基于水合物技术的模拟电厂烟气中二氧化碳捕获研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来由于温室效应以及气候改变对人类生产生活的影响日益加剧,以CO2为主的温室气体减排逐渐成为人们关注的焦点。目前CO2排放主要来源于化石能源的燃烧,所以CO2减排的首要措施就是捕获和掩埋电厂烟气中的CO2。水合物法捕获CO2是一种新型分离技术,它是利用烟气中CO2和N2生成水合物的相平衡条件的差异,选择性地使CO2和水生成固态的水合物,从而与气相中的N2分离,该技术具有分离效率高、过程简单等优点。目前水合物法气体分离技术通常采用的添加剂为四氢呋喃(THF),但是该技术还处于初始研究阶段,有一些问题有待解决如:苛刻的温度压力条件,低水合反应速率,高能耗等。本文分别以四丁基溴化铵(TBAB)、四丁基氟化铵(TBAF)以及环戊烷(CP)为添加剂,测定了TBAB和TBAF存在时CO2以及模拟电厂烟气(CO2/N2)生成水合物的相平衡条件,考察TBAB、TBAF以及环戊烷存在下CO2/N2生成水合物的动力学特性以及CO2分离性能,为开发高效快速、低能耗水合物法捕获烟气中CO2工艺技术提供理论依据。
     采用恒容压力搜索法测量了TBAB以及TBAF存在条件下,CO2以及模拟电厂烟气(CO2/N2)与水生成水合物的相平衡条件,结果发现TBAB、TBAC以及TBAF均能明显降低水合物生成条件,并且随着溶液浓度由0.293 mol%增大到0.617 mol%,水合物相平衡稳定区域随之被扩大。在相同浓度下,TBAF对于CO2和CO2/N2生成水合物的促进作用要强于TBAB和THF。
     在温度为4.5℃,TBAB、TBAF存在条件下,研究模拟电厂烟气(CO2/N2)生成水合物过程的动力学特性,考察进料压力、气液体积比、TBAB浓度和原料气中CO2浓度等因素对水合反应过程的影响。发现进料压力越高、原料气中CO2浓度越大、TBAB浓、度越高、气液体积比越低则水合反应过程的推动力就越大,体系压力降低的速度也就越快。分别计算和比较了两种添加剂存在时的水合反应速率常数和水合反应器空速。TBAB以及TBAF存在时,水合反应最高速率常数分别为2.82×10-7 mol2/(s·J)和8.26×10-7mol2/(s·J),反应器最大空速分别为25.96 h-1和14.36 h-1。
     分别以TBAB和TBAF作为促进剂,在系统温度为4.5℃,进料烟气中CO2浓度为16.60 mol%时,进行水合物法捕获模拟烟气中CO2的实验。考察进料压力、反应温度、TBAB或TBAF溶液浓度、进料气中CO2浓度等对CO2分离性能的影响。结果表明在TBAB和TBAF存在时的最大CO2分离因子分别为9.65和36.98。在TBAB存在时通过三级水合分离,在中等压力下将CO2由16.60 mol%浓缩至90.15 mol%,并且可以添加少量丙酮或甲醇来提高CO2分离性能。在TBAF存在时只需两级水合分离就可以在较低压力下,将CO2由16.60 mmol%浓缩至90.40 mol%,并且可以通过提高TBAF溶液浓度使得水合分离在常温(20.1℃)下进行。
     本文还对另一种添加剂环戊烷存在下的水合法捕获CO2进行实验研究。采用环戊烷和水直接混合以及预先生成水包环戊烷乳化液两种方式,考察了温度为8.1℃,水合物法捕获模拟电厂烟气中CO2过程的水合反应速率和分离性能。通过水合物生成过程放热造成的温升大小来表征水合物生成速率快慢,发现环戊烷存在时水合物生成速率要明显快于未乳化时。环戊烷乳化后的CO2分离因子均小于相同条件下环戊烷未乳化情况下的CO2分离因子。
     对TBAF存在下水合物法捕获模拟电厂烟气中CO2的二级水合物分离过程的经济性进行分析,估算了过程中各阶段的能耗,并和文献中膜分离以及单乙醇胺(MEA)吸收过程能耗进行比较。通过Aspen流程模拟结合计算得知对于1000 MW电厂捕获CO2的能耗成本为0.57 kW·h/kg-CO2即2.05 MJ/kg-CO2。水合物法捕获模拟烟气中CO2的能耗主要是烟气压缩所产生的,压缩能耗占整个过程能耗的66.3%,与文献中膜分离以及MEA吸收过程能耗相比较,发现水合物法捕获模拟烟气中CO2的能耗略高于膜分离法,比MEA吸收法低。
There are increasing concerns for greenhouse gas recently, especially for carbon dioxide emissions mitigation of the influence of global warming and climate change on human activities. The emissions of carbon dioxide primarily result from the combustion of fossil fuels and the main approach for CO2 emissions is carbon capture and sequestration. Hydrate-based capture of CO2 is a new separation technology, which is based on the differences of hydrate phase equilibrium conditions of CO2 and N2 and selectively engaged CO2 into the cages of hydrate. The technology is of high efficiency, simpleness and conveniency and so on. However, hydrate-based technology with. THF as promoter is being at the initial stage, thus there are many problems need to be investigated, such as rigorous temperature and pressure, low reaction rate and high energy consumption. In this study, tetra-n-butyl ammonium bromide (TBAB), tetra-n-butyl ammonium fluoride (TBAF) and cyclopentane were chosen as additives for hydrate formation. The phase equilibrium conditions of CO2, simulate flue gas (CO2/N2) hydrate were determined with TBAB and TBAF, respectively. The dynamics character and separation efficiency of CO2/N2 mixture hydrate were investigated with TBAB, TBAF and cyclopentane for developing high efficient and low energy consumption hydrate-based capture of CO2.
     The dynamics character of simulate flue gas (CO2/N2) hydrate were studied with TBAB or TBAF at 4.5℃, such as, the effects of the feed pressure, gas liquid volume ratio, TBAB aqueous concentration and CO2 concentration in the feed on the hydrate formation. The higher feed pressure, CO2 or TBAB aqueous concentration, or the lower gas liquid volume ratio were set, the bigger driving force of hydrate formation and the rate of pressure drop could be reached. The hydrate rate constant and space velocity of reactor were calculated and compared with TBAB and TBAF, respectively. The hydrate formation rate constant reached the maximum of 2.82×10-7 mol2/(s·J) with TBAB while it was 8.26×10-7 mol2/(s·J) with TBAF, and the maximal space velocity of hydrate reactor was 14.36 h'1 with TBAB while it was 25.96 h-1 with TBAF.
     The process of CO2 capture from simulate flue gas (CO2/N2) by formation of TBAB and TBAF hydrate were studied at 4.5℃, and the effects of the feed pressure, temperature, TBAB or TBAF concentration and CO2 concentration in the feed on the CO2 separation efficiency were also investigated. The results showed that the maximum of CO2 separation factor was 9.65 with TBAB and that was 36.98 with TBAF. CO2 could be enriched from 16.60 mol% to-90.15 mol% under the medium feed pressure by three stages hydrate formation process with TBAB, meanwhile CO2 separation factor could be increased with the addition of a little methanol or acetone. CO2 could be enriched from 16.60 mol% to 90.40 mol% under the low feed pressure by only two stages hydrate formation process with TBAF. The process of CO2 capture,via hydrate formation could be carried out at ambient temperature (20.1℃) by increasing the TBAF aqueous concentration.
     The CO2 capture via hydrate formation with cyclopentane as an additive was also studied. The hydrate formation rate and separation efficiency were investigated at 8.1℃in the presence of the mixture of cyclopentane and water or cyclopentane in water emulsion. The hydrate formation rate was represented by the temperature rise due to the exothermic nature of the hydrate formation. It was found that the hydrate formation rates with cyclopentane in water emulsion were at greater rates than those without emulsion. While CO2 separation factors with cyclopentane in water emulsion were lower than those without emulsion under the same conditions.
     The economic analysis of CO2 capture from simulate flue gas via two stages TBAF hydrate formation was made. The energy consumption of CO2 capture was estimated and was compared with those for membrane separation and monoethanolamine (MEA) absorption. Based on Aspen flowsheeting simulation and estimation, as for a 1000 MW power plant the energy consumption of capture of CO2 via hydrate was 0.57 kW-h/(kg-CO2) or 2.05 MJ/(kg-CO2). The energy consumption of CO2 capture was mainly caused by the compression process which was 66.3% of entire process. Then the results were compared with two conventional separation processes:MEA amine based absorption separation and membrane separation processes. It was concluded that hydrate separation technology is competitive comparing with the chemical absorption for CO2 capture.
引文
[1]Climate Change 2001:The Scientific Basis Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,2001.
    [2]Energy outlook 2009 [R]. Washington, DC:U. S. Department of Energy,2009.
    [3]Forater, P., V. Ramaswamy, P. Artax, et al. Changes in Atmospheric Constituents and in Radiative Frocing [M]. Climate Change 2007. Cambridge:Cambridge University Press,2007:135.
    [4]Cogbill M J, Marsh G P. The separation and disposal of carbon dioxide from power station flue gas [J]. Energy Conversion Management,1992,33 (5-8):487-494.
    [5]Aaron D, and Tsouris C. Separation of CO2 from flue gas:A review [J]. Separation Science and Technology,2005,40 (1):321-348.
    [6]Figueroa J D, Fout T, Plasynski S, et al. Advances in CO2 capture technology-The U.S.department of energy's carbon sequestration program [J]. International Journal of Greenhouse Gas Control,2008, 2 (1):9-20.
    [7]Pennline H W, Luebke D R, Jones K L, et al. Progress in carbon dioxide capture and separation research for gasification-based power generation point sources [J]. Fuel Processing Technology, 2008,89 (9):897-907.
    [8]Yang H, Xu Z, Fan M, et al. Progress in carbon dioxide separation and capture:A review [J]. Journal of Environmental Science,2008,20 (1):14-27.
    [9]费维扬,艾宁,陈建等.温室气体CO2的捕集和分离-分离技术面临的挑战与机遇[J].化工进展,2005,24(1):1-4.
    [10]夏明珠,严莲荷,雷武等.二氧化碳的分离回收技术与综合利用[J].现代化工,1999,19(5):46-48.
    [11]Aldana G, Arai R, and Elliot D G. An evaluation of sources of CO2 for EOR in Venezuela [M]. Acid and Sour Gas Treating Processes. Houston:Gulf Publishing Company,1985:164-189.
    [12]Bedell S A. Oxidative degradation mechanisms for amines in flue gas capture [J] Energy Procedia, 2009,1 (1):771-778.
    [13]Wong Sam. Economics of CO2 capture from power plants considering near term to long term breakthrough technologies [R]. The CANiCAP Program. Alberta Research Council Inc.2005. http://www.arc.ab.ca/documents/CANiSTORE%20Final%20Report.pdf.
    [14]Olajire A A, CO2 capture and separation technologies for end-of-pipe applications-A review [J] Energy,2010,35 (6):2610-2628.
    [15]Granite E J, O'Brien T. Review of novel methods for carbon dioxide separation from flue and fuel gases [J]. Fuel Processing Technology,2005; 86 (14-15):1423-1434.
    [16]Bates E D, Mayton R D, Ntai I, et al. CO2 capture by a task-specific ionic liquid [J]. Journal of American Chemical Society,2002,124 (6):926-927.
    [17]Zhang Y,Zhang S, Liu X, et al. Dual amino-functionalised phosphonium ionic liquids for CO2 capture [J]. Chemistry-A European Journal,15 (2):3003-3011.
    [18]Skjanes K, Lindblad P, Muller J. BioCO2-A multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products [J]. Biomolecular Engineering,2007,24: 405-413.
    [19]樊栓狮.天然气水合物储存与运输技术[M].北京:化学工业出版社,2005.
    [20]Sloan E D, Koh C A. Clathrate Hydrates of Natural Gases [M].3rd ed. Boca Raton:CRC Press, 2008.
    [21]Davidson D W. Clathrate Hydrate [M]. Franks F. Water-A Comprehensive Treatise. London: Academic Press,1984:115-234.
    [22]Dyadin Y A and Udachin K A. Clathrate formation in water-peralkylonium salts systems [J]. Journal of Inclusion Phenomena,1984,2 (1-2):61-72.
    [23]Shimada W, Shiro, M, Kondo H, et al. Tetra-n-butylammonium bromide water (1/38) [J]. Acta Crystallographica Section C,2005,61:o65-o66.
    [24]Hammerschmidt E G, Formation of gas hydrates in natural gas transmission lines [J]. Industrial and Engineering Chemistry,1934,26 (8):851-855.
    [25]Von Stackelberg M. Festa gashydrate [J]. Naturwissenschaften,1949,36:327-333,359-362.
    [26]Barrer R M, Edge A V J. Selective clathration during the formation of gas hydrates [J]. Separation Science,1967,2 (2):145-154.
    [27]陈光进,程宏远,樊栓狮.新型水合物分离技术研究进展[J].现代化工,1999,19(7):12-14.
    [28]李士凤,樊栓狮,王金渠等.CO2水合分离研究进展[J].化工进展,2009,28(5):741-744.
    [29]马昌峰,陈光进,张世喜等.一种从含氢气体分离浓缩氢的新技术-水合物分离技术[J].化工学报,2001,52(12):1113-1116.
    [30]马昌峰,王峰,孙长宇等.水合物氢气分离技术及相关动力学研究[J].石油大学学报,2002,26(2):76-78.
    [31]冯英明,陈光进,马庆兰.水合物法分离H2+CH4体系的模拟计算[J].化工学报,2004,55(9):1541-1545.
    [32]张世喜,陈光进,郭天民.利用气体水合物技术分离含氢气体混合物[J].石油大学学报,2004,28(1):95-97.
    [33]冯英明,陈光进,王可.水合物法分离H2+CH4体系的非平衡级模拟[J].化工学报,2005,56(2):197-202.
    [34]Luo Y, Zhu J, and Chen G Numercial simulation of separating gas mixtures via hydrate formation in bubble column [J]. Chinese Journal of Chemical Engineering,2007,15 (3):345-352.
    [35]Wang X, Chen G, Yang L, et al. Study on the recovery of hydrogen from refinery (hydrogen+ methane) gas mixtures using hydrate technology [J]. Science in China Series B:Chemistry,2008,51 (2):171-178.
    [36]樊栓狮,郭开华.从含氢混合气体中回收和提纯氢气的方法:中国,00130867.X[P].2000,12,20.
    [37]陈光进,马昌峰,张世喜等.利用水合物分离提浓氢气的方法:中国,00100279.1[P].2000,01,13.
    [38]Chen G, Guo X, Wu G, et al. Combined process for recovering hydrogen, ethylene, ethane or separating ethylene cracked gas from dry gas or refinery plants:US,20050277801A1 [P].2002,12, 15.
    [39]Chen G, Ma A, Yan L, et al. Apparatus and method for increasing the concentration of recycled hydrogen in a high pressure hydroenation reactor:US,20080112862A1 [P].2008,05,15.
    [40]Ma, C F, Chen G I, Wang F, et al. Hydrate formation of (CH4+C2H4) and (CH4+C3H6) gas mixtures [J]. Fluid Phase Equilibria,2001,191 (1-2):41-47.
    [41]Zhang L W, Chen G J, Guo X Q, et al. The partition coefficients of ethane between vapor and hydrate phase for methane+ethane+water and methane+ethane+THF+water systems [J]. Fluid Phase Equilibria,2004,225:141-144.
    [42]Zhang L W, Chen G J, Sun C Y, et al. The partition coefficients of ethylene between hydrate and vapor for methane+ethylene+water and methane+ethylene+SDS+water systems [J]. Chemical Engineering Science,2005,60 (19):5356-5362.
    [43]Zhang L W, Chen G J, Sun C Y, et al. The partition coefficients of ethylene between vapor and hydrate phase for methane+ethylene+THF+water systems [J]. Fluid Phase Equilibria,2006,245 (2):134-139.
    [44]丁艳明,陈光进,孙长宇等.水合物法分离甲烷-乙烷体系相关相平衡的研究[J].石油学报(石油加工),2005,2 1(6):75-79.
    [45]Ma Q, Chen G and Zhang L. Vapor-hydrate phases equilibrium of (CH4+C2H6) and (CH4+C2H4) systems [J]. Petroleum Science,2008,5 (4):359-366.
    [46]陈光进,孙长宇,马庆兰等.使甲烷和碳2组分离的方法:中国,02129611.1[P].2002,09,02.
    [47]陈光进,王秀林,郭绪强等.分离乙烯裂解气的水合+膜+深冷分离组合工艺:中国,200510105303.0[P].2005,09,23.
    [48]陈光进,王秀林,郭绪强等.分离乙烯裂解气的水合+变压吸附+深冷分离组合工艺:中国,200510105304.5[P].2005,09,23.
    [49]陈光进,郭绪强,孙长宇等.利用水合物法分离低沸点气体混合物方法及其设备:中国,03121832.6[P].2003,04,14.
    [50]樊栓狮,郭开华.从催化裂化干气中分离回收乙烯的方法及其装置:中国,99124686.1[P].1999,12,30.
    [51]Rojey A, Malmaison R, Fischer B, et al. Process and device for separation of at least one acid gas that is contained in a gas mixture:US,6442969B1 [P].2002,09,03.
    [52]Denderen M, Ineke E and Golombok M. CO2 recoval from contaminated natural gas mixtures by hydrate formation [J]. Industrial Engineering Chemistry Research,2009,48 (12):5802-5807.
    [53]Dabrowski N, Windmeier C and Oellrich L R. Purification of natural gases with high CO2 content using gas hydrate [J]. Energy & Fuels,2009,23 (11):5603-5610.
    [54]Yoon J, Lee H. Clathrate phase equilibria for the water-phenol-carbon dioxide system [J]. AIChE Journal,1997,43 (7):1884-1892.
    [55]Seo Y, Kang S, Lee H, et al. Hydrate phase equilibria for gas mixtures containing carbon dioxide:A proof-of-concept to carbon dioxide recovry from multicomponent gas stream [J]. Korean Journal of Chemistry Engineering,2000,17 (6):659-667.
    [56]Kang S P, Lee H, Lee C S, et al. Hydrate phase equilibria of the guest mixtures containing CO2, N2 and tetrahydrofuran [J]. Fluid Phase Equilibria,2001,185 (1-2):101-109.
    [57]Kumar R, Wu H and Englezos P. Incipient hydrate phase equilibrium for gas mixtures containing hydrogen, carbon dioxide and propane [J]. Fluid Phase Equilibria,2006,244 (2):167-171.
    [58]Lee H J, Lee J D, Linga P, et al. Gas hydrate formation process for pre-combustion capture of carbon dioxide [J]. Energy,2010,35 (6):2729-2733.
    [59]Zhang J S and Lee J W. Equilibrium of hydrogen+cyclopentane and crabon dioxide+cyclopentane binary hydrate [J]. Journal of Chemical Engineering Data,2009,54 (2):659-661.
    [60]Zhang J, Yedlapalli P and Lee J W. Thermodynamic analysis of hydrate-based pre-combustion capture of CO2 [J]. Chemical Engineering Science,2009,64 (22):4732-4736.
    [61]陈光进,孙长宇,马庆兰.气体水合物科学与技术[M].北京:化学工业出版社,2008.
    [62]Kang P K and Lee H. Recovery of CO2 from flue gas using gas hydrate:Thermodynamic verification through phase equilibriun measurements [J]. Environmental Science & Technology, 2000,34 (20):4397-4400.
    [63]Seo Y T, Moudrakovski I L, Ripmeester J A, et al. Efficient recovery of CO2 from flue gas by clathrate hydrate formation in porous silica gels [J]. Environmental Science & Technology,2005,39 (7):2315-2319.
    [64]杨晓西,丁静,杨建平等.水合物分离二氧化碳气体的研究[J].东莞理工学院学报,2006,14(3):51-56.
    [65]Tsuji H, Kobayashi T, Ohmura R, et al. Hydrate formation by water spraying in a methane+ethane +propane gas mixture:An attempt at promoting hydrate formation utilizing large-molecule guest substances for structure-H hydrate [J]. Energy & Fuels,2005,19 (3):869-876.
    [66]Kobayashi T, Imura N, Ohmura R, et al. Clathrate hydrate formation by water spraying in. a methane +ethane+propane gas mixture:Search for the rate-controlling mechanism of hydrate formation in the presence of methylcyclohexane [J]. Energy & Fuels,2007,21 (2):545-553.
    [67]Fukumoto K, Tobe J, Ohmura R, et al. Hydrate formation using water spraying in a hydrophobic gas: a preliminary study [J]. AIChE Journal,2001,47 (8):1899-1904.
    [68]Murakami T, Kuritsuka H, Fujii H, et al. Forming a structure-H hydrate using water and methylcyclohexane jets impinging on each other in a methane atmosphere [J]. Energy & Fuels,2009, 23 (3):1619-1625.
    [69]Matsuda S, Tsuda H and Mori Y H. Hydrate formation using water spraying onto a cooled solid surface in a guest gas [J]. AIChE Journal,2006,52 (8):2978-2987.
    [70]Linga P, Kumar R, Lee J D, et al. A new apparatus to enhance the rate of gas hydrate formation: Application to capture of carbon dioxide [J]. International Journal of Greenhouse Gas Control,2010, 4 (4):630-637.
    [71]Sarahar M, Esmaeilzadeh F and Fathikalajahi J. Study of capturing emitted CO2 in the form of hydrates in a tubular reactor [J]. Chemical Engineering Communications,2009,196 (11):1348-1365.
    [72]Tajima H, Yamasaki A and Kiyono F. Continuous formation of CO2 hydrate via a Kenics-type static mixer [J]. Energy & Fuels,2004,18 (5):1451-1456.
    [73]Tajima H, Nagata T, Abe Y, et al. HFC-134a hydrate formation kinetics during continuous gas hydrate formation with a Kenics static mixer for gas separation [J]. Industrial & Engineering Chemistry Research,2010,49 (5):2525-2532.
    [74]Spencer D F, Tam S S, Deppe G, et al. Carbon dioxide separation from a high pressure shifted synthesis gas [C]. Proceedings of 19th Annual International Pittsburgh Coal Conference,2002, 1497-1513.
    [75]Linga P, Adeyemo A and Englezos P. Medium-pressure clathrate hydrate/membrane hybrid process for postcombustion capture of carbon dioxide [J]. Environmental Science & Technology,2008,42 (1):315-320..
    [76]Linga P, Kumar R and Englezos P. Gas hydrate formation from hydrogen/caobon dioxide and nitrogen/carbon gas mixtures [J]. Chemical Engineering Science,2007,62 (16):4268-4276.
    [77]Linga P, Kumar R and Englezos P. The clathrate hydrate process for post and pre-combustion capture of carbon dioxide [J]. Journal of Hazardous Materials,2007,149 (3):625-629.
    [78]Duc N H, Chauvy F and Herri J M. CO2 capture by hydrate crystallization-A potential solution for gas emission of steelmaking industry [J]. Energy Conversion and Management,2007,48 (4): 1313-1322.
    [79]Kumar R, Linga P, Ripmeester, et al. Two-stage clathrate hydrate/membrane process for precombustion capture of carbon dioxide and hydrogen [J]. Journal of Environmental Engineering, 2009,135 (6):411-417.
    [30]Seo Y, Tajima H, Yamasaki A, et al. A new method for separating HFC-134a from gas mixtures using clathrate hydrate formation [J]. Environmental Science & Technology,2004,38 (17): 4635-4639.
    [81]Kamata Y, Yamakoshi Y, Ebinuma T, et al. Hydrogen sulfide separation using tetra-n-butyl ammonium bromide semi-clathrate (TBAB) hydrate [J]. Energy & Fuels,2005,19 (4):1717-1722.
    [82]Lee E K, Lee J D, Lee H J, et al. Pure SF6 and SF6-N2 mixture gas hydrate equilibrium and kinetics characteristics [J]. Environmental Science & Technology,2009,43 (2):7723-7727.
    [83]Linga P. Separation of carbon dioxide from flue gas (post-combustion capture) via gas hydrate crystallization[D]. Vancouver:University of British Columbia,2009.
    [84]Tohidi B, Yang J, Chapoy A, et al. A method for gas storage, transport, and energy generation:WO, 2006131738A2 [P].2006,12,14.
    [85]张凌伟.水合物法分离裂解气的实验及模拟研究[D].北京:中国石油大学(北京),2005.
    [86]Galloway T J, Ruska W, Chappelear P S, et al. Experimental measurement of hydrate numbers for methane and ethane and comparison with theoretical values [J]. Industrial & Engineering Chemistry Fundamentals,1970,9 (2):237-243.
    [87]Song K Y and Kobayashi R. Measurement and interpretation of the water content of a methane-propane mixture in the gaseous state in equilibrium with hydrate [J]. Industrial & Engineering Chemistry Fundamentals,1982,21 (4):391-395.
    [88]Mohammadi A H, Tohidi B and Burgass R W. Equilibrium data and thermodynamic modeling of nitrogen, oxygen, and air clathrate hydrates [J]. Journal of Chemical and Engineering Data,48 (3): 612-615.
    [89]Dalmazzone D, Kharrat M, Lachet V, et al. DSC and PVT measurements methane and trichlorofluoromethane hydrate dissociation equilibria [J]. Journal of Thermal Analysis and Calorimetry,2002,70 (2):493-505.
    [90]Parlouer P L, Dalmazzone C, Herzhaft B, et al. Characterisation of gas hydrates formation using a new high pressure MICRO-DSC [J]. Journal of Thermal Analysis and Calorimetry,2004,78 (1): 165-172.
    [91]Tohidi B, Burgass R W, Danesh A, et al. Improving the accuracy of gas hydrate dissociation point measurements [J]. Annals of the New York Academy of Sciences,2000,912:924-931.
    [92]Fan S S and Guo T M. Hydrate formation of CO2-rich binary and quaternary gas mixtures in aqueous sodium chloride solutions [J]. Journal of Chemical Engineering Data,1999,44 (4):829-832.
    [93]Adisasmito S, Franl R J and Sloan E D. Hydrate of carbon dioxide and methane mixtures [J]. Journal of Chemical Engineering Data,1991,36 (1):68-71.
    [94]Lin W, Delahaye A and Fournaison L. Phase equilibrium and dissociation enthalpy for semi-clathrate hydrate of CO2+ TBAB [J]. Fluid Phase Equilibria,2008,264 (1-2):220-227.
    [95]Chapoy A, Anderson R and Tohidi B. Low-pressure molecular hydrogen storage in semi-clathrate hydrate of quaternary ammonium compounds [J]. Journal of the American Chemical Society,2007, 129 (4):746-747.
    [96]Hashimoto S, Sugahara T, Moritoki M, et al. Thermodynamic stability of hydrogen+tetra-n-butyl ammonium bromide mixed gas hydrate in nonstoichiometric aqueous solutions [J]. Chemical Engineering Science,2008,63 (4):1092-1097.
    [97]Sakamoto J, Hashimoto S, Tsuda T, et al. Thermodynamic and Raman spectroscopic studies on hydrogen+tetra-n-butyl ammonium fluoride semi-clathrate hydrates [J]. Chemical Engineering Science,2008,63 (24):5789-5794.
    [98]Dalahaye A, Fournaison L, Marinhas S, et al. Effect of THF on equilibrium pressure and dissociation enthalpy of CO2 hydrates applied to secondary refrigeration [J]. Industrial Engineering Chemistry Research,2006,45(1):391-397.
    [99]Miller S L and Smythe W D. Carbon dioxide clathrate in the Martian ice cap [J]. Science,1970,170: 531-533.
    [100]Uchida T, Takagi A, Kawabata J, et al. Raman spectroscopic analyses on the growth process of CO2. hydrate [J]. Energy Conversion Management,1995,36 (6-9):547-550.
    [101]Chun M K and Lee H. Kinetics of formation of carbon dioxide clathrate hydrates [J]. Korean Journal of Chemistry Engineering,1996,13 (6):620-626.
    [102]Clarke M A and Bishnoi P R. Determination of the intrinsic kinetics of CO2 gas hydrate formation using in suit particle size analysis [J]. Chemical Engineering Science,2005,60 (3):695-709.
    [103]Zatsepina O Y, Riestenberg D, McCallum S D, et al. Influence of water thermal history and overpressure on CO2-hydrate nucleation and morphology [J]. American Mineralogist,2004,89 (8-9): 1254-1259.
    [104]Shindo T, Hakuta T, Fujioka Y, et al. Controlling effect of CO2 hydrate membrane on CO2 dissolution into water from the surface of liquid CO2 [J]. Energy Conversion Management,1995,36 (6-9):479-484.
    [105]Uchida T, Ikeda I Y, Takeya S, et al. CO2 hydrate film formation at boundary between CO2 and water: effects of temperature, pressure and additives on the formation rate [J]. Journal of Crystal Growth, 2002,237-239:383-387.
    [106]Ohgaki K, Makihara Y and Takano K. Formation of CO2 hydrate in pure and sea waters [J]. Journal of Chemical Engineering of Japan,1993,26 (5):558-564.
    [107]Mori Y H. Formation of CO2 hydrate on the surface of liquid CO2 droplets in water-Some comments on a previous paper [J]. Energy Conversion Management,1998,39 (5-6):369-373.
    [108]Vysniauskas A, Bishnoi P R. A kinetics study of methane hydrate formation [J]. Chemical Engineering Science,1983,38 (7)1061-1072.
    [109]Vysniauskas A, Bishnoi P R:Kinetics of ethane hydrate formation [J]. Chemical Engineering Science,1985,40 (2):299-303.
    [110]Englezos P, Kalogerakis N, Dholabhai P D, et al. Kinetics of formation of ethane and ethane gas hydrates [J]. Chemical Engineering Science,1987,42 (1):2647-2658.
    [111]Englezos P, Kalogerakis N, Dholabhai P D, et al. Kinetics of gas hydrate formation from mixtures of methane and ethane [J]. Chemical Engineering Science,1987,42 (11):2659-2666.
    [112]Daimaru T, Yamasaki A and Yanagisawa Y. Effect of surfactant carbon chain length on hydrate formation kinetics [J]. Journal of Petroleum Science and Engineering,2007,56 (1-3):89-96.
    [113]Fogler H S. Elements of chemical reaction engineering [M].4th ed. New Jersey:Prentice Hall PTR, 2005.
    [114]Mori Y H. Recent advances in hydrate-based technologies for natural gas storage-A review [J]. Journal of Chemical Industry and Engineering (China),2003,54:1-17.
    [115]Fowler D L, Loebenstein W V, Pall D B, et al. Some unusual hydrates of quaternary ammonium salts [J]. Journal of the American Chemical Society,1940,62 (5):1140-1142.
    [116]Shimada W, Ebinuma T, Oyama H, et al. Free-growth forms and growth kinetics of tetra-n-butyl ammonium bromide semi-clathrate hydrate crystals [J]. Journal of Crystal Growth,2005,274 (1-2): 246-250.
    [117]Oyama H, Shimada W, Ebinuma T, et al. Phase diagram, latent heat, and specific heat of TBAB semiclathrate hydrate crystals [J]. Fluid Phase Equilibria,2005,234 (1-2):131-135.
    [118]Aladko L S, Dyadin Y A, Rodionva T V, et al. Clathrate hydrates of tetrabutylammonium and tetraisoammonium halides [J].Journal of Structural Chemistry,2002,43 (6):990-994.
    [119]Aladko L S, Dyadin Y A, Rodionova T V, et al. Effect of size and shape of cations and anions on clathrate formation in the system:halogenides of quaternary ammonium bases and water [J]. Journal of Molecular Liquids,2003,106 (2-3):229-238.
    [120]Obata Y, Masuda N, Joo K, et al. Advanced Technologies towards the new Era of energy industries [R]. NKK Technical Review,2003,88:103-115.
    [121]Darbouret M, Cournil M and Herri J M. Rheological study of TBAB hydrate slurries as secondary two-phase refrigerants [J]. International Journal of Refrigeration,2005,28 (5):663-671.
    [122]Song W, Xiao R, Huang C, et al. Experimental investigation on TBAB clathrate hydrate slurry flows in a horizontal tube:Forced convective heat transfer behaviors [J]. International Journal of Refrigeration,2009,32 (7):1801-1807.
    [123]Daitoku T and Utaka Y. Adhesion and detachment characteristics of a TBAB hydrate solide on heat transfer surface (Effect of concentration of TBAB solutions) [J]. Heat Transfer-Asian Research,2009, 38 (6):370-384.
    [124]Liu S, Xu N, Duan J, et al. Corrosion inhibition of carbon steel in tetra-n-butylammonium bromide aqueous solution by benzotriazole and Na3PO4 [J]. Corrosion Science,2009,51 (6):1356-1363.
    [125]Shimada W, Ebinuma T, Oyama H, et al. Separation of gas molecule using tetra-n-butyl ammonium bromide semi-clathrate hydrate crystals [J]. Japanese Journal of Applied Physics Part 2- Letters, 2003,42(2A):L129-L131.
    [126]Kamata Y, Oyama H, Shimada W, et al. Gas separation method using tetra-n-butyl ammonium bromide semi-clathrate hydrate [J]. Japanese Journal of Applied Physics,2004,43 (1):362-365.
    [127]Wilhelm E and Battion R. Thermodynamic functions of the solubilities of gases in liquids at 25. deg. [J]. Chemical Reviews,1973,73 (1):1-9.
    [128]Mainusch S, Peters J and Aron J S. Experimental determination and modeling of methane hydrates in mixtures of acetone and water [J]. Journal of Chemical Engineering Data,1997,42 (5):948-950.
    [129]McMullan R K, Bonamico M, Jeffrey G A. Polyhedral clathrate hydrates. V. Structure of the tetra-n-butyl ammonium fluoride hydrate [J]. The Journal of Chemical Physics,1963,39 (12): 3295-3310.
    [130]Komarov V Y, Rodionova T V, Terekhova I S, et al. The cubic superstructure-I of tetrabutylammonium fluoride (C4H9)4·29.7 H2O clathrate hydrate [J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry,2007,59 (1-2):11-15.
    [131]Rodionova TV, Manakov A Y, Stenin Y G,et al. The heats of fusion of tetrabutylammonium fluoride ionic clathrate hydrates [J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry,2008,61 (1-2):107-111.
    [132]Nakajima M, Ohumra R and Mori Y H. Clathrate hydrate formation from cyclopentane-in-water-emulsions [J]. Industrial & Engineering Chemistry Research,2008,47 (22):8933-8939.
    [133]Tohidi B, Danesh A, Todd A C, et al. Equilibrium data and thermodynamic modeling of cyclopentane and neopentane hydrates [J]. Fluid Phase Equilibria,1997,138 (1-2):241-250.
    [134]Tohidi B, Danesh A, Tabatabaei A R, et al. Vapor-hydrate equilibrium ratio charts for heavy hydrocarbon compounds.1. Structure-Ⅱ hydrates:benzene, cyclopentane, cyclohexane, and neopentane [J]. Industrial & Engineering Chemistry Research,1997,36 (7):2871-2874.
    [135]Fan S S, Liang D Q and Guo K H. Hydrate equilibrium conditions for cyclopentane and a quaternary cyclopentane-rich mixture [J]. Journal of Chemical Engineering Data,2001,46 (4):930-932.
    [136]Sun Z G, Fan S S, Guo K H,et al. Gas hydrate phase equilibrium data of cyclohexane and cyclopentane [J]. Journal of Chemical Engineering Data,2002,47 (2):313-315.
    [137]Imai S, Okutani K, Ohmura R, et al. Phase equilibrium for clathrate hydrates formed with difluoromethane+either cyclopentane or tetra-n-butylammonium bromide [J]. Journal of Chemical Engineering Data,2005,50 (5):1783-1786.
    [138]Takeya S, Yasuda K and Ohmura R. Phase equilibrium for structure Ⅱ hydrates formed with methylfluoride coexisting with cyclopentane, fluorocyclopentane, cyclopentene, or tetrahydropyran [J]. Journal of Chemical Engineering Data,2008,53(2):531-534.
    [139]Zhang J S and Lee J W. Equilibrium of hydrogen+cyclopentane and carbon dioxide+cyclopentane binary hydrates [J]. Journal of Chemical Engineering Data,2009,54 (2):659-661.
    [140]Mohammadi A H and Richon D. Phase Equilibria of clathrate hydrates of cyclopentane+hydrogen sulfide and cyclopentane+methane [J]. Industrial & Engineering Chemistry Research,2009,48 (19): 9045-9048.
    [141]Mohammadi A H and Richon D. Phase Equilibria of clathrate hydrates of methyl cyclopentane, methyl cyclohexane, cyclopentane or cyclohexane +carbon dioxide [J]. Chemical Engineering Science,2009,64 (24):5319-5322.
    [142]Komatsu H, Yoshioka H, Ota M, et al. Phase equilibrium measurements of hydrogen-tetrahydrofuran and hydrogen-cyclopentane binary clathrate hydrate systems [J]. Journal of Chemical Engineering Data,2010,55 (6):2214-2218.
    [143]Sun Z G, Ma R S, Wang R Z, et al. Experimental studying of additives effects on gas storage in hydrates [J]. Energy & Fuels,2003,17 (5):1180-1185.
    [144]Zhang Y, Debenedetti P G, Prud'homme R K, et al. Differential scanning Calorimetry studies of clathrate hydrate formation [J]. The Journal of Physical Chemistry B,2004,108 (43):16717-16722.
    [145]Whitman C A, Mysyk R and White M A. Investigation of factors affecting crystallization of cyclopentane clathrate hydrate [J]. The Journal of Chemical Physics,129 (17):174502:
    [146]Zhang J, Yedlapalli P and Lee J W. Thermodynamic analysis of hydrate-based pre-combustion capture of CO2 [J]. Chemical Engineering Science,2009,64 (22):4732-4736.
    [147]林畅.两种功能性乳状液的制备与稳定性研究[D].大连:大连理工大学,2003.
    [148]Tajima H, Yamasaki A and Kiyono F. Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation [J]. Energy,2004,29 (11):1713-1729.
    [149]Kang S P, Lee H and Ryu B J. Enthalpies of dissociation of clathrate hydrates of carbon dioxide, nitrogen, (carbon dioxide+nitrogen); and (carbon dioxide+nitrogen+tetrahydrofuran) [J]. The Journal of Chemical Thermodynamics,2001,33 (5):513-521.
    [150]Singh D, Croiset E, Douglas P L, et al. Techno-economic study of CO2 capture from an existing coal-fired power plant:MEA scrubbing vs. O2/CO2 recycle combustion [J]. Energy Conversion and Management,2003,44 (19):3073-3091.
    [151]Favre E, Bounaceur R and Roizard D. Biogas, membranes and carbon dioxide capture [J]. Journal of Membrane Science,2009,328 (1-2):11-14.
    [152]Yang D, Wang Z, Wang J, et al. Potential of two-stage membrane system with recycle stream for CO2 capture from postcombustion gas [J]. Energy & Fuels,2009,23 (10):4755-4762.
    [153]Zhao L, Menzer R, Riensche E, et al. Concepts and investment cost analyses of multi-stage membrane systems used in post-combustion processes [J]. Energy Procedia,2009,1:269-278.
    [154]Ho M T, Allinson G and Wiley D E, et al. Comparison of CO2 separation options for geo-sequestration:are membranes competitive? [J]. Desalination,2006,192 (1-3):288-295.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700