亲水性聚合物/水混合体系结构和性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不同相对分子质量聚丙烯酸(PAA)/水的混合物中水的热力学性质与本体水有明显的区别。结晶水含量的结果表明了在亲水聚合物水溶液中除了氢键对水的结晶有影响外,不同长度的聚合物分子链对水的结晶起着不同的空间抑制作用,并且这个作用并不是简单的随着相对分子质量单调变化,而是存在一个临界相对分子质量。不同的聚合物分子结构也是影响不同状态水的含量和结晶性质的因素。混合物中不结晶水在无定形相中的含量都是恒定的,不随着总含水量的增加而变化,唯一的例外是PVME水溶液,原因是由于PVME的特别结构造成的。PAA水溶液中的离子可以明显改变结晶键合水的熔点和熔融焓。PAA水溶液中水的热容值表明当混合物处在玻璃态时,键合水比玻璃态水具有更强的运动能力。随着含水量的增加,聚合物与水分子的平均相互作用力是下降的。聚甲基乙烯基醚(PVME)与水形成了络合体。但是这种络合体是不稳定的。PVME的水合过程是一个较缓慢的过程。不同热历史可以改变PVME/水混合体系中的自由水和结晶键合水的比例。结晶键合水的熔点是没有随着含水量明显改变的,只是数量的改变,而自由水的熔点却是明显增加的。由于相互作用不同,自由水和键合水与PVME的结合速度是不同的。在对PVME水溶液热容的考察说明PVME与水的相互作用较弱,并且水的热容没有随着含水量的增加而明显变化。PVME/水溶液中无定形水含量wa与相分离焓之间的关系表明混合物中主要是不结晶水分子与相分离密切有关。不同商用隐形眼镜的NaCl渗透率结果表明自由体积理论拟合普通HEMA的隐形眼镜盐渗透率的实验结果很好。隐形眼镜的NaCl的渗透率随着体系中结晶水的含量,结晶水与非结晶键合水比值的增加而增加,说明结晶水在控制聚合物凝胶中盐的渗透过程中起着主要的作用。提高隐形眼镜中结晶水含量可以提高盐在聚合物凝胶中的渗透率。
The thermal behaviors of the poly(acrylic acid)(PAA)/water mixtures with different polymer Mws were different from those of bulk water. It showed that the polymer chains with different lengths can effect geometrically the crystallization of water, besides the interaction between polymers and water molecules through hydrogen bonding. The effect didn’t vary with Mw linearly; there existed a critical Mw. Different chemical structures can also influence the amounts of different states of water and the water crystallization. The content of non-crystalline water in the amorphous phase in the mixtures was constant, regardless of the water content. One exception was poly(vinyl methyl ether)(PVME)/water mixtures, due to its special structure. The ions in the PAA/water mixtures could change the melting point of freezable bound water and melting enthalpy. The heat capacity of water in the PAA/water mixtures showed that the mobility of the bound water was higher than that of the glassy water. With increasing water content, the average interaction between polymer and water decreased. PVME formed association with water; however, the association was not stable. The process that PVME and water hydrated during cooling was slow. The different thermal histories could affect the amount of different states of water. The Tm of the freezable bound water didn’t vary with the water content evidently, while the ones of free water changed. Time for free water and bound water to interact with PVME is different, due to various interactions. The investigation on the Cp of water in the PVME/water mixtures revealed that the the interaction between PVME and water was small and didn’t change with water content. The content of non-freezable water indicated that the non-freezable water is mainly responsible for the phase separation. The permeabilities of different commercial contact lenses showed that the free volume theory provided the best fitting results for the experimental values. NaCl permeability in lenses increased with the content of freezable water and the ratio of freezable water to non-freezable water, showing that the freezable water is mainly responsible for salt diffusion in the polymer hydrogels. The permeability could be increased by increasing the content of freezable water.
引文
[1] Peppas N A, Hydrogels in Medicine and Pharmacy, New York: Wiley, 1987.
    [2] Peppas N A, Wright S L, Solute diffusion in poly(vinyl alcohol)/poly(acrylic acid) interpenetrating networks, Macromolecules, 1996,29(27):8798~8804.
    [3] Pissis P, Kyritsi A, Electrical conductivity studies in hydrogels, Solid State Ionics, 1997, 97:105~113.
    [4] Piss P, Kyritsis A, Konsta A A, Daoukaki D. Polymer-water interaction in PAA hydrogel. Colloids Surfaces A: Physicochem Eng Aspects, 1999, 149:253~262.
    [5] Hajime M, Masato M, Mitsuru S. Ion-specific swelling of hydrophilic polymer gels, Polymer 2001, 42: 6313~6316.
    [6] Schaumann G E, Matrix relaxation and change of water state during hydration of peat, Colloids Surfaces A: Physicochem Eng Aspects, 2005, 265:163~17.
    [7] Zhang Z W, Satoh M, Komiyama J, A differential scanning calorimetry study of the states of water in swollen poly (vinyl alcohol) membranes containing nonvolatile additives. J Membr Sci, 1989, 42: 303~314.
    [8] Debenedetti P G, Supercooled and glassy water, J Phys: Condens Matter, 2003, 15: 1669~1726.
    [9] Wiggins P M,High and low density water in gels, Prog Polym Sci, 1995, 20: 1121~1163.
    [10]协板昭弘,工业技术, 1993, 34(12): 19.
    [11]姚康德,刘静聚合物中的水,高分子材料科学与工程,1999,第01期。
    [12] Tanaka H, Simple physical model of liquid water, J Chem Phys, 2000, 112(2): 799~809.
    [13] Burton E F, Oliver W F, The crystal structure of ice at low temperature, Proc R Soc A, 1935,153: 166~172.
    [14] Mayer E, New method for vitrifying water and other liquids by rapid cooling of their aerosols, J Appl Phys, 1985, 58: 663~667.
    [15] Bruggeller P, Mayer E, Complete vitrification in pure liquid water and dilute aqueous solutions, Nature (London), 1980,288:569~571.
    [16] Mishima O, Calvert L D, Whalley E,‘Melting ice’I at 77 K and 10 kbar: a newmethod of making amorphous solids, Nature (London), 1984,310: 393~395.
    [17] MacFarlane D R, Angell C A, Nonexistent glass transition for amorphous solid water, J Phys Chem, 1984, 88: 759~767
    [18] Velikov V, Borick S and Angell C A, The glass transition of water, based on hyperquenching experiments, Science, 2001, 294: 2335~2237.
    [19] Johari G P, Hallbrucker A, Mayer E, The glass liquid transition of hyperquenched water, Nature,1987, 330: 552~553.
    [20] Handa Y P, Klug D D, Heat capacity and glass transition behavior of amorphous ice, J Phys Chem, 1988, 92: 3323~3325.
    [21] Hofer K, Mayer E, Johari G P, Glass liquid transition and calorimetric relaxation of glassy aqueous solutions imbibed in poly (2-hydroxyethyl methacrylate):a comparison with bulk behavior, J Phys Chem, 1991,95: 7100~7103.
    [22] Hallbrucker A, Mayer E and Johari G P, Glassy liquid transition and the enthalpy of devitrification of annealed vapor-deposited amorphous solid water: a comparison with hyper quenched glassy water, J Phys Chem,1989, 93: 4986~4990.
    [23] Johari G P, Liquid state of low-density pressure-amorphized ice above its Tg, J Phys Chem B, 1998,102: 4711~4714.
    [24] MacFarlane D R, Angell C A, Non-existent glass transition for amorphous solid water, J Phys Chem, 1984, 88: 759~762.
    [25] Velikov V, Borick S, Angell C A, The glass transition of water, based on hyperquenching experiments, Science, 2001,294: 2335-2338.
    [26] Yue Y Z, Angell C A, Clarifying the glass-transition behaviour of water by comparison with hyperquenched inorganic glasses, Nature, 2004,427:717-720.
    [27] Chonde M, Brindza M, Sadtchenko V. Glass transition in pure and doped amorphous solid water: an ultrafast microcalorimetry study, J Chem Phys, 2006, 125: 094501-1~094501-10.
    [28] He C, Lian J S, Jiang Q, Glass Transition of Low-Density Amorphous water and related structures, J Phys Chem B, 2007, 111: 11177~11180.
    [29] Ito K, Water behavior: glass transition in hyperquenched water? Nature (London), 1999, 398: 492~495.
    [30] Giovambattista N, Angell C A, Sciortino F, Stanley H E, Glass-transition temperature of water: a simulation study. Phys Rev Lett, 2004, 93(4):047801-1~ 047801-4.
    [31] Angell C A, Liquid fragility and the glass transition in water and aqueoussolutions, Chem Rev, 2002, 102: 2627~2650.
    [32] Debenedetti P G, Stanley H E, Supercooled and glassy water, Phys Today, 2003, 56 (6): 40~46.
    [33] Mishima O, Stanley H E, The relationship between liquid, supercooled and glassy water, Nature, 1998,396: 329~335.
    [34] Nemethy G, Scheraga H, Structure of water and hydrophobid bonding in proteins. I. a model for the thermodynamic properties of liquid water, J Chem Phys, 1962, 36(12): 3382~3400
    [35] Vand V, Senior W A, The structure and partition function of liquid water,Part I.examination of the model of Nemethy and shceraga, J Chem Phys,1965,43: 1869~ 1873.
    [36] Ya Samoilov O, Structure of Aqueous Electrolyte Solutions and the Hydration of Ions, New York: Consultants Bureau, 1965.
    [37] Pauling L, in Hydrogen Bonding, Pergamon: Hadzi L, Ed, 1959, p1.
    [38] Maeda Y, Kitano H, The structure of water in polymer systems as revealed by Raman spectroscopy, Spectrochimica Acta Part A, 1995, 51: 2433~2446.
    [39] Bernal J D, Fowler R H, A theory of water and ionic solution ,with particular reference to hydrogen and hydroxyl ions, J Chem Phys,1933, 1: 515~548.
    [40] Pople J A, Molecular association in liquids: II a theory of the structure of water, Proc Roy Soc A,1951, 205: 163~178.
    [41] Plathe F M, Different states of water in hydrogels, Macromolecules, 1998, 31: 6721~6723.
    [42] Rodehed C, Rondy B, Characterization of sorbed water in saponified start-g- polyacrylonitrile with differential scanning calorimetry, J Appl Polym Sci, 1986, 32: 3309~3315.
    [43] Carles, J E, Scallan A M, The determination of the amount of bound water within cellulosic gels by NMR spectroscopy, J Appl Polym Sci, 1973, 17: 1855~1865.
    [44] Hoeve C A J, Tata A S, The structure of water absorbed in collagen, J Phys Chem,1978,82:1660~1663.
    [45] Mansor B A, Malcolm B H, DSC studies on states of water in crosslinked poly(methyl methacrylate-co-N-vinyl-2-pyrrolidone) hydrogels, Polym Int, 1994, 33: 273~277.
    [46] Bastow T D, Hodge R M, Hill A J, 1H and 13C NMR studies of water and heavy water absorption in poly(vinyl alcohol)hydrogels, J Membr Sci, 1997,131:207~215.
    [47] McBrierty V J, Martin S J, Karasz F E, Understanding hydrated polymers: The perspective of NMR, J Mol Liq, 1999, 80:179~205.
    [48] Hirata Y, Miura Y, Tanaka S, Nakagawa T, Synthesis and hydration properties of copolymers having sugar side chains and their oxygen permeability in the wet state, J Membr Sci, 2000,176:21~30.
    [49] Capitani D, Mensitieri G, Porro F, Proietti N, Segre A L, NMR and calorimetric investigation for water in s superabsorbing crosslinked network base on cellulose derivatives, Polymer, 2003, 44: 6589~6598.
    [50] McBrierty V J, Quinn F X, Keely C, Water in hydrogels. 4. Poly(N-vinyl-2- pyrrolidinone-methyl methacrylate)saline systems, Macromolecules, 1992, 25: 4281~ 4284.
    [51] Ahmad M, Huglin M, DSC studies on states of water in cross-linked poly(methyl methacrylate-co-N-vinyl-2-pyrrolidone) hydrogels, Polym Int, 1994,33:273~277.
    [52] Shibukawa M, Aoyagi K, Sakamoto R, Oguma K, Liquid chromatography and differential scanning calorimetry studies on the states of water in hydrophilic polymer gel packings in relation to retention selectivity, J Chromatogr A, 1999, 832: 17~27.
    [53] Qu X, Wirsen A, Albertsson A C, Novel pH-sensitive chitosan hydrogels: Swelling behavior and states of water, Polymer, 2000, 41: 4589~4598.
    [54] Baba T, Sakamoto R, Shibukawa M, Oguma K, J Chromatogr A, Solute retention and the states of water in polyethylene glycol and poly (vinyl alcohol)gels”, J Chromatogr A, 2004, 1040: 45~51.
    [55] Guan Y, Shao L, Yao K, State of water in the ph-sensitive chitosan-polymer semi-IPN hydrogel, J Appl Polym Sci, 1996, 61: 393~400.
    [56] Muta H, Ishida K, Tamaki E, Satoh M, An IR study on ion-specific and solvent-specific swelling of poly (N-vinyl-2-pyrrolidone) gel, Polymer, 2002, 43: 103~110.
    [57] Scherer J R, Bailey G F, Kint S F, Water in polymer membranes. 4. Raman scattering from cellulose acetate films, J Phys Chem, 1985, 89:312~319.
    [58] Malladi D P, Scherer J R, Kint S F, Bailey G F, Water in polymer membranes. Part III. Water sorption and pore volume in cellulose acetate films, J Membr Sci, 1984, 19: 209~301.
    [59] Hatakeyema T, Yamauchi A, Hatakeyema H. Studies on bound water in poly (vinyl alcohol). Hydrogel by DSC and FT-NMR, Eur Polym J, 1984, 20: 61~64.
    [60] Higuchi A, Iijima T, DSC investigation of the states of water in poly(vinylalcohol) membranes, Polymer, 1985,26:1207~1211.
    [61] Zhang W-Z, Satoh M, Komiyama J, A differential scanning calorimetry study of the states of water in swollen poly(vinyl alcohol) membranes containing nonvolatile additives, J Membr Sci, 1989, 42: 303~314.
    [62] Takizawa A, Kinoshita T, Nomuram O, Tsujita Y, Characteristics of water in copoly(methyl methacrylate-N-vinylpyrrolidone)membranes, Polym J, 1985,17:747~ 752.
    [63] Ahmad M B, Huglin M B, States of water in poly(methyl methacrylate-co-N- vinyl-2-pyrrolidone)hydrogels during swelling, Polymer, 1994, 35: 1997~2000.
    [64] Hu D S–G, Lin M T, Water-polymer interactions and critical phenomena of swelling in inhomogeneous poly(acrylonitrile-acrylamide-acrylic acid)gels, Polymer, 1984, 35: 4416~4422.
    [65] Quinn F X, Kampff E, Smyth G, McBrierty V J, Water in hydrogels. 1. a study of water in poly(N-vinyl-2-pyrrolidone/methyl methacrylate) copolymer, Macromolecules, 1988, 21:3191~3198.
    [66] Atsuko Y N, Kazuhiko I, Minoru T, Hiroshi T, 1H-NMR studies on water in methacrylate hydrogels, J Appl Polym Sci, 1990, 3: 2443~2452.
    [67] Maquet J, Thevenean H, Djabourov M, Leblonk J, Papon P, State of water in gelation solutions and gels: An 1H nmr investigation, Polymer, 1986,27: 1103~1110.
    [68] Stuart B H, Fourier transform raman study of water sorption, Polym Bull, 1995, 35: 727~733.
    [69] Stuart B H, Williams D R, The solvent-induced swelling of poly (ether ether ketone) by 1,1,2,2-tetrachloroethane, Polymer, 1994,35:1326~1328.
    [70] Kyritsis A, Pissis P, Grammatikakis J, Dielectric relaxation spectroscopy in poly(hydroxyethyl acrylates)/water hydrogels, J Polym Sci, Part B: Polym Phys,1995, 33: 1737~1750.
    [71] Ahmad M B, Omahony J P, Huglin M B, Davis T P, Ricciardone A G, Application of dielectric spectroscopy and DSC to the study of relaxations in some copolymeric hydrogels, J Appl Polym Sci, 1995, 56: 397~404.
    [72] Li W B, Xue F, Cheng R S, States of water in partially swollen poly (vinyl alcohol) hydrogels, Polymer, 2005, 46(25): 12026~12031.
    [73] Shinyashiki N, Shimomura M, Ushiyama T, Miyagawa T, Yagihara S, Dynamics of water in partially crystallized polymer/water mixtures studied by dielectric spectroscopy, J Phys Chem B, Condens Matter, 2007, 111(34): 10079~10087.
    [74] Faroongsarn D, Patchara S, Thermal behavior of water in the selected starch-and cellulose-based polymeric hydrogels, Int J Phytorem, 2008, 352: 152~158.
    [75] Ping Z H, Nguyen QT,Chen S M, Zhou J Q, Ding Y D, States of water in different hydrophilic polymers-DSC and FTIR studies, Polymer, 2001, 42: 8461~8467.
    [76] Daniliuc L, David C, Intermolecular interactions in blends of poly (vinyl alcohol) with poly(acrylic acid):Correlation between the states of sorption of water and the interactions in homopolymers and their blends, Polymer, 1996, 37(23): 5219~5227.
    [77] Hirata Y, Miura Y, Nakagawa T, Oxygen permeability and the state of water in Nafion membranes with alkali metal and amino sugar counterions, J Membr Sci, 1999, 163: 357~366.
    [78] Nagura M, Takagi N, Katakami H, Gotoh Y, Ohkoshi Y, Koyano T, Minoura N, States of water in poly(vinyl alcohol) hydrogels, Polym Gels Network, 1997, 5(5): 455~468.
    [79] Gref R, Nguyen Q T, Rault J, Neel J, Etats des solvants absorbes dans des films semi-cristallins en alcool polyvinylique—I. Gonflement dans l'eau, Eur Polym J, 1992, 28(8):1007~1014.
    [80] Hietala S, Holmberg S,Nasman J, Ostrovskii D, Paronen M, Serimaa R, Sundholm F, Torell L, Torkkelli M, The state of water in styrene-grafted and sulfonated poly (vinylidene fluoride) membranes, Angew Makromol Chem,1997, 253: 151~167.
    [81] Gimenez V, Mantecon A, Cadiz V, Water absorption and states of water in thermosets from ethylene-vinyl alcohol copolymers and dianhydrides, Acta Polym, 1998, 49(9): 502~509.
    [82] Yoshida H, Hatakeyama T, Hatakeyama H, Characterization of water in polysaccharide hydrogels by dsc, J Ther Anal,1992, 40: 483~489.
    [83] Khare A R, Peppas N A, Investigation of hydrogel water in polyelectrolyte gels using differential scanning calorimetry, Polymer, 1993, 34: 4736~4739.
    [84] Bouwstra J A, Salomonsdevries M A, Vanmiltenburg J C, The thermal behavior of water in hydrogels, Thermochim Acta, 1995, 248: 319~327.
    [85] Ishikiriyama K, Todoki M, Heat capacity of water in poly(methyl methacrylate) hydrogel membrane for an artificial kidney,J Polym Sci,Pol Phys, 1995, 33: 791~ 800.
    [86] Liu W G, Yao K D, What causes the unfrozen water in polymers: hydrogen bonds between water and polymer chains? Polymer, 2001, 42: 3943~3947.
    [87]Muffett D J, Snyder H E, Measurement of unfrozen and free water in soy proteins by differential scanning calorimetry, J Agric Food Chem, 1980, 28:1303~1305.
    [88] Lee K Y, Ha W S, DSC studies on bound water in silk fibroin /S- carboxymethyl kerateine blend films, Polymer, 1999, 40: 4131~4134.
    [89] Wolfe J, Bryant G, Koster K L, What is“unfreezable water”,how unfreezable is it and how much is there? CryoLetters, 2002, 23: 157~166.
    [90] Mashimo S, Structure of water in pure liquid and biosystem, J Non-Cryst Solids, 1994, 172-174:1117~1120.
    [91] Franks F, in“water relationships in foods: advances in the 1980s and trends for the 1990s”(Eds Levine H and Slade L), New York: Plenum Press,1991, p1.
    [92] Cheng G X, Liu J,Zhao R Z, Yao K D, Sun P C, Men A J, Wang W H,Wei L,Liu J, Studies on dynamic behavior of water in crosslinked chitosan hydrogel, J Appl Polym Sci,1998, 67: 983~988.
    [93] Li S, Dickinson L C, Chinachoti P, Mobility of“unfreezable”and“Freezable”water in waxy corn starch by 2H and 1H NMR, J Agric Food Chem, 1998, 46:62~71.
    [94] Radloff D, Boeffel C, Speiss H W, Cellulose and cellulose/poly(vinyl alcohol)blends.2.water organization revealed by solid state nmr spectroscopy, Macromolecules, 1996, 29: 1528~1534.
    [95] Jelinski L W,Durmais J J, Cholli A L, Ellis T S, Karasz F E, nature of the water-epoxy interaction, Macromolecules,1985, 18:1091~1095.
    [96]Berendsen H J C, In water: a comprehensive treatise, Franks F, Ed.New York: Plenum Press,1975.
    [97] Taniguchi Y, Horigome S, The states of water in cellulose acetate membraces, J Appl Polym Sci, 1975, 19: 2743~-2748.
    [98] Smyth G, Quinn F X, McBrierty V J, Water in hydrogels.2. a study of water in poly(hydroxyethyl methacrylate), Macromolecules, 1988,21:3198~3204.
    [99] Lue S J, Shieh S J, Modeling water states in polyvinyl alcohol-fumed silica nano-composites, Polymer, 2009, 50: 654~661.
    [100] Bair H E, Johuson G E, Anderson E W, Matsuoka S, Non equilibriym annealing behavior of poly(vinyl acetate), Polym Eng Sci, 1981, 21(14): 930~935.
    [101] Sung Y K, Gregonis D E, Jhon M S, Andrade J D, Thermal and pulse NMR analysis of water in poly(2-hydroxyethyl methacrylate), J Appl Polym Sci, 1981, 26: 3719~3728.
    [102] Cha W I, Hyon S H, Ikada Y, Microstructure of poly(vinyl alcohol)hydrogelsinvestigated with differential scanning calorimetry, Makromol Chem, 1993, 194: 2433~2441.
    [103] McConville P,Whittaker M K, Pope J M, Water and polymer mobility in hydrogel biomaterias quantified by 1HNMR: a simple model describling both T1 and T2 relaxation, Macromolecules, 2002, 35: 6961~6969.
    [104] Kim S J, Lee C K, Kim S I, Characterization of the water state of hyaluronic acid and poly (vinyl alcohol) interpenetration polymer networks, J Appl Polym Sci, 2004, 92: 1467~1472.
    [105] Sakai Y,Kuroki S, Satoh M, Water properties in the super-salt-resistive gel probed by NMR and DSC, Langmuir, 2008, 24:6981~6987.
    [106] Gupta B, Haas O, Scherer G G, Porton exchange membranes by radiation grafting of styrene onto FEP films, IV. Evaluation of the states of water, J Appl Polym Sci, 1995, 57: 855~862.
    [107] Weise U, Maloney T, Paulapuro H, Quantification of water in different states of interaction with wood pulp fibres, Cellulose, 1996, 3:189~202.
    [108] Pontie M, Lemordant D, Water characterization in composite organic membranes by thermal analysis, J Membrane Sci, 1998, 141:13~17.
    [109] Liu W G, Li F, Yao K D, Thermal and NMR investigation of the change in the states of water caused by volume phase transition of gelation gel, Polym Int, 2000, 49: 1624~1628.
    [110] Meakin J R, Hukins D W L, Imrie C T, Aspden R M, Thermal analysis of poly(2-hydroxyethyl methacrylate)(HEMA) hydrogels, J Materals Sci: Materals in medicine, 2003, 14: 9~15.
    [111] Ghi P, Hill D J T, Whittaker A K, 1HNMR study of the states of water in equilibrium poly(HEMA-co-THFMA)hydrogels,Bomacromolecules, 2002, 3: 991~ 997.
    [112] Kaatze U, On the existence of bound water in biological systems as probed by dielectric spectroscopy, Phys Med Biol, 1990, 35(12):1663~1681.
    [113] Fushimi H, Ando I, Iijima T, States of water in cationically charged poly(vinyl alcohol)membranes, Polymer, 1991, 32(2): 241~248.
    [114] Ruiz J, Mantecon A, Cadiz V, States of water in poly (vinyl alcohol) derivative hydrogels, J Polym Sci: Part B, Polym Phys, 2003, 41:1462~1467.
    [115] McBrierty V J, Wardell G E, Keely C M, O’Neill E P, Prasad M, The characterization of water in peat, Soil Sci Am J,1996, 60: 991~1000.
    [116] Carenza M,Cojazzi G, Bracci B, Lendinara L,Vitali L,Zincani M, Yoshida M, Karakai R, Takacs E, Higa O Z, Martellini F, The state of water in thermoresponsive poly(acryloyl-L-proline methyl ester)hydrogels observed by DSC and 1H-NMR relaxometry, Radiation Phys Chem, 1999, 55: 209~218.
    [117] Kalapos T L, Decker B, Every H A, Ghassemi H, Zawodzinski Jr T A, Thermal studies of the state of water in proton conducting fuel cell memebranes, J Power Sources, 2007, 172: 14~19.
    [118] Rault J, Lucas A, Neffati R, Pradas M M. Thermal Transitions in Hydrogels of Poly(ethyl acrylate)/Poly(hydroxyethyl acrylate) Interpenetrating Networks, Macromolecules, 1997, 30: 7866~7873.
    [119] Tian Q, Zhao X A, Tang X Z, Zhang Y X, Fluorocarbon-containing hydrophobically modified poly(acrylic acid)gels:gel structure and water state, J Appl Polym Sci, 2003, 89: 1258~1265.
    [120] Mashimo S, Shinyashiki N, Matsumura Y, Water structure in gellan gum-water system, Carbohydrate Polymers, 1996, 30: 141~144.
    [121] Hoffman A S, Hydrogels for biomedical applications, Adv Drug Delivery Rev, 2002, 43: 3~12.
    [122] Ohno H, Shibayama M,Tsuchida E, Dsc analyses of bound water in the microdomains of interpolymer complexes, Makromol Chem,1983,184:1017-1024.
    [123] Cojazzi G, Pizzoli M, Thermal behavior of water in crosslinked dextran, Macromol Chem Phys,1999, 200: 2356~2364.
    [124] Li B H, Ding D T,Sun P H, Wang Y N, Ma J B, He B L, PGSE NMR studies of water states of hydrogel P(Am-NaA), J Appl Polym Sci, 2000,77: 424~427.
    [125] Ravindra R, Krovvidi K R, Khan A A, Rao A K, Dsc studies of states of water, hydrazine and hydrazine hydrate in ethylcellulose membrane, Polymer,1999,40: 1159~1165.
    [126] Ostrovskii D, Paronen M, Sundlholm F, Torell L M, State of water in sulfonated poly(vinyl fluoride)membranes: an FTIR study, Solid State Ionics, 1999,116:301~ 310.
    [127] Kyritsis A, Pissis P, Ribelles J L G, Pradas M M, Polymer-water interactions in poly(hydroxyethyl acrylate)hydrogels studied by dielectric, calorimetric and sorption isotherm measurements, Polym Gels Networks, 1995, 3: 445~469.
    [128] Pedley D G, Tighe B J, Water binding properties of hydrogel polymers for reverse osmosis and related applications, Br Polym J, 1979, 11: 130~136.
    [129] Roorda W E, Bouwstra J A, de Vries M A, Junginger H E, Thermal analysis of water in p(HEMA) hydrogels, Biomaterials,1988, 9: 494~499.
    [130] Roorda W, Do hydrogels contain different classes of water, J Biomater Sci, Polymer Edn,1994, 5(5): 383~395.
    [131] Laporta M, Pegoraro M, Zanderighi L, Perfluorosulfonated membrane (Nafion): FTIR study of the state of water with increasing humidity, Phys Chem Chem Phys, 1999, 1: 4619~4628.
    [132] Corkhill P H, Jolly A M, Ng C O, Tighe B J, Synthetic hydrogels:1. hydroxyalkyl acrylate and methacrylate copolymers-water binding studies, Polymer, 1987, 28: 1758~1766.
    [133] Hofer K, Mayer E, Johari G P, Glass-liquid transition of water and ethylene glycol solution in poly(2-hydroxyethyl methacrylate)hydrogel, J Phys Chem, 1990,94: 2689~2696.
    [134] McBrierty V J, Martin S J, KaraszvF E, Understanding hydrated polymers: the perspective of NMR, J Mol Liq, 1999, 80: 179~205.
    [135] Hamilton C J,Murphy S M,Artherton N D, Tighe B J, Synthetic hydrogels:4. the permeability of poly(2-hydroxyethyl methacrylate) to cations-an overview of solute-water interactions and transport processes, Polymer, 1988, 29: 1879~1886.
    [136] Edsall J T, Mckenzie H A, Water and proteins, Contributor sketches, Adv Biophys, 1983,16: 153~183.
    [137] Yamane T, Ichiryu T, Nagata M, Ueno A, Intramolecular esterification by lipase powder in microaqueous benzene:factors affecting activity of pure enzyme, Shimizu S. Biotechnol Bioeng, 1990, 36(10):1063~1069.
    [138] Hoffman AS, Afrassiabi A, Dong LC, Volume phase transition in a nonionic gel, J Control Release, 1986, 4(3): 213~222.
    [139] Okhamafe AO, York P, Characterization of moisture interactions in some aqueous-based tablet film coating formulations, J Pharm Pharmacol, 1985,37(6): 385~ 390.
    [140] Taddei P, Balducci F, Simoni R, Monti P, Raman, IR and thermal study of a new highly biocompatible phosphorylcholine-based contact lens, J Mol Struct, 2005, 744– 747: 507~514.
    [141] Kim D S, Park H B, Rhim J W, Lee Y M, Conductivity and methanol transport PVA/PAA/silica hybrid membranes, Solid State Ionics, 2005,176:117~26.
    [142] Chen W F, Kuo P L, Covalently cross-linked perfluorosulfonated membraneswith polysiloxane framework, Macromolecules, 2007, 40(6): 1987~1994.
    [143] Tanaka M, Mochizuki A, Effect of water structure on blood compatibility- thermal analysisi of water in poly(meth)acrylate, J Biomed Mater, Res Pt A, 2004, 68(4): 684~695.
    [144] Pradas M M,Ribelles J L G,Aroca A S, Ferrer G G, Anton J S, Pissis P, Interaction between water and polymer chains in poly(hydroxyethyl acrylate) hudrogels, Colloid Polym Sci, 2001, 279: 323~330.
    [145] Hara N,Ohashi H,Ito T,Yamaguchi T, Rapid proton conduction through unfreezable and bound water in a wholly aromatic pore-filling electrolyte membrane, J Phys Chem B, 2009, 113: 4656~4663.
    [146] Lele A K, Hirve M M, Badiger M V, Mashelkar R A, predictions of bound water content in poly(N-isopropylacrylamide)gel, Macromolecules, 1997, 30: 157~159.
    [147] Barnes A, Corkhill P H, Tighe B J, Synthetic hydrogels:3.hydroxyalkyl acrylate and methacrylate copolymers:surface and mechanical properties, Polymer, 1988, 29: 2191~2202.
    [148] Corkhill P H, Jamilton C J, Tighe B J, Synthetic hydrogels VI.hydrogel composites as wound dressings and implant materials, Biomaterials,1989, 10:3~10.
    [149] Murphy S M, Skelly P J,Tighe B J, Synthetic hydrogels,Part 9-preparation and characterization of macroporous hydrophilic matrices, J Mater Chem, 1992, 2(10): 1007~1013.
    [150] Jhon M S, Andrade J D, Water and hydrogels, J Biomed Mater Res,1973, 7: 509~522.
    [151] Shibukawa M, Aoyagi K, Sakamoto R, Oguma K, Liquid chromatography and differential scanning calorimetry studies on the states of water in hydrophilic polymer gel packings in relation to retention selectivity, J Chromatography A,1999,832:17~27.
    [152] Goda T, Watanabe J, Takai M, Ishihara K, Water structure and improved mechanical properties of phospholipid polymer hydrogel with phosphorylcholine centered intermolecular cross-linker, Polymer, 2006, 47: 1390~1396.
    [153] Wan L S, Xu Z K, Huang X J,Wang Z G, Ye P, Hemocompatibility of poly(acrylonitrile- co-N-vinyl2-pyrrolidone)s:swelling behavior and water states, Macromol Biosci, 2005, 5: 229~236.
    [154] Zaman M A, Martin G P, Rees G D, Royall P G, the effect of hydration on the thermal behaviour of hydrophilic non-aqueous gels stabilized by carbopol974P, Thermochimica Acta, 2004, 417: 251~255.
    [155] Vedamuthu M, Singh S, Robinson G W, Properties of liquid water: origin of the density anomalies, J Phys Chem, 1994, 98: 2222~2230.
    [156] Wiggins P M, Van Ryn R T, The solvent properties of water in desalination membranes, J Macromol Sci Chem, 1986, A23: 875~903
    [157] Wiggins P M. Water structure in polymer membranes, Prog Polym Sci, 1988, 13: 1~35.
    [158] Mccrystal C B, Ford J L, Rajab-Siahboomi A R,Water distribution studies within cellulose ethers using differential scanning calorimetry. 2. effect of polymer substitution type and drug addition, J Pharm Sci,1999, 88(8): 797~801.
    [159] Samchenko Y M, Atamanenko I D, Poltoratskaya T P, UI’berg Z R, The state of water in finely disperse hydrogels based on acrylamide and acrylic acid, Colloid J, 2006, 68: 613~616.
    [160] Gonzalez N, Elvira C, Roman J S, Hydrophilic and hydrophobic copolymer systems based on acrylic derivatives of pyrrolidone and pyrrolidine, J Polym Sci, Part A: Polym Chem, 2003,41:395~407.
    [161] Nakamur K, Minagay Y, Hatakeyam T, Hatakeyama H, Dsc studies on bound water in carboxymethylcellulose-polylysine complexes, Thermochimica Acta, 2004, 416: 135~140.
    [162] Yasunaga H, Shirakawa Y, Urakawa H, Kajiwara K, Dynamic behaviour of water in hydrogel containing hydrophobic side chains as studied by pulse 1HNMR, J Mol Struct, 2002,602-603:399~404.
    [163] Sung Y K, Gregonis D E, John M S, Andrade J D, Thermal and pulse NMR analysis of water in poly(2-hydroxyethyl methacrylate), J Appl Polym Sci, 1981, 26: 3719~3728.
    [164] Collett J H, Spillane D E M, Pywell E J, Infrared attenuated total reflectance (ATR) in the characterization of water structure within polyHEMA hydrogels. ACS Polym Reprints, 1987, 28: 141~142.
    [165] Liu Y, Huglin M B, Observations by DSC on bound water structure in some physically crosslinked hydrogels, Polymer Int, 1995, 37: 63~67.
    [166] Coyle F M, Martin S J, McBriety V J, Dynamics of water molecules in polymers, J Mol Liq, 1996, 69: 95~116.
    [167] Cupenrus F P,Bargeman D, Smolders C A, Critical points in the analysis of membrane pore structures by thermoporometry, J Membr Sci, 1992, 66: 45~53.
    [168] Arndt K F, Zander P, Characterization of polymer networks by measurementsof the freezing point depression, Colloid Polym Sci, 1990, 268: 806~813.
    [169] Roorda W E, Bouwstra J A, Devries M A, Junginger H E, Thermal analysis water in pHEMA hydrogels, Biomaterials, 1988, 9: 494~499.
    [170] Sanchez M S, Ferrer G G, Pradas M M, Ribelles J L G. Influence of the hydrophobic phase on the thermal transitions of water sorbed in a polymer hydrogel based on interpenetration of a hydrophilic and a hydrophobic network, Macromolecules, 2003, 36: 860~866.
    [171] Filho G R, Bueno W A, Water state of cuprophan (hemodialysis membrane), J Membr Sci, 1992, 74: 19~27.
    [172] Okoroafor E U, Newborough M, Highgate D, Augood P, The thermal behavior of water in crosslinked hydro-active polymeric structure:crystallization of water, J Phys D:Appl Phys, 1998, 31: 3120~3129.
    [173] Roorda W E, Bleyser J D, Junginger H E, Leyte J C, Nuclear magnetic relaxation of water in hydrogels, Biomaterials, 1990, 11: 17~23.
    [174] Pissis P, Kyritsis A, Konsta A A, Daoukaki D, Polymer-water interactions in PAA hydrogels, Colloids and Surfaces A, 1999, 149: 253~262.
    [175] Gomez A H, Cruz G V, Polo M O M, Analysis of the water bound to a polymer matrix by infrared spectroscopy, J Appl Phys, 2001, 89(10): 5431~5437.
    [176] Ferrer G G, Pradas M M, Ribelles J L G, Sanchez M S, Thermodynamical analysis of the hydrogel state in poy(2-hydroxyethyl acrylate), Polymer, 2004, 45: 6207~6217.
    [177] Pirjo L, Thad M, Jukka R,Hannu P, Jouko Y, Microcrystalline cellulose-water interaction-A novel approach using thermoporosimetry, Pharm Res, 2001,18(11): 1562~1569.
    [178] Rennie G K, Clifford J, Melting of ice in porous solids, J Chem Soc, Faraday Trans, 1977,73: 680~689.
    [179] Takamuku T, Yamagami M, Wakita H, Masuda Y, Yamaguchi T, Thermal property, structure, and dynamics of supercooled water in porous silica by calorimetry, neutron scattering, and NMR relaxation, J Phys Chem B, 1997, 101: 5730~5739.
    [180] Li J C, Ross D K, Benham M J, Small-angle neutron scattering studies of water and ice in porous Vycor glass, J Appl Crystallogr, 1991, 24: 794~802.
    [181] Morishige K, Kawano K, Freezing and melting of water in a single cylindrical pore: the pore-size dependence of freezing and melting behavior, J Chem Phys, 1999, 110(10): 4867~4872.
    [182] Mataz A, Gregory B M, Effects of confinement on material behaviour at the nanometer size scale, J Phys Condens Matter, 2005,17: 461~524.
    [183] Buffat P H, Borel J-P, Size effect on the melting temperature of gold particles Phys Rev A, 1976, 13: 1050~2947.
    [184] Castro T, Reifenberger R, Size-dependent melting temperature of individual nanometer-sized metallic clusters, Phys Rev B, 1990, 42: 8548~56.
    [185] Lai S L, Guo J Y, Petrova V, Ramanath G,Allen L H, Size-dependent melting properties of small tin particles: nanocalorimetric measurements, Phys Rev Lett, 1996, 77: 99~102.
    [186] Peters K F, Cohen J B, Chung Y, Melting of Pb nanocrystals Phys Rev B, 1998, 57: 13430~13438.
    [187] Zhang Z, Li J C, Jiang Q, Finite size effect on melting enthalpy and melting entropy of nanocrystal, Physica B, 1999, 270: 249~254.
    [188] Nanda K K, Sahu S N, Behera S N, Liquid-drop model for the size-dependent melting of low dimensional systems, Phys Rev A, 2002,66: 013208-1~ 013208-8.
    [189] Rault J, Neffati R, Judeinstein P, Melting of ice in porous glass: why water and solvents confined in small pores do not crystallize, Eur Phys J B, 2003, 36: 627~637.
    [190]Kontogiorgos V, Goff H D, Calorimetric and microstructural investigation of Frozen Hydrated Gluten, Food Biophysics, 2006,1(4): 202~215.
    [191] Hatakeyma T, Kasuga H, Tanaka M, Hatakeyama H, Cold rystallization of poly(ethylene glycol)-water systems, Thermochimica Acta, 2007, 465: 59~66.
    [192] Kitagawa T, Yabuki K, An analysis of capillary water behavior in poly-p-phenylenebenzobisoxazole fiber, J Appl Polym Sci, 2001, 80:1030~1036.
    [193] Cerveny S, Colmenero J, Alegria A, Dynamics of confined water in different enviroments, Eur Phys Special Topics, 2007, 141: 49~52.
    [194] Baba T, Shibukawa M, Heya T, Abe S-I, Oguma K, Liquid chromatography and differential scanning calorimetry studies on the states of water in polystyrene- divinybenzene copolymer gels, J Chromatogr A, 2003, 1010: 177~184.
    [195] Rault J, Gref R, Ping Z H, Nguyen Q T, Neel J, Glass transition temperature regulation effect in a poly(vinyl alcohol)-water system,Polymer,1995,36(8):1655~ 1661.
    [196] Rault J, Ping Z H, Nguyen T, the Tg regulation effect in hydrophilic polymers, J Non-Cryst Solids, 1994, 172-174: 733~736.
    [197] Sanchez M S, Pradas M M, Ribelles J L G, Thermal transitions of benzene in apoly(ethyl acrylate) network, J Non-Cryst Solids, 2002, 307-310: 750~757.
    [198] Wolfe J, Bryant G, Koster K L, What is“unfreezable water”,how unfreezable is it and how much is there? CryoLetters, 2002, 23: 157~166.
    [199] Franks F, Unfrozen water, yes, unfreezable water, hardly, bound water, certainly not, Cryo-Letters, 1986, 7: 207~208.
    [200] Zhang JM, Berge B, Meeussen F, Nies E, Berghmans H, Shen D, Influence of the interactions in aqueous mixtures of poly(vinyl methyl ether) on the crystallization behavior of water, Macromolecules, 2003, 36: 9145~9153.
    [201] Loozen Els, Durme K V, Nies E, The anomalous melting behavior of water in aqueous PVME solutions, Polymer, 2006, 47: 7034~7042.
    [202] Afroze F, Nies E, Berghmans H, Phase transitions in the system poly(N- isopropylacrylamide)/water and swelling behaviour of the corresponding networks, J Mol Struct, 200, 554: 55~68.
    [203] Nguyen Q T, Favre E, Ping Z H, Neel J, Clustering of solvents in membranes and its influence on membrane transport properties, J Membrane Sci,1996,113: 137~ 150.
    [204] Maeda H, Interaction of water with poly(vinyl methyl ether)in aqueous solution, J Polym Sci Part B, 1994, 32: 91~97.
    [205] Meeussen F, Bauwens Y, Moerkerke R, Nies E, Berghmans H, Molecular complex formation in the system poly(vinyl methyl ether)/water, Polymer, 2000,41: 3737~3743.
    [206] Nemethy G, Scheraga H A, Effect of urea on hydrogen bonding in proteins II model for the thermodynamic properties of aqueous solutions of hydrocarbons, J Chem Phys, 1962, 36: 3401~3417.
    [207] Zhang J M, Teng H X, Zhou X S, Shen DY, Frozen bound water melting induced cooperative hydration of poly(vinyl methyl ether)in aqueous solution, Polym Bull, 2002, 48: 277~282.
    [208] Sperling L H, Introduction to Polymer Science, John Wiley and Sons Inc, 2001.
    [209] Okada H, Doken Y, Ogawa Y, Toguchi H, Preparation of three-month injectable microspheres of leuprorelin acetate using biodegradable polymers, Pharm Res, 1994, 11: 1143~1147.
    [210] Chen T, Fowler A, Toner M, Literature review: supplemented phase diagram of the trehalose–water binary mixture, Cryobiology, 2000, 40: 277~282.
    [211] Hancock B C, Zografi G, The relationship between the glass transitiontemperature and water content of amorphous pharmaceutical solids, Pharm Res 1994, 11: 471~477.
    [212] Hatakeyama H, Hatakeyama T, Interaction between water and hydrophilic polymers, Thermochimica Acta, 1998, 308: 3 ~22.
    [213] Chang Y P, Cheah P B, Seow C C, Antiplasticization–plasticization effects of water on physical properties of tapioca starch films in the glassy state, J Food Sci, 2000, 65: 445~451.
    [214] Roos Y, Karel M, Water and molecular weight effects on glass transitions in amorphous carbohydrates and carbohydrate solutions,J Food Sci,1991,56:1676~1681.
    [215] Sothornvit R, Reid D S, Krochta J M, Plasticizer effect on the glass transition temperature of beta-lactoglobulin films, Trans. ASAE, 2000, 45:1479~1484.
    [216] Illinger J L, Interaction of water with hydrophilic polymer polyurethanes: dsc studies of the effects of polyether variations, Polym Sci Technol. (Plenum), 1977, 10: 313~325.
    [217] Guo J H, Effects of plasticizers on water permeation and mechanical properties of cellulose acetate: Antiplasticization in slightly plasticized polymer film, Drug Dev. Ind Pharm,1993, 19: 1541~1545.
    [218] Schaumann G E, Antelmann O, Thermal characteristics of soil organic matter measured by DSC: A hint on a glass transition, J Plant Nutr Soil Sci,2000,163:179~ 181.
    [219] Blasi P, D’Souza S S, Selmin F, DeLuca P P, Plasticizing effect of water on poly(lactide-co-glycolide), J Control Release,2005,108:1~9.
    [220] Yoshida H, Hatakeyama T,Hatakeyama H, effect of water on the main chain motion of polysaccharide hydrogels, ACS Synposium Series, 1992, 489: 217~230.
    [221]Karlsson G E, Gedde U W, Hedenqvist M S. Molecular dynamics simulation of oxygen diffusion in dry and water-containing poly(vinyl alcohol), Polymer, 2004, 45: 3893~3900.
    [222]Hodge R M, Bastow T J, Edward G H, Simon G P, Hill A J, Free volume and the mechanism of plasticization in water-swollen poly(vinyl alcohol), Macromolecules, 1996, 29: 8136~8145.
    [223] Johnson G E, Bair H E, Matsuoka S, Anderson E W, Scott J E. Water in polymers. Washington DC: ACS Books, 1980, Chap 27.
    [224] Murase N, Gonda K, Watanabe T, Unfrozen compartmentzlized water in gels and its anomalous crystallization during warming, J Phys Chem,1986,90:5420~5426.
    [225] Patil R D, Mark J E, Apostolov A, Vassileva E, Fakirov S, Crystallization of water in some crosslinked gelatins, Eur Polym J, 2000,36:1055~1061.
    [226] Pathmanathan K, Johari G P, Relaxation and crystallization of water in a hydrogel, J Chem Soc. Faraday Trans,1994,90(8):1143~1148.
    [227] Zhang J M, Zhang G B, Wang J J, Lu Y L, Shen D Y, Infrared spectroscopic study on the crystallization of water in poly(vinyl methyl ether)aqueous solution during heating, J Polym Sci, Part B:Polym Phys, 2002, 40: 2772~2779.
    [228] Tanaka M, Motomura T, Ishii N, Shimura K, Onishi M, Mochizuki A, Hatakeyama T, Cold crystallization of water in hydrated poly(2-methoxyethyl acrylate)(PMEA), Polym Int, 2000,49: 1709~1713.
    [229] Eisenberg D, Kauzmann W, The Structure and Properties of Water, Oxford: Oxford University Press, 1969, p225.
    [230] Gurney R W, Dover, New York: Ionic Processes in Solution, 1953.
    [231] Leberman R, Soper A K, Effect of high salt concentrations on water structure, Nature (London),1995, 378, 364~366.
    [232] Bruni F,Ricci M A, Soper A K, Structural characterization of NaOH aqueous solution in the glass and liquid state, J Chem Phys, 2001,114: 8056~8063.
    [233] Botti A, Bruni F, Imberti S, Ricci M A, Ions in water: the microscopic structure of concentrated NaOH solutions, J Chem Phys, 2004, 120(21): 10154~10162.
    [234] Lukyanov S I, Zidi Z S, Shevkunov S V, Bicanonical monte carlo simulation of the structural properties of Cl-(H2O)N clusters using entropy data based model, J molecular structure: THEOCHEM, 2005, 725: 191~206.
    [235] Shevkunov S V, Lukyanov S I, Leyssale J M, Millot C, Computer simulation of Cl- hydration in anion-water clusters, Chem Phys, 2005,310: 97~107.
    [236] Estrin D A, Kohanoff J, Laria D H, Weht R O, Hybrid quantum and calssical mechanical monte carlo simulations of the interaction of hydrogen chloride with solid water clusters, Chem Phys Lett,1997,280: 280~286.
    [237] Botti A, Bruni F, Imberti S, Ricci M A, Ions in water: the microscopic structure of a concentrated HCl solution, J Chem Phys, 2004,121:7840~7848
    [238] Chen N J, Morikawa J, Hashimoto T, Effect of cryoprotectants on eutectics of NaCl.2H2O/ice and KCl.2H2O/ice studied by temperature wave analysis and differential scanning calorimetry, Thermochimica Acta, 2005,431:106~112.
    [239] Chowdhuri S, Chandra A, Hydration structure and diffusion of ions in suprecooled water: ion size effects, J Chem Phys, 2003, 118(21): 9719~9725.
    [240] Holzmann J, Ludwig R, Geiger A, Paschek D, Pressure and slat effects in simulated water:two sides of the same coin?, Angew Chem Int.Ed,2007,46: 8907~ 8911.
    [241] Corrakini D, Gallo P, Rovere M, Thermodynamic behavior and structural properties of an aqueous sodium chloride solution upon supercooling, J Chem Phys, 2008, 128: 244508-1~244508-9.
    [242] Bruni F, Ricci M A, Soper A K, Structural characterization of NaOH aqueous solution in the glass and liquid states, J Chem Phys, 2001, 114: 8056~8063.
    [243] Busing W R, Hornig D F. The effect of dissolved KBr, KOH or HCl on the raman spectrum of water, J Phys Chem, 1961, 65: 284~292.
    [244] Zatsepina P N. State of the hydroxide ion in water and in aqueous solution, J Struct Chem, 1971,12: 894~898.
    [245] Schioberg, D, Zundel G, Very polarizable hydrogen bonds in solution of bases having infra-red absorption continua, J Chem Soc Faraday Trans, 1973, 69: 771~781.
    [246] Chen B, Park J M, Ivanov I, Tabacchi G, Klein M L, Parrinello Michele, first- principles study of aqueous hydroxide solutions, J Am Chem Soc, 2002,124: ,8534~ 8535.
    [247] Muta H,IshidaK,Tamaki E, Satoh M, an IR study on ion-specific and solvent- specific swelling of poly(N-vinyl-2-pyrrolidone)gel, Polymer, 2002, 43: 103~110.
    [248] Livney Y D, Ramon O, Kesselman E, Cogan U, Mizurahi S, Cohen Y, Swelling of Dextran gel and osmotic pressure of soluble dextran in presence of salts, J Polym Sci. Part B Polym Phys, 2001, 39: 2740~2750.
    [249] Franks F,In:Franks F,Ed,Water,New York:Plenum,New York,1975,vol 4,p 461.
    [250] Piculell L, Nilsson S, Anion-specific salt effects in aqueous agarose systems. 1.effects on the coil-helix transition and gelation of agarose, J Phys Chem, 1989, 93: 5602~5611.
    [251] McBain J W, Colloid Science, Boston: Health, 1954,131.
    [252] Takano M, Ogata K, Kawauchi S, Satoh M, Komiyama J, Ion-specific swelling behavior of poly(N-vinyl-2-pyrrolidone)gel: correlations with water hydrogen bond and non-freezable water, Polymer Gels and Networks,1998, 6: 217~232.
    [253] Muta H, Miwa M, Satoh M, Ion-specific swelling of hydrophilic polymer gels, Polymer, 2001, 42: 6313~6316.
    [254] Tranoudis I, Efron N, Water properties of soft contact lens materials, Contact Lens&Anterior Eye, 2004, 27: 193~208.
    [255]Quinn F X, McBriety V J, Wilson A C, Friends G D, Water in hydrogels.3-poly hydroxyethyl methacrylate/saline solution systems, Macromolecules,1990,23: 4576~ 4581.
    [256] Pyda M, Conformational heat capacity of interaction systems of polymer and water, Macromolecules, 2002, 35: 4009~4016.
    [257] Tombari E, Ferrari C, Salvetti G, Heat capacity anomaly in a large sample of supercooled water, Chem Phys Lett,1999, 300: 749~751.
    [258] Angell C A, Ogunl M, Sichina W J, Heat capacity of water at extremes of supercooling and superheating, J Phys Chem, 1982, 86: 998~1002.
    [259] Tombari E, Salvetti G, Ferrari C, Johari G P, Heat capacity of water in nanopores, J Chem Phys, 2005,123:214706-1~214706-5.
    [260] Pyda M, Hu X, Cebe P, Heat capacity of silk fibroin based on the vibrational motion of poly(amino acid)s in the presence and absence of water, Macromolecules, 2008, 41: 4786~4793.
    [261] Pyda M, Boller A, Grebowicz J, Chuah H, Lebedev B V,Wunderlich B, Heat capacity of Poly(trimethylene terephthalate), J Polym Sci: Part B: Polym Phys,1998, 36: 2499~2511.
    [262] Pyda M, Bopp R C, Wunderlich B, Heat capacity of poly(lactic acid), J Chem Termodyn, 2004,36:731~742.
    [263] Pyda M, Durme K V, Wunderlich B, Mele B V, Heat capacity of poly(vinyl methyl ether), J Polym Sci, Part:B Polym Phys, 2005, 43: 2141~2153.
    [264] Pyda M, Conformational contribution to the heat capacity of the starch and water system, J Polym Sci: Part B: Polym Phys, 2001, 39: 3038~3054.
    [265] Ishikiriyama K, Todoki M, Heat capacity of water in poly(methyl methacrylate)hydrogel membrane for an artificial kidney, J Polym Sci Part B, Phys, 1995, 33: 791~800.
    [266]Schild H G, Tirrell D A, Microcalorimetric Detection of Lower Critical Solution Temperatures in Aqueous. Polymer Solutions, J Phys Chem, 1990, 94: 4352~ 4356.
    [267] Arndt K F, Schmidt T, Menge H, Poly(vinyl methyl ether) hydrogel formed by high energy irradiation, Macromol Symp, 2001, 164: 313~322.
    [268] Maeda, Y. IR Spectroscopic study on the Hydration and the Phase Transition of Poly(vinyl methyl ether) in Water, Langmuir, 2001, 17: 1737~1742.
    [269] Schafer-Soenen H, Moerkerke R,Berghmans H, Koningsveld R, Zero and Off-Zero Critical Concentrations in Systems Containing Polydisperse Polymers? withVery High Molar Masses. 2. The System Water?Poly (vinyl methyl ether), Macromolecules, 1997, 30: 410~416.
    [270] Moerkerke R, Koningsveld R, Berghmans H, Dusek K, Solc K, Phase Transitions in Swollen Networks, Macromolecules, 1995, 28: 1103~1107.
    [271] Moerkerke R, Meeussen F, Berghmans H, Mondelaers W, Schacht E, Dusek K, Solc K, Phase Transitions in Swollen Networks. 3. Swelling Behavior of Radiation Cross-Linked Poly(vinyl methyl ether) in Water,Macromolecules,1998,31:2223~2229.
    [272] Tanaka H, AIP Conf. Proc. Slow Dyn Condens Matter, 1992, 256: 238~239.
    [273] Solc K, Dusek K, Koningsveld R, Berghmans H, Collect Czech Chem Commun, 1995, 60: 1661~1688.
    [274] Maeda Y, Mochiduki H, Yamamoto H, Nishimura Y, Ikeda I, Effect of ions on two-step phase separation of poly(vinyl methyl ether)in water as studied by IR and Raman spectroscopy, Langmuir, 2003,19:10357~10360.
    [275] McConville P,Pope J M, A comparison of water binding and mobility in contact lens hydrogels from NMR measurement of the water self-diffusion coefficient, Polymer, 2000, 41: 9081~9088.
    [276] McConville P, Pope J M, 1H NMR T2 relaxation in contact lens hydrogels as a probe of water mobility, Polymer, 2001, 42: 3559~3568.
    [277] Thimmegowda M C, Sathyanarayana P M, Shariff G, Ashalatha M B, Ramani R, Ranganathaiah C, A free volume microprobe study of water sorption in a contact lens polymer, J Biomater Sci, Polymer Edn, 2002, 13(12):1295~1311.
    [278] Beruto D T, Botter R, Role of the water matric potential(ψM)and of equilibrium water content(EWC) on the water self-diffusion coefficient and on the oxygen permeability in hydrogel contact lenses, Biomaterials, 2004, 25: 2877~2883.
    [279] Murphy S M, Hamilton C J, Tighe B J, synthetic hydrogels: 5.transport processes in 2-hydroxyethyl methacrylate copolymers, Polymer,1988,29: 1887~1893.
    [280] Maldonado-Codina C,Efron N, An investigation of the discrete and continuum models of water behavior in hydrogel contact lenses, Eye& Contac Lens, 2005, 31(6): 270~278.
    [281] Tighe B, Silicone hydrogel materials–how do they work? In: Sweeney D, editor. Silicone hydrogels: the rebirth of continuous wear contact lenses, Oxford: Butterworth Heinemann, 2000, p1–21.
    [282] Domschke A, Lohmann D, Winterton L. On-eye mobility of soft oxygen permeable contact lenses. Proceedings of the ACS Spring National Meeting, SanFrancisco: PMSE, 1997.
    [283] Yasuda B H, Lamaze C E, Ikenberry l D, permeability of solutes through hydrated polymer membranes, Part I. diffusion of sodium chloride, Die Makromolekulare Chemie, 1968, 118: 19~35.
    [284] Yasuda H, Ikenberry L D, La:aze C E, Permeability of solutes through hydrated polymer membranes, part II.permeability of water soluble organic solutes, Die Makromolekulare Chemie, 1969, 125: 108~118.
    [285] Yasuda H, Peterlin A, Colton C K, Smith K A, Merrill E W, permeability of solutes through hydrated polymer membranes Part III.theoretical background for the selectivity of dialysis membranes, Die Makromolekulare Chemie, 1969,126:177~186.
    [286] Yoon S C, Jhon M S, The transport phenomena of some model solutes through postcrosslinked Poly(2-Hdroxyethyl methacrylate) membranes with different tactic precursors, J Appl Polym Sci, 1982, 27:3133~3149.
    [287] Yoon S C, Jhon M S, Temperature effect on the permeation through poly(2- hydroxyethyl methacrylate)membrane, J Appl Polym Sci, 1982,27:4661~4668.
    [288] Nicolson P C, Barson P C, Charbrecek P, et al, U.S. Patent,1999,5,965,631.
    [289] Willis S L, Court J L, Redman R P, Wang J H,Leppard S W,Obyrne V J,Small S A,Lewis A L, Jones S A,Stratford P W, A novel phosphorylcholine-coated contact lens for extended wear use, Biomaterials, 2001, 22, 3261~3272.
    [290] Austin D, Kumar R V, Ionic conductivity in hydrogels for contact lens applications, Ionics, 2005, 11: 262~268.
    [291] Kaczmarek M S, Wozniak Z, Biaszczak Z, Dynamics of tear fluid components transportation through contact lenses, Physica Medica, 2007, 23: 80~84.
    [292] Villaluenga J P G, Barragan V M, Seoane B, Bauza C R, Sorption and permeation of solutions of chloride salts, water and methanol in a Nafion membrane, Electrochimica Acta, 2006,51: 6297~6303.
    [293] Mirejovsky D, Patel A S, Young G, water properties of hydrogel contact lens materials: a possible predictive model for corneal desiccation staining, Biomaterials, 1993,14(14): 1080~1088.
    [294] Mirejovsky D, Patel A S,Rodriquez D D, Effect of proteins on water and transport properties of various hydrogel contact lens materials, Curr Eye Res, 1991, 10: 187~196.
    [295] Kim J, Conway A, Chauhan A, Extened delivery of ophthalmic drugs by silicone hydrogel contact lens, Biomaterials, 2008, 29: 2259~2269.
    [296] Compan V, Andrio A, Lo′pez-Alemany A, Riande E, Refojo M F, Oxygen permeability of hydrogel contact lenses with organosilicon moieties, Biomaterials, 2002, 23: 2767~2772.
    [297] Wang Y J, Tan G X, Zhang S J, Guang Y X, Influence of water states in hydrogels on the transmissibility and permeability of oxygen in contact les materials, Appl Surf Sci, 2008, 255: 604~606.
    [298] Valente A J M, Polishchuk A Y, Lobo V M M, Geuskens G, Diffusion coefficients of lithium chloride and potassium chloride in hydrogel membranes derived from acrylamide, Eur Polym J, 2002, 38: 13~18.
    [299] Sayed A M E, Yamauchi A, Darwish N A, El-Mageed A A A, Halim S F, water and salt permeability of reinforcement polymer-gel composite membrane, J Appl Polym Sci, 2008,109: 2988~2993.
    [300] Hamilton C J, Murphy S M, Tighe B J, Synthetic hydrogel(10):anomalous transport behaviour in crown ether-containing hydrogel membranes, Polymer, 2000, 41: 3651~3658.
    [301] Yamada-Nosaka A, Ishikiriyama K, Todoki M, Tanzawa H, 1H-NMR studies on water in methacylate hydrogels.I, J Appl Polym Sci,1990,39: 2443~2452.
    [302] Quinn J F, Caruso F, Facile tailoring of film and release properties using layer- by-layer assembly of thermoresponsive materials, Langmuir, 2004, 20: 20~22.
    [303] Lutkenhaus J L, Hrabak K D, McEnnis K, Hammond P T, Elastomeric flexible free-standing hydrogen-bonded nanoscale assemblies, J Am Chem Soc, 2005, 127: 17228~17234.
    [304] Huang D, Simon S L, McKenna G B, Chain length dependence of the thermodynamic properties of linear and cyclic alkanes and polymers, J Chem Phys, 2005, 122: 084907-1~84907-6.
    [305] Zhao J, Shuai X M, Wang L, Tang X Q, Xu, X H, Sheng J, Huang D H, The thermodynamic behavior and morphology of PP/POE blends prepared by melt- and solution-mixing methods, J Mater Sci, 2009, 44: 2171~2175.
    [306] Pielichowski K, Flejtuch K, Peilichowski J, step-scan alternating DSC study of melting and crystallization in poly (ethylene oxide), Polymer, 2004, 45: 1235~1242.
    [307] Schawe J E K, Hohne G W H, The analysis of temperature modulated DSC measurements by means of the linear response theory, Thermochim Acta, 1996, 287: 213~223.
    [308] Schawe J E K, A comparison of different evaluation methods in modulatedtemoerature DSC, Thermochim Acta, 1995, 260:1~16.
    [309] Sandor M, Bailey N A, Mathiowitz E, Characterization of polyanhydride microsphere degradation by DSC, Polymer, 2002, 43: 279~288
    [310] Lappalainen M, Pitkanen I, Quantification of amorphous content in maltitol by stepscan DSC, J Therm Anal,2006, 84(2): 345~353.
    [311] Corkhill P H, Jolly A M, Ng C O, Tighe B J, Synthetic hydrogels: 1.hydroxyalkyl acrylate and methacrylate copolymers-water binding studies, Polymer, 1987, 28: 1758~1766.
    [312] Stokes R H, An Improved Diaphragm-cell for Diffusion. Studies, and Some Tests of the Method, J Am Chem Soc, 1950, 72: 763~767.
    [313] Fletcher P,the Chemical Engineer, London,1987, 435, 33.
    [314] Bohrer M P, Diffusional boundary layer resistance for membrane transport, Ind Eng Chem Fund, 1983, 22: 72~78.
    [315] Chhabra M, Prausnitz J M, Rakde C J, A single-lens polarographic measurement of oxygen permeability (Dk) for hypertransmissible soft contact lenses, Biomaterials, 2007, 28: 4331~4342.
    [316] Aharoni S M, Increased Glass Transition Temperature in Motionally Constrained Semicrystalline polymers, Polym Adv Tech, 1997, 9: 169~201.
    [317] Couchman P R, The effect of molecular weight on glass-transition temperature (compositional variation of glass-transition temperature 3), J Appl Phys, 1979, 50: 6043~6046.
    [318] Tsui O K C, Zhang H F, Effects of Chain Ends and Chain Entanglement on the Glass Transition Temperature of Polymer Thin Films, Macromolecules, 2001,34: 9130~9142
    [319] Fox T G, Flory P J, Second-order transition temperatures and related properties of polyystrenes. Influence of molecular weight, J Appl Phys, 1950, 21: 581~591
    [320] Gordon M, Taylor J S, ideal co-polymers and the second order transitions of synthetic rubbers. I.Non-crystalline co-polymers, J Appl Chem,1952, 2: 493~500.
    [321] Gupta B, Plummer C, Bisson I, Frey P, Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films: characterization and human smooth muscle cell growth on grafted films, Biomaterials, 2002,23(3): 863~871.
    [322] Reutner P, Luft B, Borchard W, Compound Formation and Glassy Solidification in the System Gelatin-Water, Colloid Polym Sci, 1985, 263: 519~529.
    [323] Baks, T, Ngene, I S, van Soest, J J G, Janssen, A E M, Boom, R M, Comparisonof methods to determine the degree of gelatinisation for both high and low starch concentrations. Carbohyd Polym, 2007, 67: 481~490.
    [324] Faroongsarny D, Sukonrat P, Thermal behavior of water in the selected starch- and cellulose-based polymeric hydrogels, Int J Phytorem, 2008, 352:152~158.
    [325] Cowie J M G, Some general features of Tg-M relations for oligomers and amorphous polymers, Europ Polym J, 1975, 11: 297~300.
    [326] Ferry J D,Viscoelastic Properties of Polymers,3rd Edn,Wiley,New York, 1980.
    [327] Hill R G, Wilson A D, Warrens C P, The influence of poly(acrylic acid) molecular weight on the fracture toughness of glass-ionomer cements, J Mater Sci,1989,24:363~371.
    [328] Frenkel D, Louis A A, Phase separation in binary hard-core mixtures: An exact result, Phys Rev Lett, 1992, 68: 3363~3365.
    [329] Nakaoki T, Yamashita H, Bound states of water in poly(vinyl alcohol)hydrogel prepared by repeated freezing and melting method, J Mol Struct, 2008,875:282~287.
    [330] Willcox P J, Howie D W, Shimidt-Rohr K, Hoagland D A, Gido S P, Pudjijanto S, Kleiner L W, Venkatraman S, Microstructure of Poly (vinyl alcohol) Hydrogels produced by freeze/thaw cycling, J Polym Sci: Part B: Polym Phys,1999, 37: 3438~3454.
    [331] Zhang T Z, Li T, Nies E, Berghmans H, Ge L Q, Isothermal crystallization study on aqueous solution of poly(vinyl methyl ether) by DSC method, Polymer, 2009, 50: 1206~1213.
    [332] Ostrowska-Czubenko J, Gierszewska-Druzynska M, Effect of ionic crosslinking on the water state in hydrogel chitosan membranes, Carbohydr Polym, 2009, 77: 590~598.
    [333] Durme K V, Looze E, Nies E, Mele B V, Phase behavior of poly(vinyl methyl ether)in deuterium Oxide. Macromolecules, 2005, 38: 10234~10243.
    [334] Schmidt P, Dybal J, Sturcova A, ATR FTIR investigation of interactions and temperature transitions of poly(ethylene oxide), poly(propylene oxide)and ethylene oxide-propylene oxide-ethylene oxide tri-block copolymers in water media. VIB Spectrosc, 2009, 50:218~225.
    [335] Zundel G, Hydration and Intermolecular Interactions, New York: Academic Press, 1969, p99-111.
    [336] Scherer JR, Bailey G.F, Kint SRY, Malladi DP, Bolton B, Water in polymer membranes. 4. Raman scattering from cellulose acetate films, J Phys Chem, 1985, 89:312~319.
    [337] Sammon C, Mura C, Yarwood J, Everall N, Swart R, Hodge D, FTIR-ATR studies of the structure and dynamics of water molecules in polymeric matrixes. A comparison of PET and PVC, J Phys Chem B, 1998, 102: 3402~3411.
    [338] Kaczmarek H, Szalla A, Kaminska A, Study of poly(acrylic acid)- poly (vinylpyrrolidone) complexes and their photostability, Polymer, 2001,42:6057~6069.
    [339] Harada T, Sato H, Hirashima Y, Igarashi K, Suzuki A, Goto M, Kawamura N, Tokita M, Swelling behavior of poly(sodium acrylate) gels crosslinked by aluminum ions. Colloids and Surfaces B: Biointerfaces, 2004, 38: 209~212.
    [340] Kirashima Y, Suzuki A, Formation and destruction of hydrogen bonding gels and in aquesou solutions of N-isopropylacrylamide and sodium acrylate observed by ATR-FTIR spectroscopy. J Colloid Interface Sci, 2007, 312:14~20.
    [341] Gutmann V,Schmid R, Empirical approach to ligand effects on the kinetics of substitution and redox reactions, Coord Chem Rev, 1974,12: 263~293.
    [342] Muta H, Kawauchi S, Satoh M, Ion-specific swelling behavior of uncharged poly(acrylic acid) gel, Colloid Polym Sci, 2003,282: 49~155.
    [343] Wunderlich B, Thermal Analysis, Boston: Academic Press, 1990.
    [344]Gaur U, Cao M Y, Pan R, Wunderlich B, An addition scheme of heat capacities of linear macromolecules.Carbon backbone polymers, J Therm Anal, 1986,31: 421~ 445.
    [345] Pyda M, Quantitative Thermal Analysis of Carbohydrate-water Systems. In The Nature of Biological Systems as ReVealed by Thermal Methods, Lorinczy D, Ed., Amsterdam: Kluwer Academic Publisher, 2004, p307-333.
    [346]Giauque W F, Stout J W, The entropy of water and the third law of thermo- dynamics. The heat capacity of ice from 15 to 273°K, J Am Chem Soc, 1936, 58: 1144~1150.
    [347] Zhang J M, Zhang G B, Wang J J, Lu Y L, Shen D Y, Infrared spectroscopic study on the crystallization of water in poly(vinyl methyl ether) aqueous solution during heating, J Polym Sci Part B, 2002,40: 2772~2779.
    [348] Gerard S, Francis X Q, Vincent J M, Water in hydrogels. 2. A study of water in poly(hydroxyethyl methacrylate), Macromolecules, 1988, 21: 3198~3204.
    [349] Guo Y L, Sun B J, Wu P Y, phase separation of poly(vinyl methyl ether)aqueous solution: a near-infrared spectroscopic study, Langmuir, 2008,24: 5521~5526.
    [350] Gu Y, Kar T, Scheiner S, Fundamental properties of the CH···O interaction: Is ita true hydrogen bond ?, J Am Chem Soc, 1999, 121: 9411~9422.
    [351] Zhang T, Nies E, Todorova G, Li T, Berghmans H, Ge L, Crystallization kinetics study on aqueous solution of poly(vinyl methyl ether) by FTIR, J Phys Chem B, 2008, 112: 5611~5615.
    [352] Spevacek J, Hanykova L, Starovoytova L, 1HNMR study of thermotropic phase transitions in D2O solutions of poly (N-isopropylmethacrylamide)/poly(vinyl methyl ether) mixtures, Macromolecules, 2004, 37:7710~7178.
    [353] Spevacek J, Hanykova L, H NMR Study on the Hydration during Temperature- Induced Phase Separation in Concentrated Poly(vinyl methyl ether)/D2O Solutions, Macromolecules, 2005, 38: 9187~9191.
    [354] Durme K V, Asshce G V, Nies E, Mele B V, Phase transformations in aqueous low molar mass poly(vinyl methyl ether) solutions: Theoretical prediction and experimental validation of the peculiar solvent melting line, bimodal LCST, and (adjacent) UCST miscibility gaps, J Phys Chem, 2007,111:1288~1295.
    [355] Pratt K C, Wakeham W A, Self-diffusion in water and monohydric alcohols, J Chem Soc, Faraday Trans, 1977(2), 73: 997~1002.
    [356] Weikart C M, Matsuzawa Y, Winterton L, Yasuda H K, Evaluation of plasma polymer-coated contact lenses by electrochemical impedance spectroscopy, J Biomed Mat Res, 2001, 54: 597~607.
    [357] Lu S, Anseth K S, Release Behavior of High Molecular Weight Solutes from Poly(ethylene glycol)-Based Degradable Networks, Macromolecules, 2000, 33: 2509~ 2515.
    [358] JanaZek J, Hasa J, Structure and properties of hydrophilic polymers and their gels: VI. Equilibrium deformation behavior of PHEMA and PHEEMA networks prepared in the presence of a diluent and swollen with water, Coll Czech Chem Commun, 1966, 31, 2186~2191.
    [359] Migliaresi C, Nicodemo L, Nicolais L, Passerini P, J. Physical characterization of PHEMA gels, Biorned Muter Res, 1981,15: 307~317.
    [360] Peppas N A, Reinhart C T, Solute diffusion in swollen membranes, J Membr Sci, 1983, 15, 275~287.
    [361] Peppas N A, Moynihan H J, Lucht L M, The structure of highly crosslinked poly(2-hydroxyethyl methacrylate) hydrogels, J Biomed Mater Res,1985,19:397~411.
    [362] Kim B, Peppas N A, The characterization of pH-sensitive glycopolymers for oral drug delivery system, Biomater Sci Polym Edn, 2002,13(11):1271~1281.
    [363] Pradas M M, Ribelles J L G, Aroca A S, Ferrer G G, Anton J S, Pissis P, Interaction between water and polymer chains in poly(hydroxyethyl acrylate) hydrogels, Colloid Polym Sci, 2001, 279: 323~330.
    [364] Lane J, Chemical Engineers Handbook, 3rd ed., Perry J H, Ed., New York: McGraw-Hill Publ, 1950.
    [365] Ratner B D, Miller I F, Transport through crosslinked poly (2-hydroxyethyl methacrylate) hydrogel membranes, J Biomed Mater Res, 1973, 7:353~367.
    [366]Young C D, Wu J R, Tsou T L, Fabrication and characteristics of polyHEMA artificial skin with improved tensile properties, J Membrane Sci, 1998, 146: 83~93.
    [367] Colton C K, Smith K A, Merrill E W, Farrell P C, Permeability studies with cellulosic membranes, J Biomed Mater Res, 1971, 5: 459~488.
    [368] Yasuda H, Lamaze C E, Peterlin A, Diffusive and hydraulic permeabilities of water in water-swolen polymer membranes, J Polym Sci, Part A,1971,9:1117~1131.
    [369] Yasuda H, Peterlin A, Colton C K, Smith K A, Merrill E W, Permeability of solutes through hydrated polymer membranes, Die Makromolekulare Chemie, 1969, 126:177~186.
    [370] Highchi A, Iijima T, Permeation of solutes in water-swollen poly(vinyl alcohol-co- itaconic acid)membranes, J Appl Polym Sci,1986,32:3229~3237.
    [371] Mirejovsky D, Patel A S, Young G, Water properties of hydrogel contact lens materials: a possible predictive model for corneal desiccation staining, Biomaterials, 1993,14(14):1080~1088.
    [372] Mirejovsky D, Patel A S,Rodriquez D D, Effect of proteins on water and transport properties of various hydrogel contact lens materials, Curr Eye Res, 1991, 10:187~-196.
    [373] Kojima Y, Furuhata K, Miyasaka K, Diffusive permeability of solutes in poly(vinyl alcohol)membranes as a sfunction of the degree of hydration, J Appl Polym Sci, 1984, 29:533~-546.
    [374] Pratt K C, Wakeham W A, Self-diffusion in water and monohydric alcohols, J Chem Soc, Faraday Trans, 1977(2), 73: 997~1002.
    [375] Ogston A G, Spaces in a uniform random suspension of fibres, Trans Faraday Soc, 1958, 54: 1754~1757.
    [376] Tighe B, Trends and developents in silicone hydrogel materials, Editorial Silicone hydrogels Org, 2008, 9.
    [377] Dumbleton K, The Physical and Clinical Characteristics of Silicone Hydrogel Lenses: How They Work?, Silicone Hydrogels Org, 2002,10.
    [378] Yasuda H, Lamaze C E, Permselectivity of solutes in homogeneous water-swollen polymer membranes, J Macromol Sci. Phys, 1971, B5(1):111~134.
    [379] Lopour P, Janatova V, Silicone rubber-hydrogel composites as polymeric biomaterials, Biomaterials, 1995, 16: 633~640.
    [380] Amsden B, Diffusion within hydrogels: Mechanisms and models, Macromolecules, 1998, 31: 8382~8395.
    [381] Altenberger A R, Tirrell M, Dahler J S, Hydrodynamic screening and particle dynamics in porous media, semidilute polymer solutions and polymer gels, J Chem Phys,1986, 84(9): 5122~5130.
    [382] Cukier R I, Diffusion of Brownian spheres in semidilute polymer solution, Macromolecules, 1984, 17, 252-255
    [383] Phillips R J, Deen W M, Brady J F, Hindered transport in fibrous membranes and gels, AIChE J. 1989, 35, 5 (11): 1761~1769.
    [384] Mackie J S, Meares P, Diffusion of electrolytes in cation-exchange resin membrane, Proc R Soc, London, 1955, A232: 498~509.
    [385] Ogston A G, Preston B N, Wells J D, On the transport of compact particles through solutions of chain polymers, Proc R Soc, London Ser A, 1973, 333: 297~316.
    [386] Johansson L, Elvingston C, Lofroth J-E, Diffusion and interaction in gels and solutions (III) Theoretical results on the obstruction effect, Macromolecules, 1991, 24: 6024~6029.
    [387] Tsai D S, Strieder W, Effective conductivities of random fiber beds, Chem Eng Commun, 1985, 40: 207~218.
    [388] Brady J, Hindered Diffusion, American Institute of Chemical Engineers, AIChE Ann Meet, 1994, p320.
    [389] Johnson E M, Berk D A, Jain R K, Deen W M, Hindered diffusion in agarose gels: test of effective medium model, Biophys J, 1996,70 (2):1017~1023.
    [390] Clague D S, Phillips R, Hindered diffusion of macromolecules through dilute fibrous media, J Phys Fluids, 1996, 8 (7): 1720~1731.
    [391] Jackson G W, James D F, The permeability of fibrous porous media, Can J Chem Eng, 1986, 64: 362~374.
    [392] Subbaraman L N, Glasier M A, Senchyna M,Sheardown H, Jones L, Knetics of in vitro lysozyme deposition on silicone hydrogel, PMMA, and FDA groups I, II, andIV contact lens materials, Current Eye Research, 2006,31:787~796.
    [393] Alemany A L, Compan V, Refojo M, Porous structure of PureVisionTM versus Focus Night&DayTM and conventional hydrogel contact lenses, J Biomed Mater Res, 2002,3: 319~325.
    [394] Karlgard C C S, Sarkar D K, Jones L W, Moresoli J C, Leung K T, Drying methods for XPS analysis of PureVisionTM, Focus Night & DayTM and conventional hydrogel contact lenses, Appl Surf Sci, 2004, 230:106~114.
    [395] Fornasiero F, Ung M, Radke C J, Prausnitz J M, glass-transition temperatures for soft-contact-lens materials. Dependence on water content, Polymer, 2005, 46: 4845~4852.
    [396] Ahi J, Salt diffusion in brick structures, J Mater Sci, 2004, 39: 4247~4254.
    [397] Rzepka S, Neidhart B, Transport processes through track-etch membrane filters in a reagent delivery cell, Fresenius J Anal Chem, 2000,366: 336~340.
    [398] Brennan N A, Efron N, Hydrogel lens dehydration: a material-dependent phenomenon? Contact Lens Forum, 1987, 12: 28~29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700