钛酸钾晶须制备过程的热力学和动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术发展的需要,各种具有特定结构和功能的微米至纳米材料已被材料科学家在实验室里不断研制出来,但都面临着规模化降低成本的问题,而这正是化学工程的强项。然而从化学工程的角度来说,以往它的研究对象主要是流体,过程的控制指标一般为温度、压力以及溶液组成等。若用传统的化工方法能否解决制备这些结构复杂的固相高新技术材料时出现的问题?工艺过程中控制指标将发生什么变化?如何找到宏观控制指标与产品微观结构之间的关系?这些都已成为化学工程研究的前沿课题。
     钛基晶须(K_2O·nTiO_2)是一种尺寸在微米级,具有复杂结构的高性能先进材料。要实现钛基晶须规模化制备的关键和难点所在是其水合过程,这是一个复杂的、影响因素繁多的固液离子交换过程,随水合工艺条件的改变,将得到一系列组成、结构和性能各不相同的衍生物如K_2Ti_4O_9、K_2Ti_6O_(13)、K_2Ti_8O_(17)和H_2Ti_4O_9晶须。本课题组以前的工作中,已经发现这种微米级固体的组成和结构与宏观的溶液组成之间存在对应关系,而且固相的组成与结构,可通过控制溶液组成来实现。但固相组成结构与溶液组成之间的这种对应关系能否转变为化工过程的可操作量,以及这种对应关系是否存在现实可操作性,尚未进行研究。
     针对上述问题,本文建立了钛基晶须水合过程的热力学和动力学模型,对水合过程进行了定量描述。
     对于水合过程的热力学研究,本文从化工角度出发,采用相平衡的概念,将水合过程视为由固相热力学平衡及固液间物料平衡所构成的固液相平衡过程。
     在本课题组以前的工作中,已建立了钛基晶须固相热力学平衡模型。但由于缺乏固液相间的物料平衡计算模型,对溶液组成的控制无法转变为化工过程的易控指标。经本文研究发现,固液相间的物料平衡与化工无机盐结晶过程具有相似性,因此,若将本课题组建立的计算无机盐结晶过程的最新成果——固液平衡级算法用于水合过程有望解决这一难题。
     本文在严格验证固液平衡级算法的正确性基础上,将其与钛基晶须固相热力学平衡模型结合,建立了完整的水合过程热力学模型,对水合热力学平衡规律进行了完整描述。通过对模型的分析,发现可用化工易控的溶液的pH值和水量来准确控制水合过程,其中溶液的pH值对水合过程的影响更大。初始水合原料中的TiO_2/K_2O摩尔比对最优水合工艺指标影响不大,而滴加盐酸的浓度以0.1M为宜。制备99%的K_2Ti_6O_(13)和K_2Ti_8O_(17)晶须的最优工艺指标为pH=9.3-9.9、水量
    
     摘要
    为 10mUg和 pH-6石J刀、水量为 10mVg。在上述建立的模型基础上,本文进一
    步建立了自然浸出条件下的水合热力学模型,计算得到自然浸出制备纯KZTi4Og
    晶须的条件为 0.ZM的 KOH溶液 10lUg。并建立了 HZTi4Og和 KZTi6O13晶须联
    产的工艺。
     对于水合过程的动力学,本文利用钾离子选择性电极和统计速率理论对其进
    行了实验测定和理论分析。
     通过钾离子选择性电极在线测定了KZSO4晶体的溶解动力学,并用统计速率
    理论进行关联和解释,表明该实验方法和理论模型可用于表达钾离子在固液界面
    的传质过程。
     钛基晶须水合动力学实验数据和理论分析表明,该过程的控制步骤是固相表
    面反应过程,酸性溶液中的水合速率比碱性溶液中的要快;减小溶液的pH值和
    增大初始水量比都可使水合反应速率增加,但pH值的影响比水量比的影响大得
    多。
     pH值是控制钛基晶须团相组成(TIO。/KZO摩尔比)的敏感变量,在 pH值
    较低的区域水合反应速率远高于 pH值较高区域,因相 TIOZ/KO摩尔比组成变
    化剧烈;而将溶液pH值控制在水含热力学平衡区域时,因相组成的变化较为平
    缓,有利于化工过程的控制。因此水合制备KZTi6O13和KZTi8O;,晶须过程中,溶
    液的pH值应采用经上述热力学计算得出的指标(分别为pH-9.3习.3和
    pH功石河对人初始水量比则可根据最小废液量和尽量短的水合时间,根据实际需
    要来选取门—100mUg的范围人这样既可使水合过程能在对时间不敏感,化工
    易控的区域内进行,又可有效缩短水合时间。
     因此,通过对钛基晶须水合热力学和动力学过程的分析表明,为了实现钛基
    晶须的低成本规模化制备,应将溶液的pH值控制在热力学计算得到的区域,而
    水量则应根据动力学关系按照操作时间和生产成本来优化选取。
     为实现钛基晶须的低成本的快速合成,本文初步研究了微波条件下钛基晶须
    的合成及其晶须生长机理。通过对微波加热介质、加热时间和起始物料TIOZ/KZO
    比对产物结构和形貌的分析,表明利用微波固相合成法可快速出各种钛酸钾晶
    须,微波场下晶须的生长仍符合常规烧结过程的“熔体诱导生长模型”。
With the development of science and technology, different nano and micron scale materials with special constructions and functions were developed by scientist, but the biggest problem is how to produce these new materials in large quantity, this make the chemical engineering important. However, from the point of view of chemical engineering, fluid is the main object in previous research and the control variables are temperature, pressure, composition etc. So it is a great challenge for traditional chemical engineering to deal with the new solid materials. This naturally becomes a hot spot in recent chemical engineering researches.
    Titanium dioxide whisker is a kind of high performance material, which is in micron scale and takes on complex structure. The hydration process is most important part for the large scale preparation of titanium dioxide whisker, generally, it is also most difficult, because it is a complex, multifactor induced solid-liquid ion exchange process. Under different conditions of hydration, different whiskers can be obtained, such as K2Ti4O9, K2Ti6O13, K2Ti8O17 and H2TiO9 In the previous work in our group, it is found that there is a relationship between the consistence and structure of whisker and the consistence of solution, so it is available to control the structure and consistence of the solid by controlling the consistence of the solution. Based on this knowledge, the remaining problem is to find the suitable operation variable in industry process.
    In this thesis, a thermodynamics model and a kinetics model are established to describe the hydration progress quantitatively.
    Based on the phase equilibrium theory, the hydration process is regard as a solid-liquid phase equilibrium progress consisting of a solid-phase thermodynamics equilibrium and a mass equilibrium between the solid and liquid phase.
    The solid-phase thermodynamics equilibrium of titanium dioxide whisker is worked out by previous researchers in our group. However, the operation variable in industry process is hard to find for the lack of the solid-liquid mass balance model. Via the study in this thesis, it is found the solid-liquid equilibrium stage algorithm is a useful tool for this problem.
    In this thesis, an integrated thermodynamics model for hydration process, which can be used in the description of the process in hydration thermodynamics equilibrium, is established by combing the solid-liquid equilibrium stage algorithm and the model of solid phase thermodynamics equilibrium for titanium dioxide whisker. Based on this model, the pH value and the quantity of water are choused as the control variables and it is also found the influence of pH is bigger. The mole ratio of TiO2/K2O in initial raw materials has not remarkable influence for the product quantity of hydration and
    
    
    the proper chlorhydraic acid concentration is 0.1M. The optimal condition for 99% K2Ti6O13 and K2Ti8O17 are respectively pH 9.3-9.9, water usage 10ml/g and pH 6.6-7.0, water usage lOml/g. A revised model for hydration thermodynamics under natural leaching-out condition is also given in this thesis. The optimal condition for pure K2Ti4O9 whisker is 10ml/g KOH solution (0.2M). The coupled methodology of H2Ti4O9 whisker and K2Ti6O13 whisker is established in this thesis.
    Because the online measurement by general spectrophotography is difficult, a new method based on the online measurement of K2SO4 crystal dissolution kinetics by ion selective electrode is established. The statistical velocity theory is also used in this method.
    The results in this thesis show that, the control step of hydration of titanium dioxide whisker is the surface reaction process in solid phase, the hydration velocity in acid solution is quicker than that in alkaline solution. The reaction velocity increased with the decrease of pH or the increase of initial water usage, but the influence of pH is rather larger.
    In the preparation of K2Ti6O13 and K2Ti8O17 whiskers, the pH of solution must be calculated by the method above to control the whole hydration progress, a
引文
[1] Abe M, A soft solution processing technique for preparing ferrite films and their applications, Mrs. Bull., 2000, 25(9) :51-55.
    [2] Abe R, Shinohara K, and Tanaka A, Preparation of porous niobium oxide by the exfoliation of K4Nb6O17 and its photocatalytic activity, J. Mater. Res., 1998, 13(4) :861-865.
    [3] Airoldi C, Nunes LM, and Farias RF, The intercalation of n-alkyldiamines into crystalline layered titanate, Mater. Res. Bull., 2000, 35, 2081-2090.
    [4] American Chemical Society, American Institute of Chemical Engineers, Chemical Manufacturers Association, Council for Chemical Research, Synthetic Organic Chemical Manufacturers Association, Technology Vision 2020: The U.S. Chemical Industry. Washington, DC, 1996.
    [5] Anthony RG, Cs+ Ion Exchange Kinetics in Complex Electrolyte Solutions Using Hydrous Crystalline Silicotitanates, Ind. Eng. Chem. Res. 1997, 36, 5377-5383.
    [6] Bao NZ, Feng X, Lu XH and et al., Study on the formation and growth of potassium titanate whiskers, J. Mater. Sci., 2002a,37:3035-3043.
    [7] Bao NZ, Feng X, Shen LM, et al., Calcination Syntheses of a Series of Potassium Titanates and Their Morphologic Evolution, Crystal Growth & Design, 2002b, 2 (5) : 437-442.
    [8] Bao NZ, Feng X, Lu XH, and et al., High Quality and Yield in Potassium Titanate Whiskers Synthesized by Calcination from Hydrous Titania, J. of The American Ceramic Society, in press
    [9] Bao NZ, Lu XH, and Feng X, Study on the Formation and Growth of Potassium Titanate Whiskers, J. Mater. Sci. 2002c, 37 (14) :3035-3043.
    [10] Bao NZ, Lu XH, Ji XY, and et al., Thermodynamic modeling and expertimental verification for ion-exchange synthesis of K2O.6TiO2 and TiO2 fibers from K2O.4TiO2, Fluid Phase Equilibria, 2002d, 193,(1-2) : 229-243.
    [11] Berry DA, and Ng KM, Separation of Quaternary Conjugate Salt Systems by Fractional Crystallization, AIChE J., 1996,42, 2162-2174.
    [12] Bizeto MA, Faria DLA, Constantino VRL, Organic-inorganic hybrid material synthesized by porphyrin intercalation into a layered niobate host matrix, J. Mater. Sci. Lett., 1999, 18, 643-646.
    [13] Bridgwater J, Particle technology, Chem. Eng. Sci., 1995, 50(24) : 4081-4089.
    [14] Centi G, Role of non-stoichiometry and soft chemistry in the preparation of advanced catalysts, Soft chemistry leading to novel materials, 2001, 191, 17-34.
    [15] Chen DH, Feng X, Jiang XH et al., Tribological characteristics of the potassium titanate whisker-PTFE composites. Material International Science and Technology Conference "Interphase relaxation of multi-material" Moscow, MIREA, 2001, 229-236.
    [16] Cheng S, From layer compounds to catalytic materials, Catalysis Today, 1999,49, 303-312.
    [17] Cheng S, Wang TC, Pillaring of layered titanates by polyoxo cations of aluminum, Inorg. Chem., 1989,28, 1283-1289.
    [18] Choy JH, Han YS, Park NG, et al., N-alkylammonium intercalated 2-d hydrous titanates and their thermotropic phase transition, Synthetic Metals, 1995, 71, 2053-2054.
    [19] Cisternas LA, and Swaney RE, Separation System Synthesis for Fractional Crystallization from Solution Using a Network Flow Model, Ind. Eng. Chem. Res., 1998, 37, 2761-2769.
    [20] Clearfield A, Inorganic Ion Exchangers: A Technology Ripe for Development, Ind. Eng.
    
    Chem. Res., 1995,34, 2865-2872.
    [21] Clearfield A, Role of Ion Exchange in Solid-State Chemistry, Chem. Rev., 1988, 88, 125-148.
    [22] Cussler EL, and Wei J, Chemical Product Engineering, AIChE J., 2003,49(5) : 1072-1075.
    [23] Dejmek, M., Ward, C. A., A statistical rate theory study of interface concentration during crystal growth or dissolution, J. Chem. Phys.,1998,108(20) :8698-8704.
    [24] Dye SR, and Ng KM, ractional Crystallization: Design Alternatives and Tradeoffs, AIChE J., 1995, 41,2427-2438.
    [25] Eckert H, and Ward M, Controlling the length scale through "soft" chemistry: From organic-inorganic nanocomposites to functional materials, Chem. Mater., 2001,13(10) :3059-3060.
    [26] Etourneau J, Novel synthesis methods for new materials in solid state chemistry, Bull. Mater. Sci., 1999, 22(3) :165-174.
    [27] Feist TP, and Davies PK, The Soft Chemical Synthesis of TiO2(B) from Layered Titanatcs, J. Solid State Chem., 1992,101, 275-295.
    [28] Figlarz M, Chimie douce and phase-transitions, Phase Trans., 1991, 31(1-4) :167-179.
    [29] Findlay RD, and Ward CA, Statistical rate theory of interfacial transport. IV. Predicted rate of dissociative adsorption, J. Chem. Phys., 1982, 76(11) :5624-5631.
    [30] Fitch B, How to Design Fractional Crystallization Process, Ind. Eng. Chem. Res., 1970,62: 6-33.
    [31] Freeman S.A., Booske JH, Microwave Field Enhancement of Charge-transport in Sodium-chloride. Phys. Rev. Lett, 1995, 74(11) : 2042-2045.
    [32] Fujiki Y, Komatsu Y, and Ohta N, A cesium immobilization from an aqueous-solution using the crystalline adsorber of hydrous titanium-dioxide fibers, Chem. Lett., 1980, 8:1023-1026.
    [33] Fujiki Y, Ohsaka T, Hydration and derivatives of potassium dititanalc fibers, J. Ceramic Soc. Japan., 1982, 90(1) :19-23.
    [34] Fujiki Y, Growth of mixed fibers of potassium tetratitanate and dititanate by slow-cooling calcination method, Yogyo Kyokai Shi, 1982, 90(10) :76-78.
    [35] Garside J, Mullin JW, The crystallization of aluminium potassium sulphate: a study in the assessment of crystallizer design data, Trans. Instn. Chem. Engrs., 1968, 46, T11-18.
    [36] Gopalakrishnan J, Chimie Douce Approaches to the Synthesis of Metastable Oxide Materials, Chem. Mater., 1995, 7(7) : 1265-1275.
    [37] Greenberg JP, and Moller N, Geochim. Cosmochim. Acta, 1989,53:2503.
    [38] Gu D, Nguyen L, Philip CV, Huckman ME, et al., Cs+ Ion Exchange Kinetics in Complex Electrolyte Solutions Using Hydrous Crystalline Silicotitanates, Ind. Eng. Chem. Res., 1997, 36:5377-5383.
    [39] Hagrman PJ, Finn RC, Zubieta J, Molecular manipulation of solid state structure: influences of organic components on vanadium oxide architectures, Solid State Sci., 2001, 3(7) :745-774.
    [40] Han YS, Park I, and Choy JH, Exfoliation of layered perovskite, KCa2Nb3O10, nanosheets by a novel chemical process, J. Mater. Chem., 2001, 11:1277-1282.
    [41] Harada H, and Ionue Y, US5084422, 1992.
    [42] Harada H, Inoue Y, and Shima H, Synthesis and evaluation of potassium hexatitanate fibers useful as a reinforcing material for aluminum alloys, Kobutsugaku Zasshi, 1996, 25(3) :89-98.
    
    
    [43] Harada H, Kudoh Y, Inoue Y, et al., Synthesis and evaluation of potassium hexatitanate fibers with negligible teachability, J. Ceram. Soc. Jpn., 1995, 103: 155-161.
    [44] He M, Feng X, Lu XH, et al., A Controllable Approach for the Synthesis of Titanate Derivatives of Potassium Tetratitanate Fiber, J. Chem. Eng. of Japan, 2003, in press
    [45] Helfferich F, Ion-Exchange Kinetics. V. Ion Exchange Accompanied by Reactions, J. Phys. Chem., 1965, 69(4) : 1178-1 187.
    [46] Hyeon KA, and Byeon SH, Synthesis and Structure of New Layered Oxides, M11La2Ti3O10 (M=Co, Cu, and Zn), Chem. Mater. 1999, 11 : 352-357.
    [47] Izawa H, Kikkawa S, and Koizumi M, Europium(3+) and terbium(3+) intercalations into layered titanic acids H2Ti3O7 and H2Ti4O9. H2O using ion-exchange reaction, Nippon Kagaku Kaishi, 1987, 3:397-399.
    [48] Izawa H, Kikkawa S, and Koizumi M, Formation and properties of n-alkylammonium complexes with layered tri-and tetratitanates, Polyhedron, 1983, 2(8) :741-744.
    [49] Izawa H, Kikkawa S, and Koizumi M, Ion Exchange and Dehydration of Layered Titanates, Na2Ti3O7 and K2Ti4O9, J. Phys. Chem., 1982, 86, 5023-5026.
    [50] Ji XY, Feng X, Lu XH, and et al., A Generalized Method for the Solid-Liquid Equilibrium Stage and Its Application in Process Simulation, Ind. Eng. Chem. Res., 2002,4 1(8) :2040-2046.
    [51] Katz,H.S.andJ.V.Milewski编,李佐邦等译.塑料用填料及增强剂手册,北京,化工出版社,1985.
    [52] Kikkawa S, and Koizumi M, Inorganic ion exchanger using intercalation into layered compounds, Kagaku (Kyoto), 1983, 38(6) :454-455.
    [53] Kikkawa S, Soft chemistry and its application for new layered compounds, Soft chemistry leading to novel materials, 2001, 191:1-15.
    [54] Kikkawa S, Yasuda F, and Koizumi M, Ionic conductivities of sodium titanate potassium titanate (K2Ti4O9) and their related materials, Mater. Res. Bull., 1985, 20(10) : 1221-1227.
    [55] Koizumi M, and Kikkawa S, Use of the spaces of intercalated inorganic crystals, Seisan to Gijutsu, 1984, 36(3) :40-42.
    [56] Komatsu Y, and Fujiki Y, Adsorption of cesium from aqueous-solutions using a crystalline hydrous titanium-dioxide fibers, Chem. Lett., 1980, 12:1525-1528.
    [57] Komatsu Y, Fujiki Y, and Sasaki T, Adsorption of cobalt(ii) ions on crystalline hydrous titanium-dioxide fibers at 298 to 423-K, Bull, of Chem. Soc. of Japan, 1986, 59(1) :49-52.
    [58] Komatsu Y, Fujiki Y, and Sasaki T, Adsorption of uranium from nitric-acid solutions using crystalline hydrous titanium-dioxide fibers, Bull, of Chem. Soc. of Japan, 1987, 60(2) :4443-4444.
    [59] Komatsu Y, Fujiki Y, and Sasaki T, Ion-Exchange Equilibrium of Alkali Metal Ions between Crystalline Hydrous Titanium Dioxide Fibers and Aqueous Solutions, Bunseki Kagaku, 1982,31:E225-229.
    [60] Komatsu Y, Fujiki Y, Sasaki T, Heat-treatment of crystalline hydrated titania fibers and ion-exchange properties for alkaline earth metal ions in aqueous solutions, J. Ceramic Soc. Japan., 1984, 92(11) :665-668.
    [61] Kudo A, and Kaneko E, Photoluminesent Properties of Ion-Exchangeable Layered Oxides, Microporous Mesoporous Mater., 1998, 2 1(4-6) :6 15-620.
    [62] Lee JK, Lee KH and Kim H, Microstructural evolution of potassium titanate whiskers during by the calcination and slow-cooling method. J. Mater. Sci., 1996,3 1(20) :5493-5498.
    [63] Li D, Yang J, Zhang LL, et al., Synthesis and intercalation properties of nanoscale layered
    
    tetratitanatc, J. Mater. Chem., 2002, 12: 1796-1799.
    [64] Li JH, and Kwauk M, Exploring complex systems in chemical engineering-the multi-scale methodology, Chem. Eng. Sci., 2003, 58: 521-535.
    [65] Lin CH, Chang HY, Densification Behavior of Y3Fe5O12 Materials Prepared by Microwave Sintering Process. IEEE. Trans. Magn., 1997, 33(5) : 3415-3417.
    [66] Liu ZH, Ooi K, Kanoh H, et al., Swelling and Delamination Behaviors of Birnessite-Type Manganese Oxide by Intercalation of Tetraalkylammonium Ions, Langmuir, 2000, 16:4154-4164.
    [67] Lu XH and Maurer G, Model for Describing Activity Coefficients in Mixed Electrolyte Aqueous Solutions, AIChE.J., 1993,39: 1527-1538
    [68] Lu XH, Zhang LZ, Wang YR et al., Prediction of Activity Coefficients of Electrolytes in Aqueous Solutions at High Temperatures, Ind. Eng. Chem. Res., 1996a, 35: 1777-1784.
    [69] Lu XH, Zhang LZ, Wang YR, et al., Simultaneous Prediction of Activity Coefficients and Enthalpy for Aqueous Electrolyte Solutions at High Temperatures, Fluid Phase Equilib., 1996b, 116: 201-208.
    [70] Lu JZ, and Lu XH, Elastic Interlayer Toughening of Potassium Titanate Whiskers-Nylon66 Composites and Their Fractal Research, J. Appl. Polym. Sci., 2001,82(2) :368-374
    [71] Mallouk TE, and Gavin JA, Molecular Recognition in Lamellar Solids and Thim Films, Acc. Chem. Res., 1998, 31, 209-217.
    [72] Marchand R, Brohan L, and Tournoux M, TiO2(B) A new form of titanium diaoide and the potassium octatitanate K2Ti8O17. Mat. Res. Bull., 1980,15(8) : 1129-1133.
    [73] Masaki N, Uchida S, Yamane H, et al., Hydrothermal synthesis of potassium titanates in Ti-KOH-H2O system, J. Mater. Sci., 2000,35,3307-3311.
    [74] Moller K, and Bein T, Inclusion Chemistry in Periodic Mesoporous Hosts, Chem. Mater., 1998,10,2950-2963.
    [75] Morse JW, and Arvidson RS, The dissolution kinetics of major sedimentary carbonate minerals, Earth-Sci. Rev., 2002, 58, 51-84.
    [76] Mydlarz J, and Jones AG, Growth and dissolution kinetics of potassium sulphate crystals in aqueous 2-propanol solutions, Chem. Eng. Sci., 1989, 44, 1391-1402.
    [77] Narita Y, and Konnai H, Potassium Titanate Whisker, Zeolite(Japan), 1992, 9(3) :103-116.
    [78] Nativ M, oldstein S, and Schmuckler G, Kinetics of Ion-Exchange Processes Acommpanied by Chemical Reactions, J. Inorg. Nucl. Chem., 1975, 37, 1951-1956.
    [79] Nunes LM, Souza AG, and Farias RF, Synthesis of new compounds involving layered titanates and niobates with copper(II), J. Alloys & Compounds, 2001, 319, 94-99.
    [80] Ogawa M, and Kuroda K, Photofunctions of Intercalation Compounds, Chem. Rev., 1995, 95, 399-438.
    [81] Ohta N, and Fujuiki Y, Change processes from potassium tetratitanate fibers to potassium hexatitanate fibers and through hydrated titania fibers to anatase fibers, J. Ceramic Soc. Japan., 1980,88(1) : 1-8.
    [82] Olliver PJ, and Mallouk TE, A "Chimie Douce" Sythesis of Perovskite-Type SrTa2O6 and SrTa2-xNbxO6, Chem. Mater., 1998, 10, 2585-2587.
    [83] Pileni MP, II-VI semiconductors made by soft chemistry-Syntheses and optical properties, Catal. Today, 2000, 58(2-3) : 151-166.
    [84] Pitzer KS, Activity coefficients in electrolyte solution, 2nd Edition, Chapter 3, CRC Press, Boston, 1991.
    [85] Ponton J, Process Systems Engineering: Halfway through the first century, Chem. Eng. Sci.,
    
    1995, 50(24) :4045-4059.
    [86] Rahner D, Machill S, Schlorb H, et al., Intercalation materials for lithium rechargeable batteries, J. Solid State Electrochem., 1998, 2, 78-84.
    [87] Rajagopal S, Ng KM, and Douglas JM, Design of Solids Processes: Production of Potash, Ind. Eng. Chem. Res., 1988, 27, 2071-2078.
    [88] Rao KJ, and Ramesh PD, Use of Microwave for the Synthesis and Processing of Materials. Bull. Mater. Sci., 1995, 18(4) : 447-465.
    [89] Rao KJ, Synthesis of Inorganic Solids Using Microwaves. Chem. Mater. 1999, 11(4) , 882-895.
    [90] Rouxel J, and Tournoux M, Chimie douce with solid precursors, past and present, Solid State Ionics, 1996, 84, 141-149.
    [91] Rouxel J, Some solid state chemistry with holes: Anion-cation redox competition in solids, Current Science, 1997, 73(1) :31-39.
    [92] Royal Society of Chemistry, Alliance for Chemical Science and Technologies in Europe. Chemistry-Europe and the Future, Science and Technology to Improve the Quality of Life in Europe. London, 1996.
    [93] Rudzinski W, and Panczyk T, Kinetics of Gas Adsorption in Activated Carbons, Studied by Applying the Statistical Rate Theory of Interfacial Transport, J. Phys. Chem. B, 2001, 105, 6858-6866.
    [94] Rudzinski W, and Panczyk T, Kinetics of Isothermal Adsorption on Energetically Heterogeneous Solid Surfaces: A New Theoretical Description Based on the Statistical Rate Theory of Interfacial Transport, J. Phys. Chem. B, 2000, 104, 9149-9162.
    [95] Salem MR, and Mangood AH, Dissolution of calcite crystals in the presence of some metal ions, J. Mater. Sci., 1994, 29, 6463-6467.
    [96] Sasaki T, Izumi F, and Watanabe M, Intercalation of Pyridine in Layered Titanates, 1996a, 8,777-782.
    [97] Sasaki T, Komatsu Y, and Fujiki Y, Formation and Characterization of Layered Lithium Titanate Hydrate, Mat. Res. Bull., 1987, 22, 1321-1328.
    [98] Sasaki T, Nakano S, Yamauchi S, et al., Fabrication of Titanium Dioxide Thin Flakes and Their Porous Aggregate, Chem. Mater., 1997, 9, 602-608.
    [99] Sasaki T, Watanabe M, Hashizume H, et al., Macromolecule-like Aspects for a Colloidal Suspension of an Exfoliated Titanate. Pairwise Association of Nanosheets and Dynamic Reassembling Process Initiated from It, J. Am. Chem. Soc., 1996b,118,8329-8335.
    [100] Sasaki T, Watanabe M, Komatsu Y, and Fujiki Y, Layered hydrous titanium dioxide: potassium ion exchange and structural characterization, Inorg. Chem., 1985, 24, 2265-2271.
    [101] Sato T, Yamamoto Y, Fujishiro Y, et al., Intercalation of iron oxide in layered H2Ti4O9 and H4Nb6O17: Visible-light induced photocatalytic properties, J. Chem. Soc., Faraday Trans., 1996, 92(24) :5089-5092.
    [102] Schaak RE, and Mallouk TE, Perovskites by Design: A Toolbox of Solid-State Reactions, Chem. Mater., 2002, 14, 1455-1471.
    [103] Schmuckler G, Nativ M, and Goldstein S, Kinetics of Shell Progressive Reactions in Ion Exchange Resins on the Theory and Practice of Ion Exchange, Cambridge, 1976, July, 25-30.
    [104] Schollhorn R, Intercalation Systems as Nanostructured Functional Materials, Chem. Mater., 1996, 8, 1747-1757.
    [105] Shangguan WF, and Yoshida A, Synthesis and photocatalytic properties of CdS-intercalated metal oxides, Solar Energy Mater. & Solar Cells, 2001, 69, 189-194.
    
    
    [106] Shimizu T, Yanagida H, Hashimoto K, et al, Studies on synthesis of alkali titanate fibers. 15. Hydrothermal treatment of hydrous potassium titanate fibers and hydrous titania fiber, Nippon Kagaku Kaishi, 1981, 9, 1437-1444.
    [107] Shimizu T, Yanagida H, Hashimoto K, et al., Study on synthesis of alkali titanate fiber. 12. Some hydrous potassium titanate and hydrous titania fibers, Yogyo Kyokaishi, 1980a, 88(8) :482-488.
    [108] Shimizu T, Yanagida H, Hashimoto K, et al., Synthesis of potassium titanate "Fur-fibers" by the disk process, Yogyo Kyokaishi, 1980b, 88(2) :84-91.
    [109] Shimizu T, Yanagida H, Hori M, Hashimoto K, Nishikawa Y, Hydration of potassium tetratitanate fiber by the KDC process, J. Ceramic Soc. Japan., 1979, 87(11) :565-571.
    [110] Shimizu T, Yanagida H, Onitsuka S, et al., Crystallographic study of potassium tetratitanate, Yogyo Kyokaishi, 1981, 89(11) :633-635.
    [111] Song Y, Wang FP, Jiang ZH, et al., Hydrothermal synthesis for the preparation of BaTi5O11 fibers, J. Mater. Sci. Lett., 1999, 18, 177-179.
    [112] Sutton WH, Microwave Processing of Ceramic Materials. Ceramic Bulletin, 1989, 68(2) : 376-386.
    [113] Tamura H, Nakamura K, and Kikkawa S, Ion-exchange properties of tetratitanic acid with a layer structure for alkali metal ions, Electrochemistry, 2002, 70(7) :530-535.
    [114] Tavare NS, and Chivate MR, Growth and dissolution kinetics of potassium sulphate crystals in a fluidized bed crystalliser, Trans. IchemE., 1979, 57, 35-42.
    [115] Thomsen K, Rasmussen P, and Gani R, Simulation and Optimization of Fractional Crystallization Process, Chem. Eng. Sci., 1998, 53, 1551-1564.
    [116] Tirrell M, Chemical engineering of polymers: Production of flexible, functional materials, Chem. Eng. Sci., 1995, 50(24) :4123-4141.
    [117] Tjong SC, Meng YZ, Microstructural and mechanical characteristics of compatibilized polypropylene hybrid composites containing potassium titanate whisker and liquid crystalline copolyester, Polymer, 1999,40(26) :7275-7283.
    [118] Tomlinson AAG, Characterization of Pillared Layered Structures, J. Porous. Mater, 1998, 5, 259-274.
    [119] Trost BM, The atom economy-a search for synthetic efficiency, Science, 1991, 254(5037) : 1471-1477.
    [120] Tulsky EG, Long JR, Dimensional reduction: A practical formalism for manipulating solid structures, Chem. Mater., 2001, 13(4) : 1149-1166.
    [121] U.S. National Research Council, Frontiers in Chemical Engineering: Research Needs and Opportunities, National Academy Press, Washington, DC, 1988.
    [122] Ward CA, and Findlay RD, Statistical rate theory of interfacial transport. HI. Predicted rate of nondissociative adsorption, J. Chem. Phys., 1982a, 76(11) :5615-5623.
    [123] Ward CA, Elliott JAW, Material properties controlling adsorption kinetics and temperature programmed desorption spectra, Appl. Surf. Sci., 2002, 196,202-208.
    [124] Ward CA, Findlay RD, and Rizk M, Statistical rate theory of interfacial transport. I . Theoretical development, J. Chem. Phys., 1982b, 76(11) :5599-5605.
    [125] Ward CA, Rizk M, and Tucker AS, Statistical rate theory of interfacial transport. II. Rate of iosthermal bubble evolution in a liquid-gas solution, J. Chem. Phys., 1982c, 76(11) :5606-5614.
    [126] Wei J, Molecular Structure and Property: Product Engineering. Ind. Eng. Chem. Res. 2002,41(8) :1918-1919.
    [127] Weiner SA, Cranford B, and Chum H, The chemical industry of the future: Two views,
    
    Chem. Tech., 1998, 28(4): 10-15.
    [128] Wilson EK, Bridging Chemistry and Engineering, C&EN, 1999, 77(17): 24-32.
    [129] Xie JW, Lu XH, Yang ZH, et al., Morphology and Surface Structure Evolution of Based-Titanium Fibers Observed by Atomic Force Microscopy(AFM), Crystal Growth & Design, 2003a, in press.
    [130] Xie JW, Lu XH, Zhu Y, et al., AFM Study on Potassiium Hexatitanium Whisker (K_2O.6TiO_2), J. Mater. Sci., 2003b, in press.
    [131] Yin S, and Sato T, Synthesis and Photocatalytic Properties of Fibrous Titania Prepared from Protonic Layered Tetratitanate Precursor in Supercritical Alcohols, Ind, Eng. Chem. Res., 2000, 39, 4526-4530.
    [132] Zhu Y, Wang J, Lu XH, et al., Molecular Dynamics Simulation of Rutile TiO_2 and Potassium Hexatitante(K_2Ti_6O_(13)) Crystal, J. of Chinese Chem. Eng., 2003, 13(2): 123.
    [133] Zukoski CF, Particles and suspensions in chemical engineering: Accomplishments and prospects, Chem. Eng. Sci., 1995, 50(24): 4073-4079.
    [134] 暴宁钟,冯新,陆小华等,微观图像技术在超细材料粒度分析中的应用,中国粉休技术,2000,6(4):17-20
    [135] 毕刚,王浩伟,陶瓷质晶须及其在复合材料中的应用,材料导报,1999,13(5):55-58.
    [136] 冯新,陈东辉,陆小华等,六钛酸钾晶须增强聚四氟乙烯复合材料,中国专利,申请号 02138367.7,2003
    [137] 冯新,高质量低成本钛酸钾晶须的制备及其在复合材料中的应用,南京化工大学博士学位论文,2000。
    [138] 冯新,吕家桢,陆小华等,钛酸钾晶须在复合材料中的应用,复合材料学报,1999,16(4):1-7
    [139] 冯新,杨祝红,陆小华等,六钛酸钾晶须的制造方法,中国专利,公开号 1323924,2000.
    [140] 郭慕孙,过程工程,过程工程学报,2001,1(1):2-7.
    [141] 郭慕孙,汪家鼎,发展中中国的化工前沿,院士咨询报告,1995。
    [142] 胡英,刘洪来,叶汝强,化学化工中结构的多层次和多尺度研究方法,大学化学,2002,17(1):12-20.
    [143] 黄继芬,金作美,熔融法六钛酸钾合成机理研究,盐湖研究,1994,2(1):67-73.
    [144] 黄子卿,电解质溶液理论导论(修订版),北京,科学出版社,1983。
    [145] 姜志新,离子交换动力学及其应用(上),离子交换与吸附,1989,5(1):54-73.
    [146] 金饮汉,微波化学,科学出版社,1999,13-17,94-114
    [147] 李刚,氯化钾与无水芒硝复分解转化法制取硫酸钾方法的探讨,海湖盐与化工,1998,27(6):12-14.
    [148] 刘宝昌,张祖培,微波烧结技术及其在金刚石制品中的应用前景,金刚石与磨料磨具工程,2000,2,45-47.
    [149] 刘畅,暴宁钟,杨祝红等,过渡金属离子掺杂对TiO_2光催化性能的影响,催化学报,2001,22(2):215-218
    [150] 刘宏,刘素文,金德键,微波加热及其在陶瓷材料中的应用,1996,3,40-44.
    [151] 刘启华,关于化学工程未来发展的哲学思考,化学通报,1998,8,60-64
    [152] 刘亦凡,大井健太,离子记忆无机离子交换体,离子交换与吸附,1994,10(3):264-269.
    
    
    [153] 刘亦凡,于惠荣,陈学玺等,无机离子交换体,化学通报,1995,1,11-15.
    [154] 刘玉明,KDC法合成钛酸钾纤维的研究,无机材料学报,1994,9(1):83-88.
    [155] 刘铮,金涌,魏飞等,化学工程科学发展的回顾与思考,化工进展,2002,21(2):87-91
    [156] 陆小华,暴宁钟,冯新等,六钛酸钾晶须及纤维的制造方法,中国专利,专利号ZL9911 4005.2,1999
    [157] 陆小华,暴宁钟,吉晓燕等,K_2O4TiO_2中K~+/H~+交换的研究,高等学校化学学报,2000,21(Supplement):240
    [158] 陆小华,吉晓燕,陈栋梁等,溶解和离子交换反应中钾离子快速测定的研究,化工学报,2002,53,(3):358-362
    [159] 陆小华,杨祝红,冯新等,一种连续降解含有机污染物废水的光催化反应装置及其处理技术,中国专利,申请号 03112729.0,2003.
    [160] 吕家桢,窦强,冯新等,钛酸钾晶须增韧尼龙66及其断面分形研究,高分子材料与工程,2001a,17(2):154-157.
    [161] 吕家桢,冯新,张云灿等,钛酸钾晶须-橡胶-尼龙66体系的力学性能,南京化工大学学报,2001c,23(1):6-9.
    [162] 吕家桢,冯新,张云灿等,钛酸钾晶须增强尼龙66时的偶联与造粒,南京化工大学学报,2001b,23(1):27-29.
    [163] 庞广生,崔得良,徐文国等,微波固相法合成层状磷碲酸钾化合物,化学学报,1996,54(9):575-580.
    [164] 钱庭宝,离子交换剂应用技术,天津,天津科学技术出版社,1984.
    [165] 时钧,汪家鼎,余国琮等主编,化学工程手册,化学工业出版社,1996
    [166] 苏裕光等主编,无机化工生产相图分析(一),化学工业出版社,1985,185.
    [167] 汪海东,原力,尉敬华,余世英,微波固相法合成硼酸镁晶须,盐湖研究,1998,6(2-3):98-102.
    [168] 王方,凌达仁,黄文强主编,国际通用离子交换技术手册,北京,科技文献出版社,2000.
    [169] 王方等,离子交换应用技术,北京,北京科学技术出版社,1990.
    [170] 王福平,姜兆华,宋英等,KDC法合成四钛酸钾纤维的反应机制研究,硅酸盐学报,1999,27(4):471-476.
    [171] 王遵尧,翟志才,电导滴定法快速测定钾的含量,分析化学,1998,26(9):1159-1159。
    [172] 夏春镗等译,离子选择电极,上海,上海科学技术出版社,1987.
    [173] 小林勇,六钛酸钾纤维得制造方法,日本公开特许公报,JP05-105447,1993.
    [174] 谢敬伟,暴宁钟,陆小华,SPM技术在TiO_2表面研究中的应用,化学通报,2002,(7):445.
    [175] 谢凯,盘毅,王秀华等,钛酸钾短纤维的制备工艺研究,无机盐工业,1997,(1):16-17.
    [176] 谢声洛编著,离子选择电极分析技术,北京,化学工业出版社,1985.
    [177] 徐南平,时钧,我国材料化学工程研究进展,化工学报,2003,54(4):423-426.
    [178] 杨祝红,暴宁钟,刘畅等,TiO_2纤维的制备及光催化活性的研究,高等学校化学学报,2002a,23(7):1371-1374.
    [179] 杨祝红,暴宁钟,郑仲等,用溶剂热处理TiO_2纤维及其光催化活性的研究,催化学
    
    报,2002b,23(6):539-542
    [180] 袁建君,方琪,刘智恩.晶须的研究进展.材料科学与工程,1996,14(4):1-7
    [181] 张吕正,陆小华,电解质溶液相平衡预测系统的建立,计算机与应用化学,1995,12(3):199-202.
    [182] 张吕正,陆小华,王延儒等,含化学反应的相平衡求解方法现状,南京化工大学学报,1996,18(4):121-126.
    [183] 朱文化,柯家骏,新型无机晶须-钛酸钾晶须,化学通报,1994,(4):5-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700