica (A). 1982,36:303-308.
    [48] Chukhrov F.V.;Zvyagin B.B. In Halloysite, a crystallochemically and mineralogically distinct species[C]. Proceedings of the International Clay Conference, Jerusalem, Israel, Heller, L.;Weiss, A., Eds. Israel Program for Scientific Translation: Jerusalem, Israel, 1966;11-25.
    [49] Churchman G.J., Carr R.M. Dehydration of the washed potassium acetate complex of halloysite[J]. Clays and Clay Minerals. 1973, 21: 423-424.
    [50] Churchman G.J., Carr R.M. The definition and nomenclature of halloysites. Clays and Clay Minerals, 1975,23:382-388.
    [51] Churchman G.J., Aldridge L.P., Carr R.M. The relationship between the hydrated and dehydrated states of a halloysite[J]. Clays and Clay Minerals, 1972, 20: 241-246.
    [52] Churchman G.J., Davy T.J., Aylmore L.A.G., Gilkes R.J., Self P.G. (1995) Characteristics of fine pores in some halloysites[J]. Clay Minerals. 1995,30: 89-98.
    [53] Churchman G.J., Theng B.K.G. Interactions of halloysites with amides: Mineralogical factors affecting complex formation[J]. Clay Minerals, 1984, 19: 161-175..
    [54] Churchman, G. J. Interlayer water in halloysite [D]. Dunedin: University of Otago, 1970
    [55] Collins, D.R., Catlow, C.R. Computer simulation of structures and cohesive properties of micas[J]. American Mineralogist, 1992, 77: 1172-1181.
    [56] Costanzo P. M, Clemency C. V., Giese R. E. Jr. Low temperature synthesis of a 10-A hydrate of kaolinite using dimethylsulfoxide and ammonium fluoride[J]. Clays and Clay Minerals. 1980, 28: 155-156.
    [57] Costanzo P. M., Giese Jr. R. E. Dehydration of synthetic hydrated kaolinites: a model for the dehydration of halloysite(10 ?) [J]. Clays and Clay Minerals. 1985, 33:415-423.
    [58] Costanzo P. M., Giese R. E., Clemency C. V. Synthesis of a 10-A hydrated kaolinite[J]. Clays and Clay Minerals 1984,32:29-35.
    [59] Costanzo P. M., Giese R. F. and Lipsicas M. Static and dynamic structure of water in hydrated kaolinires I. The static structure[J]. Clays and Clay Minerals 1984, 32: 419-428.
    [60] Costanzo P. M., Giese R. F., Lipsicas M., and Straley C. Synthesis of a quasi-stable kaolinite and heat capacity of interlayer water[J]: Nature .1982, 296: 549-551.
    [61] Cruz M. I., Letellier M. and Fripiat J. J. NMR study of absorbed water. II. molecular motions in the monolayer hydrate of halloysite[J]. Journal of Chemical Physics. 1978, 69: 2018-2027.
    [62] Cygan RT., Liang J. J., Kalinichev A. G. Molecular models of hydroxide,Oxyhydroxide,and clay phase and development of a general force field[J]. Journal of Physical Chemistry: B, 2004, 108: 1255
    [63] Darden T., York D., Pedersen L. Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems[J]. Journal of Chemical Physics. 1993, 98: 10089–10092.
    [64] Dauber-Osguthorpe P., Roberts V. A., Osguthorpe D. J., Wolff J., Genest M., Hagler A. T. Structure and energetics of ligand binding to proteins: E. coli dihydrofolate reductase- trimethoprim, a drug-receptor system[J]. Proteins: Struct., Function Genetics, 1988,4, 31-47.
    [65] Davies J.A. The coordination chemistry of sulfoxides with transition metals. Advances in Inorganic Chemistry and Radiochemistry[M]. Emeléus,H.J., Sharpe A.J. Elsevier. 1981,24:115-174.
    [66] de Leeuw S.W., Perram J.W., Smith E.R. Simulation of electrostatic systems in periodic boundary conditions. I. lattice sums and dielectric constants[J]. Proceeding of The Royal Society of London. A. 1980, 373:27–56.
    [67] de Putter T., Andre? L., Bernard A., Dupuis C., Jedwab J., Nicaise D., Perruchot A. Trace element (Th, U, Pb, REE) behaviour in a crytokarstic halloysite and kaolinite deposit from Southern Belgium: importance of accessorymineral forma-tion for radioactive pollutant trapping[J]. Applied Geochemistry. 2002,17:1313-1328.
    [68] de Souza Santos P., Brindley G.W., de Souza Santos H. Mineralogical studies of kaolinite-hallolysite clays: part III. A fibrous kaolin mineral from Piedade, Sao Paulo, Brazil[J]. American Mineralogist. 1965,50: 619-628.
    [69] de Souza Santos P., de Souza Santos H., Brindley G.W. Mineralogical studies of kaolinite-hallolysite clays: part IV. A platy mineral with structural swelling and shrinking characteristics[J]. American Mineralogist. 1966, 51:1640-1648.
    [70] Delvaux B., Tessier D., Herbillon A.J., Burtin G., Jaunet A.M. & Vielvoye L. Morphology, texture, and microstructure of halloysitic soil clays as related to weathering and exchangeable cation[J]. Clays and Clay Minerals, 1992,40: 446-456.
    [71] Diamond S., Bloor J. W. Globular cluster microstructure of endellite (hydrated halloysite from Bedford, Indiana) [J]. Clays and Clay Minerals. 1970,18:309-312.
    [72] Diego Gatta G., Nestola F., Bromiley G D., Loose A New insight into crystal chemistry of topaz: A multi-methodological study[J]. American Mineralogist. 2006, 91: 1839-1846
    [73] Dixon J.B., McKee T.R. Internal and external morphology of tubular and spheroidal halloysite particles [J]. Clays and Clay Minerals. 1974,22: 127-137.
    [74] Donnay G., Morimoto N., Takeda H. Trioctahedral one-layer micas. II. Prediction of the structure from composition and cell dimensions[J]. Acta Crystallographica, 1964, 17: 1374-1381.
    [75] Dove M. T. On the computer modeling of diopside, toward a transferable potential for silicate minerals[J]. American Mineralogist., 1989, 74: 774-779
    [76] Ece ? I?ik,Schroeder, P. A. Clay mineralogy and chemistry of halloysite and alunite deposits in the Turplu area, Balikesir, Turkey[J]. Clays and Clay Minerals 2007,55:1– 18.
    [77] Eckold G., Stein-Arsic M., Weber H.J. Unisoft - a program package for lattice dynamical calculations[J]. Journal of Applied Crystallography. 1987, 20:134-139.
    [78] Edelman C. H., Favejee J. C. L. On the crystal structure of montmorillonite and halloysite[J]. Zeitschrift für Kristallographie 1940,102A:417-431.
    [79] Essmann U., Perera L., Berkowitz M. L., Darden T., Lee H., Pedersen L. G. A smooth particle mesh ewald potential[J]. Journal of Chemical Physics. 1995, 103:8577–8592.
    [80] Ewald P. P. Die Berechnung optischer und elektrostatischer Gitterpotentiale[J]. Annalen der Physik. 1921, 64: 253-287.
    [81] Faust G.T. The endellite-halloysite nomenclature[J]. American Mineralogist 1955, 40: 1110-1118.
    [82] Frost R.L, Kristof J., Paroz G. N., Kloprogge J.T. Molecular structure of dimethyl sulfoxide intercalated kaolinite[J]. Journal of Physical Chemistry,B. 1998,102: 8519-8532.
    [83] Gale, J. D. GULP: A computer program for the symmetry-added simulation[J]. Journal of the Chemical Society, Faraday Transactions, 1997, 93: 629-637
    [84] Gale J.D., Rohl A.L. The General Lattice Utility Program (GULP) [J]. Molecular Simulation. 2003, 29: 291-341.
    [85] Gardoliuski J.E., Wypych F., Caut?o M.P. Esfolia??o e hidrata??o da caulinita após intercala??o com uréia[J]. Quim. Nova, 2001,24: 761-767
    [86] Giese R.F., Kaolin minerals: structures and stabilities[J]. Reviews in Mineralogy and Geochemistry 1988, 19 (1): 29-66.
    [87] Grim R.E. Clay Mineralogy 2nd edition[M], McGraw-Hill Book Company, New York 1968,37-38.
    [88] Gualtieri A.F. Synthesis of sodium zeolites from a natural halloysite[J]. Physics andChemistry of Minerals, 2001, 28: 719-728.
    [89] Harding, J.H. A guide to midas[R]. Technical Report AERE-R13127, AERE Harwell Laboratory, 1988.
    [90] Harding, J.H. A guide to the harwell pluto program. Technical Report AERE-R10546, AERE Harwell Laboratory, 1982.
    [91] Harrison J.L., Greenberg S.S. Dehydration of fully hydrated halloysite from Lawrence County, Indiana[J]. Clays and Clay Minerals, 1962, 9: 374-377
    [92] Hazen R.M., Burnham, C.W. The crystal structure of one-layer phlogopite and annite[J]. American Mineralogist, 1973, 58: 889-900
    [93] Hazen R.M., Wones D.R. The effect of cation substitution in the physical parameters of trioctahedral micas[J]. American Mineralogist, 1972, 57: 103
    [94] Hendricks S.B. On the crystal structure of the clay minerals: Dickite, halloysite and hydrated halloysite[J]. American Mineralogist. 1938, 23:295-301.
    [95] Hendricks S.B., Jefferson M. E. Structures of kaolin and talc-pyrophyllite hydrates and their bearing on water sorption of the clays[J]. American Mineralogist. 1938, 23:863-875.
    [96] Henmi T., Wada K. Morphology and composition of allophone[J]. American Mineralogist. 1974,61:379-390.
    [97] Herron N., Thorn D.L., Harlow R.L., Jones G.A., Parises J.B., Fernandez-Baca J.A., Vogt T. Preparation and structural characterization of two new phase of aluminum trifluoride[J]. Chemistry of Materials. 1995, 7:75-83.
    [98] Hinckley D.N. Variability in“crystallinity”values among the kaolin deposits of Coastal Plain of Georgia and South Carolina[J]. Clays and Clay minerals 1963,11:229-235
    [99] Hockney R.W., Eastwood J.W. Computer simulation using particles[M]. New York: McGraw-Hill. 1981.
    [100] Hofmann U., Endell K., Wilm D. R?ntgenographische und kolloidchemische Untersuchungenüber Ton [J]. Angewandte Chemie 1934, 47:539-547.
    [101] Honjo G., Kitamura N., Mihama K. A study by means of single crystal electron diffraction diagrams-the structure of tubular[J]. Clay Minerals. 1954,2:133-140.
    [102] Honjo G., Mihama K. A study of clay minerals by electron-diffraction diagrams due to individual crystallites[J]. Acta Crystallographia. 1954,7:511-513.
    [103] Hoover, W. Canonical dynamics: Equilibrium phase-space distributions[J]. Physical Review. A. 1985, 31: 1695-1697.
    [104] Hope E. W., Kittrick J. A. Surface tension and the morphology of halloysite[J]. American Mineralogist. 1964, 49:859-866.
    [105] Hughes I.R. Mineral changes of halloysite on drying[J]. New Zealand Journal of Science, 1966, 9: 103-113.
    [106] Imbert T., Desprairies A. Neoformation of halloysite on volcanic glass in a marine environment[J].Clay Minerals. 1987, 22: 179-185.
    [107] Iriarte I., Petit S., Huertas F. J., Fiore S., Grauby O., Decarreau A., Linares J. Synthesis of kaolinite with a high level of Fe3+ for al substitution. Clays and Clay Minerals. 2005,53:1-10.
    [108] I?ik Ece ?., Schroeder Paul A. Clay mineralogy and chemistry of halloysite and alunite deposits in the Turplu area, Balikesir[J], Turkey. Clays and Clay Minerals 2007,55:18-35.
    [109] Jemai S., Ben Haj Amara A., Ben Brahim J., Plan?on A. Etude structurale d’un hydrates 10 ? instable de kaolinite[J]. Journal of Applied Crystallography. 2000, 33: 1075-1081
    [110] Jemai S., Ben Haj Amara A., Ben Brahim J., Plan?on A. Etude structurale par diffraction des RX et spectroscopie IR des hydrates 10 et 8.4 ? de kaolinite[J]. Journal of Applied Crystallography. 1999, 32: 968-976
    [111] Jeong G.Y., Kim S.J. Morphology of halloysite particles and aggregates in the weathering of anorthosite[J]. Journal of the Mineralogical Society of Korea, 1996,9: 64-70.
    [112] Johnson S.W., Blake M., On kaolinite and pholerite[J]. American Journal of Science 1867,43:351-361.
    [113] Jones R.C., Malik H.U. Analysis of minerals in oxide-rich soils by X-ray diffraction[C]. Quantitative Methods in Soil Mineralogy Proceedings of a Symposium of the Soil Science Society of America 1990. Soil Science Society of America Miscellaneous Pub., Madison, Wisconsin, USA. 1994: 296-329.
    [114] Joussein E., Petit S., Churchman J., Theng B., Righi D., Delvaux B. Halloysite clay minerals—a review[J]. Clay Minerals 2005,40: 383-426.
    [115] Kawano M., Tomita K. TEM-EDX study of weathered layers on the surface of volcanic glass, bytownite, and hypersthene in volcanic ash from Sakurajima volcano, Japan[J]. American Mineralogist. 2001, 86: 284-292.
    [116] Kirkman J.H. Possible structure of halloysite disks and cylinders observed in some New Zealand rhyolitic tephras[J]. Clay Minerals. 1977,12: 199-215.
    [117] Kirkpatrick, R.J., Kalinichev, A.G., Wang, J., Hou, X. Q., Amonette, J. E. Molecular modeling of the vibrational spectra of surface and interlayer species of layered double hydroxides and other layer-structure materials. In: Kloprogge, J. T. Ed. The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides[M]. Aurora CO.: The Clay Minerals Society, 2004: 239-285
    [118] Kohyama N., Fukushima K., Fukami A. Observation of the hydrated form of tubular halloysite by an electron microscope equipped with an environmental cell[J]. Clays and Clay Minerals. 1978,26:25-40.
    [119] Konstantin S.S., Daniel B.A molecular dynamics study of structure and short-time dynamics of water in kaolinite Journal of Physical Chemistry: B, 1999, 103: 5266
    [120] Kunze G.W., Bradley W.F. Occurence of a tabular halloysite in a Texas soil[J]. Clays and Clay Minerals 1964, 12: 523-528.
    [121] Kutsuna S., Chen L., Nohara K., Takeuchi K., Ibusuki T. Heterogeneous decomposition of CHF2OCH2CF3 and CHF2OCH2C2F5 over various standard aluminosilica clay minerals in air at 313 K[J]. Environmental Science and Technology, 2002, 36: 3118-3123
    [122] Lennard-Jones J. E. Cohesion[J]. Proceedings of the Physical Society. 1931,43:461
    [123] Leslie, M. Cascade[R]. Technical Report DLSCITM36T, Daresbury Laboratory, 1984.
    [124] Levis S.R., Deasy P.B. Use of coated microtubular halloysite for the sustained release of diltiazem hydrochloride and propranolol hydrochlor-ide[J]. International Journal of Pharmaceutics, 2003, 253: 145-157.
    [125] Levis S.R., Deasy P.B. Characterisation of halloysite for use as a microtubular drug delivery system. International Journal of Pharmaceutics[J], 2002, 243, 125-134.
    [126] Levitt M., Lifson S. Refinement of protein conformations using a macromolecular energy minimization procedure[J]. Journal of molecular biology. 1969, 46: 269-279.
    [127] Lifson S., Warshel A. Consistent Force Field for Calculations of Conformations, Vibrational Spectra, and Enthalpies of Cycloalkane and n-Alkane Molecules[J]. Journal of Chemical Physics. 1968,49: 5116-5129.
    [128] Lin J. C., Guggenheim S. The crystal structure of a Li,Be-rich brittle mica, a dioctahedral-trioctahedral intermediate[J]. American Mineralogist, 1983, 68: 130-142.
    [129] Lipsicas M., Raythatha R., Giese JR. R.F., Costanzo P.M. Molecular motions, surface interactions, and stacking disorder in kaolinite intercalates[J]. Clays and Clay Minerals. 1986, 34:635-644.
    [130] Lipsicas M., Straley C., Giese R. F., Costanzo P. M. Static and dynamic structure of water in hydrated kaolinites II. The dynamic structure[J]. Journal of colloid and interface science 1985,107: 221-230.
    [131] Li X.D., L X.C., Wan R.C., Zho H.Q., X S.J. Interlayer structure and dynamics of alkylammonium-intercalated smectites with and without water : a molecular dynamics study[J]. Clays and Clay Minerals., 2007, 55: 554-564.
    [132] Liu X.D., Lu X.C., Wang R.C., Zhou H.Q., Xu S.J. Molecular dynamics insight into thecointercalation of hexadecyltrimethyl-ammonium and acetate ions into smectites[J]. American Mineralogist., 2009, 94: 143-150
    [133] Loughnan F.C., Roberts F.I. The natural conversion of ordered kaolinite to halloysite (10 A) at Burning Mountain near Wingen, New South Wales[J]. American Mineralogist, 1981, 66: 997-1005.
    [134] Luty B.A., Tironi I.G., van Gunsteren W.F. Lattice-sum methods for calculating electrostatic interactions in molecular simulations[J]. Journal of Chemical Physics. 1995, 103: 3014–3021.
    [135] MacEwan D. M. C. The nomenclature of the halloysite minerals[J]. Mineralogical Magazine 1947, 28:36-44.
    [136] MacEwar D.M.C. Halloysite-organic complexes[J]. Nature, 1946, 57: 159-160.
    [137] Mayo S.L.;Olafson B.D., Goddard W. A. III. DREIDING: A generic forcefield[J], Journal of Physical Chemistry. 1990, 94: 8897-8909.
    [138] McKee T. R., Dixon, J. B., Whitehouse, U. G., and Harling, D.F. Study of Te Puke halloysite by a high resolution electron microscope[C]: Abstr. 31st Ann. Electron Microscopy Soc. of America Meeting, New Orleans, 1973: 200-201.
    [139] Mehmel M.über die Struktur von Halloysit und Metahalloysit? [J]. Zeischrift für Kristallographie 1935, 90:35-42.
    [140] Melchionna S., Ciccotti G., Holian B. L. Hoover NPT dynamics for systems varying in shape and size [J]. Molecular Physics. 1993, 78: 533
    [141] Mercier P. H. J., Rancourt D. G., Redhammer G. J., Lalonde A. E., Robert J. L., Berman R. G., Kodama H. Upper limit of the tetrahedral rotation angle and factors affecting octahedral flattening in synthetic and natural 1M polytype C2/m space group micas [J]. American Mineralogist, 2006, 91: 831-849.
    [142] Mitra G.B., Bhattacherjee S. The structure of halloysite [J]. Acta Crystallographia, 1975. B31: p. 2851-2857.
    [143] Mott N. F., Littleton M. J. Conduction in polar crystals I: Electrolytic conduction in solid salts[J]. Journal of the Chemical Society. Faraday Transactions. 1938, 34: 485-199.
    [144] Mulliken R. S. Report on notation for the spectra of polyatomic molecules [J]. Journal of Chemical Physics., 1955, 23: 1833
    [145] Naamen S., Jemai S., Ben Haj Amara A., Ben Brahim J. Study of the structural evolution of the 10 ? unstable hydrate of kaolinite during dehydration by XRD and SAXS[J]. Journal of Applied Crystallography. 2003, 36: 898-905
    [146] NaturalNano, Inc. Company. 2009,8. http://www.naturalnano.com/index.php?option=com_content&task=view&id=57&Itemid=47[EB/OL].
    [147] Newman R.H., Childs C.W., Churchman G.J. Aluminium coordination and structural disorder in halloysite and kaolinite by 27Al NMR spectroscopy[J]. Clay Minerals. 1994,29:305-312.
    [148] Newnham R. E. A refinement of dickite structure and some remarks on polymorphismin kaolin minerals[J]. Mineras. Magazine, 1961,32: 683-704
    [149] Newnham, R. E. A refinement of the diekite structure and some remarks on polymorphism in kaolini minerals[J]. Mineralogist Magazine., 1961, 32: 252
    [150] Newnham R. E., Brindley G. W. The crystal structure of dickite[J]. Acta Crystallographica, 1956, 9: 759
    [151] Norgett, M.J. A user's guide to hades[R]. Technical Report AERE-R7015, AERE Harwell Laboratory, 1972.
    [152] Noro H. Hexagonal platy halloysite in an altered tuff bed, komaki city, aichi prefecture, central japan. Clay minerals 1986,21:389-400.
    [153] Northrup, P. A., Leinenweber, K., Parise, J. B. The location of H in the high-pressure synthetic Al2SiO4(OH)2 topaz analogue[J]. American Mineralogist, 1994, 79: 401-404
    [154] Nosé, S. A molecular dynamics method for simulations in the canonical ensemble[J]. Molecular Physics. 1984, 52: 255-268.
    [155] Nosé, S. A unified formulation of the constant temperature molecular dynamics methods[J]. Journal of Chemical Physics. 1984, 81: 511-519.
    [156] Nosé, S. Constant temperature molecular dynamics methods[J]. Progress of Theoretical Physics. Supplement. 1991, 103: 1-46.
    [157] Olejnik S., Aylmore L.A.G., Posner A.M., Quirk J.P. Infrared spectra of kaolin mineraldimethyl sulfoxide complexes[J]. Journal of Physical Chemistry. 1967,72: 241-249.
    [158] Olejnik S., Posner A.M., Quirk J.P. The intercalation of polar organic compounds into kaolinite[J]. Clay Minerals. 1970, 8: 421-434.
    [159] Parker S.C., Price G..D., Computer modelling of phase transitions in minerals[J]. Advances in Solid State Chemistry. 1989, 1:295-327.
    [160] Parrinello M., Rahman A. Polymorphic transitions in alkali halides, a molecular dynamics study[J]. Le Journal de Physique Colloques (Paris). 1981, 42,C6: 511-515.
    [161] Pauling L. The structure of the chlorites[J] Proceedings of the National Academy of Sciences of the United States of America.1930, 16:578-582.
    [162] Pearlman D.A., Case D.A., Caldwell J.W., Ross W.S., Cheatham III T.E., DeBolt S., Ferguson D., Seibel G., Kollman P. Amber, a package of computer programs for applyingmolecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules[J]. Computer Physics Communications. 1995, 91:1-41.
    [163] Perdew J. P., Burke K., Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77: 3865-3968.
    [164] Pernet M., Joubert J.C., Berthet-Colominas C. Etude par diffraction neutronique de la forme haute pression de FeO(OH) [J]. Solid State Communications. 1975,17:1505-1510.
    [165] Perruchot A., Dupuis C., Brouard E., Nicaise D., Ertus R. L'halloysite karstique: comparaison des gisements types de Wallonie (Belgique) et du Pe?rigord (France) [J]. Clay Minerals.1997, 32: 271-287.
    [166] Petersen, H.G., Soelvason, D., Perram, J.W., Smith E.R. A very fast multipole method[J]. Journal of Chemical Physics. 1994, 101: 8870–8876.
    [167] Petit S., Decarreau,A. Hydrothermal (200℃) synthesis and crystal chemistry of iron-rich kaolinites[J]. Clay Minerals. 1990,25:181-196.
    [168] Polyak V.J., Guèven N. Alunite, natroalunite and hydrated halloysite in Carlsbad cavern and Lechuguilla cave, New Mexico[J]. Clays and Clay Minerals. 1996,44:843-850.
    [169] Polyak V.J., Guèven N. Clays in caves of the Guadalupe mountains, New Mexico[J]. Journal of Cave and Karst Studies. 2000, 62: 120-126.
    [170] Pundsack F. L. Density and structure of endellite[J]. Clays and Clay Minerals. 1956,5:129-135.
    [171] Quantin P., Herbillon A.J., Janot C., Sieffermann G. L'halloysite blanche riche en fer de Vate (Vanuatu)- Hypotheese d'un edifice interstratifie halloysite-hisengerite[J]. Clay Minerals. 1984,19: 629-643.
    [172] Radoslovich E.W. The cell dimensions and symmetry of layer lattice silicates-VI. Serpentine and kaolin morphology[J]. American Mineralogist. 1963,48:368-378.
    [173] Radoslovich E.W., Norrish K. The cell dimensions and symmetry of layer-lattice silicates. I. Some structural considerations[J]. American Mineralogist 1962,47:599-616.
    [174] Radoslovich, E.W. The cell dimensions and symmetry of layer-lattice silicates. IV interatomic forces[J]. American Mineralogist, 1963, 48: 76
    [175] Range K.J., Range A.,Weiss A. Fire-clay type kaolinite or fire clay mineral? Experimental classification of kaolinite-halloysite minerals[C]. In: Proc. Int. Clay Conf. 3. 1969, 3. Tokyo, Israel University Press, Jerusalem . 3-13.
    [176] RappéA.K., Casewit C.J., Colwell K.S., Goddard W.A., Skiff W.M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations[J]. Journal ofthe American Chemical Society. 1992, 114: 10024- 10035.
    [177] Raythatha R.H., Lipsicas M. Mechanism of synthesis of 10-A hydrated kaolinite[J]. Clays and Clay Minerals.1985, 33: 333-339.
    [178] Romero R., Robert M., Elsass F., Garcia C. Abundance of halloysite neoformation in soils developed from crystalline rocks. Contribution of transmission electron microscopy[J]. Clay Minerals. 1992,27: 35-46.
    [179] Ross T.J., Kerr P.F. Halloysite and allophane[J]. Geological Survey, United States Department of the Interior 1934,185-G:135-148.
    [180] Sainz-Diaz C.I., Hernandez-Laguna A., Dove M.T. Modeling of dioctahedral 2:1 phyllosilicates by means of transferable empirical potentials[J]. Physics and Chemistry of Minerals, 2001,28:130-141.
    [181] Saugusa M., Shoji S., Kato T. Origin and nature of halloysite in Ando soils from Towada Tephra, Japan[J]. Geoderma. 1978,20:115-129.
    [182] Schr?der K. P., Sauerkraut J., Leslie M., Catlow C. R. A., Thomas J. M. Bridging hydrodyl groups in zeolitic catalysts: a computer simulation of their structure, vibrational properties and acidity in protonated faujasites (H---Y zeolites) [J]. Chemical Physics Letters, 1992, 188: 320-325
    [183] Shanno D.F. Conditioning of Quasi-Newton Methods for Function[J] Minimization Mathematics of Computation, 1970, 24: 647-656.
    [184] Shaw B.T. The nature of colloidal clay as revealed by the electron microscope[J]. Journal of Physical Chemistry 1942,46:1032-1043.
    [185] Shaw B.T., Humbert R. P. Electron micrographs of clay minerals[J]. Soil Science Society of American Processing., 1942,6: 146-149.
    [186] Shiraki K., Kawamura K., Tomita K. Computer simulation of clay-water system: Behaviors of H2O molecules on kaolin mineral surfaces. In: Kazue, T. Ed. Water and soil environments, Microorganizms play an important role. Kanazawa[R]: Kanazawa University, 2003: 243-248
    [187] Singer A., Zarei M., Lange F.M., Stahr K. Halloysite characteristics and formation in the northern Golan Heights[J]. Geoderma, 2004,123: 279-295.
    [188] Singh B. Why does halloysite roll?-a new model[J]. Clays and Clay Minerals. 1996,44:191-196.
    [189] Singh B., Gilkes R.J. A weathering of granitic muscovite to kaolinite[J]. Clays and Clay Minerals. 1991,39:571-579.
    [190] Singh B., Gilkes R.J. An electron-optical investigation of the alteration of kaolinte tohalloysite[J]. Clays and Clay Minerals. 1992,40:212-229.
    [191] Singh B., Mackinnon D.R. Experimental transformation of kaolinite to halloysite[J]. Clays and Clay Minerals. 1996, 44:825-834.
    [192] Singh B. Why does halloysite roll?-a new model[J]. Clays and Clay Minerals, 1996, 44: 191-196.
    [193] Smith W., Forester T.R., Dl_poly_2.0: A general purpose parallel molecular dynamics simulation package[J]. Journal of molecular graphics. 1996, 14: 136-141.
    [194] Smith W., Yong, C.W., Rodger P.M., Dl_poly: application to molecular simulation. Molecular Simulation[J]. 2002, 28:385-471.
    [195] Stolpe N.B., Kuzila M.S. Relative mobility of atrazlne, 2,4-D and dicamba in volcanic soils of south-central Chile[J]. Soil Science, 2002,167: 338-345.
    [196] Sudo T. Particle shape of a certain clay of hydrated halloysite, as revealed by electron microscope[J]. Mineralogical Journal. 1953,1:66-68.
    [197] Sudo T., Yotsumoto H. The formation of halloysite tubes from spherulitic halloysite[J]. Clays and Clay Minerals. 1977,25: 155-159.
    [198] Sun H. COMPASS: An ab Initio Forcefield Optimized for Condensed-Phase Applications - Overview with Details on Alkane and Benzene Compounds[J]. Journal of Physical Chemistry B 1998, 102: 7338-7364.
    [199] Taggart M. S., Milligan W. O., Studer H. P. Electron micrographic studies of clays[J]. Clays and Clay Minerals. 1954,3:31-64.
    [200] Tarasevich Y.I., Gribina I.A. Infrared spectroscopic study of water in halloysite[J]. Kolloidnyizh. 1972, 34: 405-411.
    [201] Tazaki K. Analytical electron microscopic studies of halloysite formation processes: morphology and composition of halloysite[C]. Van Olphen H., Veniale F., editors. Developments in Sedimentology. Proceedings of the 7th international Clay Conference 1982. Elsever. 35: 573-584.
    [202] Teppen B. J., Rasmussen K., Bertsch P.M., Bertsch P. M., Miller D. M. Molecular dynamics modeling of clay minerals. I. Gibbsite, Kaolinite, Pyrophyllite and Beidellite[J]. Journal of Physical Chemistry B, 1997, 101: 1579-1587.
    [203] Theng B.K.G., Wells N. Assessing the capacity of some New Zealand clays for decolourizing vegetable oil and butter[J]. Applied Clay Science, 1995, 9: 321-326.
    [204] Thomas R., Shoemaker C.B., Eriks K. The molecular and crystal structure of dimethyl sulfoxide, (H3C)2SO[J]. Acta Crystallographica. 1966, 21:12-20.
    [205] Thompson J.G., Cuff C. Crystal structure of kaolinite: dimethylsulfoxide intercalate[J].Clays and Clay Minerals, 1985, 33: 490-500.
    [206] Tomura S., Shibasaki Y., Mizuta H. Spherical kaolinite: synthesis and mineralogical properties[J]. Clays and Clay Minerals, 1983, 31: 413-421.
    [207] Tosi M. P. Cohesion of ionic solids in the Born model[J]. Solid State Physics, 1964, 16: 1
    [208] Tosi M. P. Advances in Research and Applications[M]. Solid State Physics, Academic Press, New York, London 1967, 16: 107 -120.
    [209] Tunney J., Detellier C. Preparation and characterization of an 8.4? hydrate of kaolinite[J]. Clays and Clay Minerals. 1994, 42: 473-476
    [210] van Gunsteren W.F.;Berendsen, H.J.C. Groningen molecular simulation (gromos) library manual[R]. Technical report, Biomos, Groningen, 1987.
    [211] van Olphen H., Deeds C.T. Short contributions[C]. In: Proc. Int. Clay Conf. Stockholm, 1963, Rosenqvist I. Th. and Graff-Petersen P. edit., Pergamon Press, Oxford, 380-381.
    [212] Visconti Y.S., Nicot B.T. F., Goulart de Andrade E. Tubular morphology of some Brazilian kaolins[J]. American Mineralogist. 1956,41:67-76.
    [213] Wada K. Intercalation of water in kaolin minerals[J]. American Mineralogist. 1965,50:924-941.
    [214] Wada K. Lattice expansion of kaolin minerals by treatment with potassium acetate[J]. American Mineralogist. 1961,46: 78-91.
    [215] Wada K., Yamada H. Hydrazine intercalation intersalation for differentiation of kaolin minerals from chlorites[J]. American Mineralogist 1968, 53: 334-339.
    [216] Wada S.I., Mizota C. Iron-Rich Halloysite(10?) with Crumpled Lamellar Morphology from Hokkaido, Japan[J]. Clays and Clay Minerals 1982 30 : 315-317.
    [217] Wang A., Kang F., Huang Zh., Guo Zh., Chuan X. Synthesis of mesoporous carbon nanosheets using tubular halloysite and furfuryl alcohol by a template-like method[J]. Microporous and Mesoporous Materials 2008,108: 318-324.
    [218] Ward C., Roberts F.I. Occurrence of spherical halloysite in bituminous coals of the Sydney basin, Australia[J]. Clays and Clay Minerals, 1990, 38: 501-506.
    [219] Weiner S.J., Kollman P.A., Nguyen D.T., Case D.A. An all atom force field for simulations of proteins and nucleic acids[J]. Journal of Computational Chemistry. 1986, 7(2): 230-252.
    [220] Weiss Z., Rieder M., Chmielova M., Krajicek J. Geometry of the octahedral coordination in micas, a review of refined structures[J]. American Mineralogist, 1985, 70: 747-757
    [221] Wemett J. Hydrogen storage apparatus comprised of halloysite. US Patent No.7425232[P]. 2008, 9.16
    [222] Wilke B.M., Schwertmann U., Murad E. An occurrence of polymorphic halloysite in granitesaprolite of the Bayerischer Wald, Germany[J]. Clay Minerals.1978,13:67-77.
    [223] Williams, D.E. Molecular packing analysis[J]. Acta Crystallographica:A. 1972, 28: 629-635.
    [224] Willock D.J., Price, S.L., Leslie M., Catlow C.R.A., The relaxation of molecular crystal structures using a distributed multipole electrostatic model[J]. Journal of Computational Chemistry. 1995, 16:628-647.
    [225] Wilson M.J., Tait J.M. Halloysite in some soils from North-East Scotland[J]. Clay Minerals. 1977,12: 59-66.
    [226] Winkler, B., Dove, M. T., Leslie M. Static lattice energy minimization and lattice dynamics calculations on aluminosilicate minerals[J]. American Mineralogist, 1991, 76: 313-331.
    [227] Wolfe R.W., Giese R.E.Jr. The stability of fluorine analogues of kaolinite[J]. Clays and Clay Minerals. 1978, 26: 76-78.
    [228] Wolfe R.W., Giese Jr.R.F. The interlayer bonding in one-layer kaolin structures[J]. Clays and Clay Miner., 1974, 22: 137-140.
    [229] Yariv S., Shoval S. The nature of the interaction between water moleculars and kaolin-like layers in hydrated halloysite[J]. Clays and Clay Minerals. 1975, 23: 473-474.
    [230] Zhang H., Bailey S.W. Refinement of the nacrite structure[J]. Clays and Clay Minerals 1994,42:46-52.
    [231] Zhukhlistov A.P. Crystal structure of lepidocrocite FeO(OH) from electron diffraction data[J]. Kristallografiya. 2001,46(5):805-808.
    [232] Zobetz E., Zemann J., Heger G., Voellenkle H. Strukturbestimmung eines OH-reichen topases[J]. Anz Osterr Akad Wiss Math-Naturwiss Kl. 1979, 116: 145-147.
    [233]布令得利编,邵克忠译粘土矿物的晶体构造与伦琴射线鉴定法[M].北京:科学出版社, 1959.
    [234]陈荣峰,张冰,曹艳霞.储氢材料埃洛石及其制备方法:中国, CN101070163[P], 200710054559.2
    [235]方邺森,方金满.中国主要类型制瓷高岭土的特征[J].陶瓷学报1985, 1:57-72.
    [236]方邺森,胡立勋.苏南高岭土[J].江苏陶瓷1980, 1:19-69.
    [237]郭宝春,贾德民,杜明亮,郑小瑰.埃洛石纳米管用于制备聚合物复合材料的方法:中国, CN1746216[P], 200510035381.8
    [238]贾志欣,罗远芳,郭宝春,杨树颜,贾德民.橡胶/埃洛石纳米管纳米复合材料的制备方法:中国, CN101343386[P], 200810198168.2
    [239]蓝浦(清)著,郑廷桂(清)增补,连冕编注.景德镇陶录[M].济南:山东画报出版社, 2005.
    [240]刘锦藻(清).清朝续文献通考[M].杭州:浙江古籍出版社, 2000.
    [241]刘新园,白焜.高岭史考.中国陶瓷[J]. 1982,7:141-171.
    [242]牛继南,强颖怀.高岭石-水体系中水分子结构的分子动力学模拟[J].物理化学学报, 2009, 25: 1167-1172.
    [243]牛继南,强颖怀,王志辉.氟置换高岭石层间羟基的能量最小化模拟[J].物理化学学报. 2010, 26: 1541-1551.
    [244]钱伯章纳米技术在石化领域的应用及市场发展(续)[J].化工新型材料2008,36:27-30.
    [245]申斌殷都学刊殷代白陶的物理研究结果[J]. 1991,3:9-11.
    [246]王怀宇,张仲利世界高岭土市场研究[J].中国非金属矿工业导刊2008, 2:58-62.
    [247]尤振根国内外高岭土资源和市场现状及展望[J].非金属矿2005,28:1-8.
    [248]粤尔芬粘土胶体化学导论[M].第二版,许冀全等译.北京:农业出版社, 1982.
    [249]张冰,陈荣峰,曹艳霞埃洛石在酶固定载体中的应用:中国,CN101096665[P], 200710054558.8
    [250]张锡秋,方邺森,胡立勋高岭土[M].北京:轻工业出版社, 1988.
    [251]中国科普网2009,8 http://zlg.kepu.gov.cn/zlg/ks/images/9-ailuoshi2.jpg
    [252]透射电子显微镜选区电子衍射分析方法.中华人民共和国国家标准. GB/T 18907-2002. 2002-12-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700