种子种质超干保存及其耐干性的生理生化基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.在25℃恒温条件下,将花生、油菜、芝麻、黄瓜、洋葱、大豆、绿豆、水稻、玉米、小麦种子脱水干燥,定期测定种子的含水量与活力水平。结果表明,供试材料都具有较强的耐干燥的能力,种子含水量降至5—4.5%左右对种子发芽率和活力指数没有影响。若再进一步的脱水干燥,不同材料种子表现出不同的耐干燥能力。花生、油菜、黄瓜和芝麻种子含水量降至2.0%左右其发芽率和活力指数基本没有变化;洋葱、大豆、绿豆、水稻和小麦种子含水量降至约3.5%以下对种子活力都有不同程度的影响。比较不同种子内贮藏物质发现,富含脂类物质的种子脱水速率和耐超干力明显大于蛋白质类种子和淀粉类种子,但是不同品种的淀粉类种子脱水速率虽相似,且耐超干能力在品种间差异较大,供试的粳稻品种(春江15和春江683)不耐超干,当含水量降低至4.5%以下,种子发芽率和活力指数显著下降,而籼稻品种(J106和J174)耐超干能力强,含水量降低至3.5%以下时种子发芽率和活力指数没有影响,杂交稻(汕优63)和中香糯介于两者之间。
     2.对较低含水量种子在萌发之前进行回水处理和电导率的测定表明,超干种子萌发前进行回水处理是很必要的,能更有效地降低种子的吸水速率,为种子再水合过程中完成膜系统的修补创造必要的条件,有利于种子活力的保持。
     3.研究种子内可溶性糖、热稳定蛋白和活性氧代谢与种子耐超干之间的相关性。结果表明:(1)适度超干的花生(MC2.0%)、大豆(MC4.0%)和绿豆(4.5%)种子的种胚和子叶中非还原糖/还原糖比值高于对照(未超干种子),而蔗糖/寡糖比值在超干过程中变化不大,说明种子的耐超干能力与种子内非还原糖/还原糖比值的变化密切相关;超干处理可降低花生、大豆和绿豆子叶内α-半乳糖苷酶活性及种胚和子叶内蔗糖酶活性,从而使超干种子在贮藏过程中减少蔗糖、寡糖等保护性物质的消耗。(2)超干处理没有引起花生、大豆和绿豆种胚和子叶产生新的热稳定蛋白,但使热稳定蛋白含量发生变化,适度超干花生和绿豆种子的种胚和子叶热稳定蛋白含量最高,大豆种子的种胚内热稳定蛋白在超干过程中变化不明显,过干导致大豆、绿豆子叶热稳定蛋白减少,说明超干能使某些蛋白的热稳定性增加。花生种子热稳定蛋白含量明显大于大豆、绿豆种子,这可能是大豆和绿豆种子耐超干能力弱的原因之一。(3)超干过程中显著增加了种子内氧自由基水平,但是种子内MDA含量和LOX活性并没有升高,这种氧自由基的急剧增加并不是由LOX引起的;超干可提高种子有机自由基清除能力,说明热稳定蛋白的含量与种子的耐超干能力密切相关。从干种子提取液中检测到SOD、CAT和AsA-POD活性,
    
    且在超干过程中活性变化不明显,说明在超干过程中种子内抗氧化酶系统保持得相当完
    盖
     4.超干种子经人工老化或自然条件贮藏。结果表明,无论是人工老化还是自然条
    件下贮藏,超干处理确能提高种子的抗老化能力,延长种子的贮藏寿命,但是存在着一
    个适度的含水量,当脱水至某一闽值(最适含水量)以下时对种子的寿命无更大的益处。
    同时实验也表明利用人工老化的方式可以用来快速判断超干种子耐贮藏的性能,以及种
    子贮藏过程中的最适含水量。
     5.分析人工老化后不同含水量种子的可溶性糖、热稳定蛋白和活性氧代谢的变化。
    结果表明:(1)适度超干的花生(MC2.0%)、大豆(MC4.0%)和绿豆(MC4.5%)种子
    人工老化后胚和子叶内非还原糖/还原糖比值比对照(未超干)高,蔗糖/寡糖比值比对
    照为低,此比值的变化与种子活力的变化相一致,说明非还原糖与还原糖比值及蔗糖与
    寡糖比值高低与种子抗老化能力有关,非还原糖/还原糖比值高、蔗糖/寡糖比值低有利于
    提高种子的抗老化能力。(2)花生、大豆和绿豆种子内热稳定蛋白在老化过程中变化趋
    势不尽相同,但老化后适度超干花生、大豆和绿豆种子的种胚具有较高水平的热稳定蛋
    白,有利于其在老化过程中阻止蛋白质变性。(3)超干种子内氧自由基水平高于未超干
    种子,但与老化前相比,未超干老化种子内氧自由基增加幅度明显大于超干种子,超干
    种子MDA含量和脂氧合酶活性明显低于未超干种子;说明超干处理在一定程度抑制了
    种子在老化过程中氧自由基的产生以及膜脂过氧化作用的加强,但是过于超干种子内部
    膜脂过氧化作用反而会加强;人工老化对种子内抗氧化的酶系统影响程度不同,从总体
    比较来看,超干种子抗氧化酶系统保持得比未超干种子好,说明超干处理可提高种子贮
    藏过程中的抗膜脂过氧化能力。
     6.测定自然贮藏条件下不同含水量花生种子萌发过程中ATP含量、LOX活性以及
    活性氧代谢的变化,结果表明:超干种子萌发过程中种胚内ATP含量和抗氧化酶(s OD、
    CAT、AsA一POD、G一POD)活性明显高于未超干种子,MDA含量、挥发性醛和脂氧合
    酶活性低于未超干种子,说明超干种子在萌发过程中抗氧化酶系统活性较高,从而减轻
    或阻止了活性氧启动的脂质过氧化作用,避免对膜系统的损伤,保证超干种子正常的萌
    发。
     7.不同含水量(MC 7.1%一1 .2%)的洋葱种子贮藏在35℃、室温、巧℃和5℃条
    件下1一3年,适度超干处理能延长种子的贮藏寿命;种子的贮藏寿
In the present study, the different seed species were chosen to investigate the effect of ultradrying on seed germplasm preservation. The prominent storage substances, soluble sugars, heat-stable proteins and the metabolism of active oxygen in different seed species were evaluated for dry-tolerance and prolonging storage longevity of ultradried seeds. The aim of this study is to provide theory and to develop the technology of ultradried seed storage for germplasm preservation. The results are summarized as follows:
    1. Peanut, rape, sesame, cucumber, onion, soybean, mungbean, rice, corn and wheat seeds were dehydrated at 25 ℃, and the moisture content was measured at stated time intervals. Desiccation tolerance we, re observed in all of the above seeds, and The vigor indexes and germination percents of seeds with 5-4.5% moisture content did not visibly changed. However, when further dehydrated, different seed species showed dissimilar of desiccation tolerance capabilities. The vigor indexes and germination rate of peanut, rape, sesame and cucumber seeds did not changed within 2.0% moisture content, whereas onion, soybean, mungbean, rice, corn and wheat seeds showed great changes in their vigor indexes and germination rate.Higher lipid contents showed 'significantly higher speeds of dehydrating and greater ultradry-tolerant abilities than seeds of high protein or starch contents, while seeds of different starches showed parallel speeds of dehydrating, although with distinct ultradry-tolerant abilities. The germination ra
    
    te and vigor index of Japonica rice seeds (Chunjiang15 and Chunjiang683) decreased rapidly when their moisture content fell to 4.5%. On the contrary, the germination rate and vigor index of Indica rice (J174 and J106) seeds changed little even when their moisture content fell to 3.5%, which indicated that Indica rice had strong ultra-drying tolerance. While the seeds' tolerance of Waxy rice and Hybrid rice (Shanyou 63) were intervened in Japonica rice's and Indica rice's.
    
    
    
    2. The rehumidification treatment and a measuration of conductance of seeds with low moisture content before germination suggested that the rehumidification treatment was necessary to effectively reduce the water absorption rate and the membrane restoration during rehydration, thus maintaining the seeds' vigor.
    3. The relationship between ultradry-tolerant ability and soluble sugars, heat-stable proteins or metabolism of active oxygen were investigated after ultradrying. The results showed that: (1) The ratio of non-reducing sugars/reducing sugars in embryo and cotyledons of moderately ultradried peanut seeds(MC2.0%), soybean seeds(MC4.0%), and mungbean seeds(MC4.5%) has been increased, while no significant changes in the ratio of sucrose /oligosaccarides was observed, which indicates a positive correlation between ultradry-tolerance capabilities and the ratio of non-reducing sugars/reducing sugars of seeds. Ultradrying treatments reduced the activity of invertase and a -galactosidase in embryo of peanut seeds, soybean seeds, and mungbean seeds, thus decreasing the wastage of sucrose, oligosaccarides and other protective substances. (2) Ultradrying treatments did not induce new heat-stable proteins in embryo and cotyledons of peanut seeds, soybean seeds, and mungbean seeds, although heat-stable proteins was changed. Moderate ultradrying treatments could induce to accumulate heat-stable proteins in embryo of peanut seeds and mungbean seeds, but not in soybean seeds, in the embryo of which even a decrease of heat-stable proteins was observed when excessively ultradried. This suggested that the heat-stability of some proteins was improved. The content of heat-stable proteins in peanut seeds was significantly greater than that of soybean and mungbean seeds, which cauld be one of the possible reasons of different ultradry-tolerance abilities in different seeds. (3) After ultradrying treatments, the superoxide-producing rate significantly increased, the content of MDA and the rigor of LOX did
引文
1.程红焱,郑光华,陶嘉龄.超干处理对几种芸苔属植物种子生理生化和细胞超微结构的效应。植物生理学报,1991,17(3):273~284
    2.傅家瑞等.全国植物开花和种子生理讨论会论文汇编,1995.,P23
    3.国际种子检验协会(ISTA),国际种子,检验规程.上海科学技术出版,1993
    4.中国科学院上海植物生理研究所和上海市植物生理学会编.现代植物生理学实验指南.北京:科学出版社,1999 刘箭,陆旺金,傅家瑞.黄皮种子发育、萌动和脱水胁迫时蛋白的合成,1998.中山大学学报,37(3):128-130
    5.胡家恕,朱成,曾广文,郑光华.超干红花种子抗老化作用及其机理。植物生理学报,1999,25 (2):171~177.
    6.黄上志,王冬梅,卢春斌,傅家瑞.萌发中花生胚轴的耐干与热稳定蛋白。植物生理学报,1999.25(2):193~198
    7.洪也民,朱诚.种子人工老化处理时有机自由基与种子活力的关系。浙江农业大学学报,1988,14(2):181~183
    8.林坚,郑光华,张庆昌.回湿预处理防护超低含水量花生种子吸胀损伤的效果。植物学集刊,1994,7:294~298
    9.林坚,郑光华.高梁种子的超干研究。植物生理学报,1993,29(6):435~436
    10.王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系。植物生理学通讯,1990,26:55
    11.任晓米,朱诚,曾广文.与种子耐脱水性有关的基础物质研究进展。植物学通报,2001a.., 2:12
    12.任晓米,朱诚,曾文广,景新明.超干处理对种子生理生化的影响。2001b..植物生理学学报(已接受)
    13.宋松泉,陈玲,傅家瑞.种子脱水耐性与LEA蛋白。植物生理学通讯,1999.35(5):424~432
    14.宋松泉,傅家瑞.成熟种子对种子发育和萌发的作用。植物学通报,1998,15(2):23~32
    15.宋凤鸣,郑重,葛秀春.棉花感染枯萎病后糖含量及蔗糖酶活性的变化及其抗病性的关系。浙江农业大学学报,1996,8(2):91~95
    16.史密斯,H.[英].植物细胞分子生物学。科学出版社,1986,P35
    17.汪晓峰,郑光华,杨世杰,景新明.超干贮藏种子质膜流动性。科学通报,1999,44(4):733~739
    18.许申鸿,杭瑚.二苯代若味肼基自由基分光测定法及其应用的初步研究。植物生理学通讯,1999,35(6):474-477
    19.杨晓泉,姜孝成,傅家瑞.花生种子耐脱水力的形成与可溶性糖累积的关系。植物生理学报,1998,24(2):165~170
    20.郑光华.控制柑橘种子生命力的研究。中国农业科学,1980,2:12~14
    21.张明方,朱诚,胡家恕等.洋葱种子种质超干保存的效果及其对膜系统的影响。浙江农业大学学报,1999,25(3):252~254
    22.周祥胜,毕辛华.超低水分贮藏对几种高油分种子生理特性的影响种子。1993,5:12~15
    
    
    23.曾广文,朱诚,胡家恕,郑光华,景新民.红花种子超干期间自由基和水分状态的研究。浙江农业大学学报,1998,2(2):111~115
    24.黄学林,陈润政编.种子生理实验手册。北京:农业出版社,1990,110~112,119~122
    25.傅家瑞,宋松泉.种子耐耐水性的研究。热带亚热带植物学报,2001,009(004).-345-354
    26.朱诚,陶月良,曾广文,郑光华.油料种子超干处理与种子活力及脂质过氧化的关系。中国油料,1994.16(4):9
    27.朱诚,曾广文,郑光华.超干花生种子耐藏性与脂质过氧化作用。作物学报,2000,26(2):235~338
    28.姜晓成,杨晓泉,傅家瑞.脱水敏感的黄皮种子发育过程中碳水化合物的变化.植物生理学报,1997,27:324~330
    29.姜晓成,杨晓泉,傅家瑞.Studies on the changes of carhydrates in the desiccation sensitive Wampee seeds during development.种子,1998,95:1~4
    30.宋松泉,傅家瑞.Studies on desiccation-sensitivity and gememative events in chinese wampee (Clausena Lansiwn[Iour]Skeels)seeds.华南植物学报,1992,1:48~52
    31. Allinson R.K, Approaches to elucidate the basis of desiccation-tolerance in seeds. Seed Science Research, 1997,.7:74:95
    32. Almoguera C, Jordano J. Developmental and environmental concurrent expression of sunflower dry-seed-stored low molecular-weight heat shock protein and Lea mRNAs. Plant Mol Biol, 1992,19:781
    33. Andreew J.W. Goldsbrough P.B.Charavterization and expression of dehydrins in water-stressed Sorghum bicolor. Physiologia Plantarum, 1992,99:144~152
    34. Arakawa T. et al. Protein-solvent interactions in pharmaceutical formulations. Pharm. Res, 1991, 8:285~291
    35. Baker J, Steeke Cm Dure L. Sequence and characterization of LEA proteins and their genes from cotton. Plant Molecular Biology, 1988, 11:277~291
    36. Baud S, Boutin JP, Miquel M, Lepiniec L. Rochat C An integrated overview of seed development in Arabidopsis thaliana ecotype. Plant Physioloy and Biochemistry, 2002, 40 (2): 151-160 FEB
    37. Bernal-Lugo I, Leopold AC. Changes in Soluble Carbohydrates during Seed Storage. Plant Physiol, 1992, 98:1207~1210
    38. Berjack P, Dini M. Pammenter NW. Possible mechanisms underlying the differing dehydration responses inrecalcitrant and orthodox seed:desiccation-associated subcellular changes in propagules of Avicennia marina. Seed Sci and technol, 1984, 12:365~371
    39. Bewley JD, Black M. Seed physiology of development and germination. New York: Plenum Press. 1994, 117~145
    40. Bewley JD. A physiological perspective on seed vigour testing. Seed Sci &Technol, 1984, 12:561~575
    41. Black M, Corbineau F, Grzesik M, Guy P, Come D. Carbohydrate metabolism in the developing and maturing wheat embryo in relation to its desiccation tolerance. Journal of Experimental Botany, 1996,
    
    47:161-169
    42. Blackman SA, Obendorf RL, Leopold AC.Maturation proteins and sugars in desiccation tolerance of developing soybean seeds.Plant Physiol, 1992, 100:225-230
    43. Blackmail SA, Weltlaufer SH, Obendorf R L, Leopold A C.Maturation protein associated with desiccation tolerance in soybean.Plant Physiol, 1991a, 96:867-874
    44. Blackmail SA, Obendorf RL, Leopold AC.Desiccation tolerance in developing soybean seeds: The role of stress proteins.Physiologia Plantarum, 1991b, 93:630-638
    45. Bradfold MM, A rapid and sensitive method for the quantiation of microgram quantities of utilizing the principle of protein-dye binding.Anal Biockem, 1976, 72:248-254
    46. Bradford KJ, Chabdler PM.Expression of dehydrin-like proteins in embryos and seedling of zizinia palustris and oryza sativa during dehydration.Plant Physiol, 1992, 99:484-494
    47. Bucala R, Model P, Cerami A.Modification of DNA by reducing sugars: a possible mechanism for nucleic acid aging and age-related dysfunctio in gene expression.Proc Natl Acad Sci USA, 1984,81:105-109
    48. Buitink J.et al.Calorimetric properties of dehydrating pollen: Analysis of a desiccation-tolerant and an intolerant species.Plant Physiol., 1996,111: 235-242
    49. Buitink J.,Waters C.,Hoekstra F A.,Crane J.Storage behavior of typha latifolia pollen at low water contents:imterpretation on the basis of water activity and glass concepts.Physiol Plant,1998,103:145-153
    50. Buitink J., Hemminga M.A.Hoekstra F.A.Character-ization of molecular mobility in seed tissues:an electron paramagnetic resonance spin probe study.Biophys.J.1999, 76: 3315-3322.
    51. Buitink J., Lcprince O.Hoekstra F.A.Dehydration-induced redistribution of amphiphilic molecules between cytoplasm and lipids is associated with desiccation tolerance in seeds.Plant Physiol.2000, 124:1413-1425
    52. Buitink J.et al.Is there a role for oligosaccharides in seed longevity? An assessment of intracellular glass stability.Plant Physiol, 2000, 122:1217-1224
    53. Burke MJ.The glassy state and survival of anhydrous biological systems.In: AC Leopold, ed, Membranes, Metabolism and Dry Organisms.Cornell University Press, Ithaca, NY, 1986, pp:358~363
    54. Black M, Corbincau F, Grzesik M, Guy P, Come D.Carbohydrate metabolism in the developing and maturing wheat embryo in relation to its desiccation tolerance.Journal of Experimental Botany, 1996,47:161-169
    55. Cakmak I, Marschner H.Magnesium deficiency and high intensity enhance activities of superoxide dismutase ascorbate peroxidase and glutathione reductase in bean leaves.Plant Physiol, 1991,98:1222-1227
    56. Chandler PM, Robertson MGene expression regulated by abscisic acid and its relation to stress tolerance.Ann Rev.Plant Physiol Plant Mol Biol, 1994, 45:113-141
    
    
    57. Chen YG, Burris JS.Role of Carbohydrates in Desiccation Tolerance and Membrane Beharior in Maturing Maize Seed Crop Sci, 1990, 30:971-975
    58. Chin HF, B Kirshnapillay and P.C.Stanwood.Seed moisture recalcitrant vs orthodox seed.In: Seed Moisture, Stanwood,P.C,M.B MoDonald(eds), CSSA special publication NO.14,USA, 1989, 15-22
    59. Christina W, Vertucci, Lisa MH.Water sorption isotherms of seeds from ultradry experiments.Seed Science Research, Supplenent, 1998. 8(1) :69~71
    60. Close T J.Dehydrins: Acommonalty in the response of plants to dehydration and low temperature.Physiologia Plantarum, 1997, 100: 291-296
    61. Close T.J.Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins.Physiol.Plant.1996, 97: 795-803
    62. Crowe j.h, Crowe L.M, Carpenter J.F.Interaction of sugars with membranes.Biochim Biophys Acta, 1988, 947:367-384
    63. Crowe J.H., Crowe L.M., Carpenter J.F., Petrelski S., Hoekstra F.A., de Araujo P., Panek A.D.Anhydrobiosis: cellular adaptation to extreme dehydration.In:Dantzler W.H.(Ed.), Handbook of Physiology, Vol.11, Oxford University Press, Oxford, 1997, pp.1445-1477
    64. Crowe J.H.et al.Are freezing and dehydration similar stress vectors? A comparison of modes of interaction of stabilizing solutes with biomolecules.Cryobiology, 1990, 27: 219-231
    65. Crowe J.H., Hoekstra F.A., Crowe L.M.Anhydrobiosis.Annu.Rev.Physiol.1992,54:579-599
    66. Crowe J.H., Carpenter J.F., Crowe L.M.The role of verification in anhydrobiosis.Annu.Rev.Physiol.1998,60:73-103
    67. Crowe J.H., Oliver A.E.et al.Stabilization of dry membranes by mixtures of hydroxyethyl starch and glucose:the role of vitrification.Cryobiology, 1997, 35:20-30
    68. Crowe L.M., Crowe J.H.Trehalose and dry dipalmitoylphosphatidylcholine revisited.Biochim.Biophys., Acta, 1988, 946:193-201
    69. Crowe J.H.et al.Stabilization of dry phospholipid bilayers and proteins by sugars.Biochem.J., 1987, 242:1-10
    70. Crowe JH, Crowe LM, Carpenter JF.Interaction of sugars with membranes.Biochim Biophys Acta, 1988,947:367-384
    71. Cuming A.C.LEA Proteins.In: Shewry P.R., Casey R.(Eds.) , Seed Proteins, Kluwer Academic Publishers, Dordrecht, Boston, 1999, pp.753~780
    72. Droillard MJ, Paulin A, Massot JC.Free radical production, catalase and superoxide dismutase activities and membrane integrity during senescence of petals of cut carnations.Plant Physiol, 1987,71:197-202
    73. Dure L, Greenway SC, Galu GA.Developmental biochemistry of cotton seed embryogenesis and germination: Changing messenger ribonucleic acid Populations as shown by in vitro and in vivo protein synthesis.Biochemistry, 1981, 20:4162-4168
    
    
    74. Dure L, Crouch ML, Harada JJ, et al.Common amino sequence domains among the LEA proteins of hugher plant.Plant Mol Biol, 1989, 12:475-486
    75. Dure LS.In:Verma DPS(ed), Control of plant gene expression, Boca Raton: Florrida CRC Press, 1993,25-335
    76. Dure L.Ⅲ Lea proteins and the desiccation tolerance of seeds.In Advances in Cellular and Molecular Biology in Plants:Cellular and Molecular Biology of Plant Seed Development, (Larkins B.A., Vasil I.K., eds) , Kluwer Academic Publishers, 1997,4, pp.525-543
    77. Ellis RH, Hong TD, Roberts EH.Longarithmic relationaship between moisture content and longevity in sesae seeds.Ann Bot, 1986, 57:499-503
    78. Ellis RH, Hong TD, Roberts EH et al.Low moisture content limits to relations between seed, longevity and moisture.Ann Bot, 1990, 65:493-504
    79. Ellis RH, Hong TD.Survival of dry and ultra-dry seeds of carrot, groundnut, lettuce, oilluce rape, and onion during five year's hermetic storage at two temperatures.Seed Sci & Technol,1996. 24:347-358
    80. Ellis RH, Hong TD, Roberts EH.Moisture content, storage, viability and vigor, Seed Sci Res, 1991,1:275-277
    81. Ellis RH, Roberts EH.Improved equations for the prediction of seed longevity.Ann.Bot,, 1980,45:13-30
    82. Ellis RH, Hong TD, Roberts EH, Tao KL.Acomparison of the low-moistuer content limit to the logarithmic relationship between seed moisture and longevity in twelve species.Annals of Botany, 1989. 63:601-611
    83. Farrant JM, Pammenter NW, Berjak P, Farnsworth E J.Presence of dehydrinlike proteins and levels of absisc acid in recalcitrant (desiccation sensitive) seeds may be related to habitat.Seed Sci Res, 1996,6:175-182
    84. Feder M.E., Hofmann G.E.Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology.Annu.Rev.Physiol.1999, 61: 243-282
    85. Finch-Savage WE, Pramanil SK, Bewley JD.The expression of dehydrin protein in desiccation-sensitive (recalcitrant) seeds of temperate trees.Planta, 1994, 1993:478-485
    86. Folkert A.Hoekstra, Elena A.Golovina and Julia Buitink.Mechanisms of plant desiccation tolerance.TRENDS in Plant Science, 2001, 6 (9) : 431-438
    87. Folkert A.Hoekstra, Elena A.Golovina.The role of amphiphiles Comparative Biochemistry and Physiology, Part A, 2002, 131: 527-533
    88. Farrant JM, Pammenter NW, and Berjak P.Germination-associated events and the desiccation sensitivity of recalciteant seed-a study on three unrelated species.Planta, 1986,178:189-198
    89. Folkert A.Hoekstra, Elena A.Golovina and Julia Buitink.Mechanisms of plant desiccation tolerance.TRENDS in Plant Science, 2001, 6(9) : 431-438
    90. Fu JR, Huang SZ, Yang XQ et al.Heat-stable proteins associated with seed desiccation tolerance.In:
    
    Tay610r AG, Huang XL(eds).Progress in Seed Ressarch (Proceedings of The Second International Coference on Seed Science and Technology).Cornell University, 1997, 101-108
    91. Goday A, Jensen AB, Culianez-Macia FA, Alba MM, Figueras M, Serratosa J, Torrent M, Pages M.The maize abscisic acid-responisve protein Rab 17 is located in the nucleus and interacts with nuclear localization signals.Plant Cell, 1994, 6:351-360
    92. Golovina E.A., Hoekstra F.A., Hemminga M.A.Drying increases intracellular partitioning of amphiphilic substances into the lipid phase: impact on membrane permeability and significance for desiccation tolerance.Plant Physiol, 1998, 118: 975-986
    93. Golovina E.A., Hoekstra F.A.Membrane behavior as influenced by partitioning of amphiphiles during drying: a comparative study in anhydrobiotic plant systems.Comp.Biochem.Physiol, 2002, 131:545-558
    94. Golovina, E.A.et al.The competence to acquire cellular desiccation tolerance is independent of seed morphological development.J.Exp.Bot.2001 52, 1015-1027
    95. Green JL.Angell CA Phase relations and vitrification insaccharide-water solutions and the trehalose anomaly.J.PhysChem Solids, 1989,93: 2880-2882
    96. Han B, Hughes D W, Galau G A, Bewley J D, Kermode A R.Changes in lateembryogenesis-abundant (Lea) MESSENGER RNAs and dehydrins during maturation and premature drying of Ricinus Communis L Seeds.Planta, 1997, 201:27-35
    97. Harrigan P.R.f Madden T.D., Cullis P.R.Protection of liposomes during dehydration or freezing.Chem.Phys.Lipids, 1990, 52: 139-149
    98. Helm KV, Abernethy RH.Heat shock proteins and their mRNAs in dry and early imbibing embryos of wheat.Plant Physiol, 1990, 93:1626-1633
    99. Hildebrand DF.Lipoxyenases.Physiol Plant, 1989, 76:249-253
    100. Hifza Mazhar, Sheikh M.Basha.Effects of desiccation on peanut (Arachis hypogaea L.) seed protein composition.Environmental and Experimental Botany, 2002,47: 67-75
    101. Hoekstra F.A.,Golovina E.A., van Aelst A.C.Hemminga M.A.Imbibitional leakage from anhydrobiotes revisited.Plant Cell Environ.1999,22: 1121-1131
    102. Hoekstra F.A., Wolkers W.F., Golovina E.A.Protein stability and desiccation tolerance.In: Marzalina M., Khoo K.C., JayanthiN., TsanF.Y., Krishnapillay B.(Eds.).Recalcitrant Seeds, Forest Research Institute Malaysia, Kuala Lumpur, 1999, pp:188~207
    103. Hoekstra F.A., Golovina E.A.Impact of amphiphile partitioning on desiccation tolerance.In: Black M., Bradford K.J., Vasques-Ramos J.(Eds.) Seed Biology: Advances and Applications, CAB International, Wallingford, 2000, pp.43~55
    104. Holmstrom.KO, Bjorn Welin EM, Tapio Palva AME, Tunnela OE, Londesborough J.Drought tolerance in tobacco.Nature, 1996,379:686-684
    105. Horbowica M, Obendorf RL.Seed desiccation tolerance and storability: Dependence on
    
    flatulence-producing oligosaccharides and cyclitois-review and survey.Seed Sci Res, 1994,4:385~405
    106. Holft HL, Hubbard J, Reizer D et al.Vegetative and seed specific forms of tonoplast intrinsic protein in vacuolar membrane of Arabidopsis thaliana.Plant Physiol, 1992, 99:561~570
    107. Hoekstra FA., Golovina EA.The role of amphiphiles.Comparative Biochemistry And Physiology A-molecular And Integrative Physiology.2002, 131(3) : 527-533
    108. Hoekstra F.A., Golovina E.A.Membrane behavior during dehydration: implications for desiccation tolerance.Russ.J.Plant Physiol, 1999, 46: 295-306
    109. Hoekstra F.A., Crowe J.H., Crowe L.M., van Roekel T., Vermeer E.Do phospholipids and sucrose determine membrane phase transitions in dehydrating pollen species? Plant.Cell Environ, 1992, 15:601-606
    110. Hu C, zhang Y, Hu C, Tao M, Chen S.A comparison of methods for drying seeds: vacuum freeze-drier versus silica gel.Seed Sci Res, 1998 , (1) :29~34
    111. Ingram J, Bartels D.The molecular basis of dehydration tolerance in plants.Ann Rev Plant Physiol Mol Biol, 1996, 377-403
    112. Iturriaga G, Schneider K, Salamini F, Bartels D.Expression of desiccationrelated proteins from the resurrection plant Craterostigma Pluntagineum in transgenic tobacco.Plant Molecular Biology, 1992,20:555-558
    113. Kermode A D.Approaches to elucidate the basis of desiccation-toerance in seeds.Seed Sci Res, 1997,7(2) :75~95
    114. Koster KL, Leopold AC.Sugars and desiccation tolerance in seeds.Plant Physiology, , 1988,88:829-832
    115. Koster K L.Glass formation and desiccatio tolerance in seeds.Plant Physiology, 1991, 96:302-304
    116. Koster K.L., Lei Y.P., Anderson M., Martin S., Bryant G Effects of vitrified and nonvitrified sugars on phosphatidylcholine fluid-to-gel phase transitions.Biophys.J., 2000,78: 1932-1946
    117. Kuo TM, VanMiddlesworth JF, Wolf WJ.Content of Raffinose Oligosaccharides and Sucrose in various plant seeds.Journal of Agricultural and Food Chemistry, 1988, 36:32-36
    118. Lane BG.Cellular desiccation and hydration developmentally regulated proteins and the maturation and germination of seed embryos.FASEB J, 1991, 5:2893
    119. Ladbrooke BD, Chapman D.Thermal analysis of lipid, proteins and biological membranes.A review and summary of some recent studies.Chem phys Lipids, 1969,3:304-356
    120. Larson R.A.The antioxidants of higher plants.Phytochemistry, 1988, 27: 969-978.
    121. Leibovitz BE, Siegel V.Aspects of free radical reactions in biological systems: aging.J Gerontol, 1980,35:45-56
    122. Leprince O, Vertucci CW, Hendry GAF, Atherton N M.The expression of desiccation-induced damage in orthodox seeds is a function of oxygen and temperature.Physiologia Plantarum, 1995, 94:233-240
    123. Leprince O, Deltour R, Thorpe PC et al.The role of free radicals and radical processing systems in loss
    
    of desiccation tolerance in germination maize (Zea mays L.).New Phytol, 1990, 116:573
    124. Leslie S.B., TeterS.A., Crowe L.M., Crowe J.H.Trehalose lowers membrane phase transitions in dry yeast cells.Biochim.Biopliys.Acta, 1994, 1192: 7-13
    125. Leslie S.B., Israeli E., Lighthart B., Crowe J.H., Crowe L.M.Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying.Appl.Environ.Microbiol., 1995, 61:3592-3597
    126. Levitt J.Frost, drought and heat resistance.Annu Rev Plant Physiol, 1951, 2:245-269
    127. Ling GN.Wheat cmponent of the living cell is responsible for its semipermeable properties? Polarized water or lipids.Biophys J, 1973, 13(4) :807~815
    128. Lin C, Guo WW, Everson E.Cold acclimation in ambidopsis and wheat,a resporse associated with expression of related gene encoding "boiling-stable" polypeptides.Plant Physiol, 1990: 94: 1078-1083
    129. Marie-Aude R2. Identification and characterization of lipoxygenase isoforms in senescing carnation petals.Plant Physiol, 1999, 8:971-978
    130. Martin Caffrey,Victoria Fonseca,and A.Carl Leopold, Lipid-Sugar Interactions Relevance to Anhydrous Biology.PIant Physiol.1988, 86:754-758
    131. Meurs C, Basra AS, Karssen CM, et al.Role of abscisicacid in dthe induction of desiccation tolerance in developing seeds of Arabidopsis ghaliana.Plant Physiology, 199298:1484-1493
    132. McKersie DB, Leshem YY(eds).Stress and stress coping in cultivated plants, Dordrecht: Kluwer Academic Publishers, 1994, 132-147
    133. Mundy J, Chua NH.Abscisic acid and water-stress induce a novel rice gene.EMBO J, 1988, 7:2279
    134. Nkang A Carbohydrate composition during seed development and germination in two sub-tropical rainforest tree species JOURNAL OF PLANT PHYSIOLOGY159 (5) : 473-483 MAY 2002
    135. Obendorf RH.Oligosaccharides and galactosyl cyclitols in seed desiccation tolerance.Seed Sci Res,1997,7:63-74
    136. Ooms JJJ, Leon-Kloosterziel KMD, Koommeef M, Karssen CM.Acquisition of desiccatiom tolerance and longevity in seeds of Arabidopsis thaliana.Plant Physiol, 1993, 102:1185-1191
    137. Oliver M.J., Bewley J.D.Desiccation-tolerance of plant tissues: a mechanistic overview.Hort.Rev.,1996, 18: 171-213
    138. Olivier Leprince, Christina Walters Vertuci.A calorimetric study of the glass transition behaviors in axes of bean seeds with relevance to storage stability.Plant physiol, 1995, 109:1471-1481
    139. Oliver AE, Hincha DK, Crowe JH, Looking beyond sugars: the role of amphiphilic solutes in preventing adventitious reactions in anhydrobiotes at low water contents.Comparative Biochemistry And Physiology A-Molecular And Integrative Physiology, 2002, 131 (3) : 515-525
    140. Oliver A.E., Hincha D.K., Crowe L.M., Crowe J.H.Interactions of arbutin with dry and hydrated bilayers.Biochim.Biophys.Acta, 1998, 1370: 87-97
    
    
    141. Pammenter NW, Vertucci CW, Berjal P.Homeohydrous (recalcitrant) seeds: dehydration, the state of water and viability characteristics in Landolphia kirkii.Plant Physiology, 1991, 96:1093-1098
    142. Pammenter NW, Berjak P.A review of recalcitrant seed physiology in relation to desiccation-tolerance mechanisms.Seed Sci Res, 1999,9:13-37
    143. Parrish DC, Lepold AC.On the mechanism of aging in soybean seeds.Plant Physiology, 1978,61:365-368
    144. Pelah D, Wang W, Altman A, Shoseyov O, Bartels D.Differential accumulation of water stress-related proteins succrose synthase and soluble sugars in populus species that differ in their water stress response.Plant Physiol, 1997, 99:153-159
    145. Priestley DA.Seed as dry systems.In: Priestley DA(ed).Seed Aging.Ithaca and London: Cornell Univ Press.1986a, 22-29
    146. Priestley DA.Morphological structural and biochemical changes associated with seed aging.I:Priestley DA (ed).Seed Aging.Ithaca and London: Cornell Univ Press, 1986B, 125:165
    147. Priestley DA, Wetner GB, Leopold AC et al.Organic free radical levels in seeds and pollen: The effects of hydration and aging.Plant Physiol, 1985, 64:88-94
    148. Pukacka S, Wojkiewicz E Carbohydrate metabolism in Norway maple and sycamore seeds in relation to desiccation tolerance JOURNAL OF PLANT PHYSIOLOGY 159 (3) : 273-279 MAR 2002
    149. Ried JL, Walker-Simmos MK.Group 3 late embryogenesis abundant proteins in desiccation toerant seedlings of wheat (Triticum aesticum L.).Plant Physiol, 1993, 102:125
    150. Roberton M, Chandler PM.Pea dehydrins: identification characterization and expression.Plant Mol Biol, 1992, 19:1031
    151. Roberts J K, Desimone N A, Lingle W L, Dure L S.Cellular concentrations and uniformity of cell-type accumulation of two LEA proteins in cotton embryos.Plant Cell, 1993, 5:769-780
    152. Roberts E H.Predicting the storage life of seeds.Seed Sci and Technol, 1973, 1:499-514
    153. Sandrine D, Philppe L, Lelu MA.Desiccation decrase abscisic acid content in hybrid larch (LarixxLeptoeuropaea) somatic embryos.Physiologia Plantarum, 1997, 99:433~438
    154. Sales K.et al.The LEA-like protein HSP12 in Saccharomyces cerevisiae has a plasma membrane location and protects membranes against desiccation and ethanol-induced stress.Biochim.Biophys.Acta, 2000:1463:267-278
    155. Schulta RD, Asunmaa SK.Ordered water and the ultrasture of the cellular plasna membrane, Rrcent Prog Surface Sci, 1970 , (3) :291~332
    156. Schneider K, et al.Desiccation Leads to the rapid accumulation of both cytosolic and chloroplastic proteins in the resurrection plant Craterostigna Plantagineum Hochst.Planta, 1993, 189: 120-131
    157. Shirley B.W.Flavonoids in seeds and grains:physio-logical function,agronomic importance and the genetics of biosynthesis.Seed Sci.Res.1998, 8:415-422.
    158. Shiroya T.Metabolism of raffinose in cotton seeds.Phytochemistry, 1963, 2:23-46
    
    
    159. Smiroff N, Cumbes Q.Hydroxyl radical scavenging activity of compatible solutes.Phytochemistry, 1989,28:1057-1060
    160. Senaratna T, Mckersie BD, Stinson RH.Antioxidant levels in germinating soybean seed axes in relation to free radical and dehydration tolerance.Plant Physiol, 1985, 78:168
    161. Steadman KJ, Pritchard H, Dey PM.Tissue-specific soluble sugars in seeds as indicator of storage category.Annals of Botany, 1996, 77:667-674
    162. Sun W.Q.et al.The role of sugar, vitrification and membrane phase transition in seed desiccation tolerance.Physiol.Plant, 1994, 90: 621-628
    163. Thomann E B, Sollinger J, White C, Rivin C J.Accumulation of grop3 Late embryogenesis abundant proteins in Zea mays embryos.Plant Phsiol, 1992,99:607-614
    164. Tsvetkova N.M., Phillips B.L., Crowe L.M., Crowe J.H., Risbud S.H.Effect of sugars on headgroup mobility in freeze-dried dipalmitoylphosphatidylcholine bilayers:solid-state 31P NMR and FTIR studies.Biophys.J, 1998, 75: 2947-2955
    165. Torok Z., Horvath I., Goloubinoff P., et al.Evidence for a lipochaperonin: association of active protein-folding GroESL oligomers with lipids can stabilize membranes under heat shock conditions.Proc.Natl.Acad.Sci.USA., 1997,94:2192-2197
    166. Vertucci CW, Farrant JM.Acquisition and loss of desiccation tolerance.In:Galili G, Kigel J(eds).Seed Development and Germination.New York: Marcel Dekker Inc, 1995,237-271
    167. Vertucci CW, Roos EE.Theroretical basis of protocols for seed storage.Plant Physiol, 1990,94:1019-10237
    168. Vertucci C W, Farrant J M.Acquisition and loss of desiccation tolerance.In: Galili G, Kigel J (Eds).Seed Development and Germination.New York: Marcel Dekker Inc, 1995,237-271
    169. Vertucci CW, Roos EE Theoretical basis of protocols for seed storage.Plant Physiol.1990, 64:1019-1023
    170. Vigh L.et al.Does the membrane's physical state control the expression of heat shock and other genes? Trends Biochem.Sci., 1998,23:369-374
    171. Walters C, Ried JL, Walker-Simmons MK.Heat-soluble proteins extracted from wheat embryos have tightly bound sugars and unusual hydration properties.Seed Sci Res, 1997, 7:15-134
    172. Wang HC.Plant stress physiology.Plant Physiol Comccn, 1981,6:72-81
    173. Wettlaufer SH, Leopold AC.Relevance of amadori and Maillard products to seed deterioration.Plant Physiol, 1991,977:165-169
    174. Wehmeyer N., Vierling E.The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance.Plant Physiol, 2000, 122: 1099-1108
    175. Wehmeyer N., et al.Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation.Plant Physiol.1996, 112: 747-757
    
    
    176. Wolfe J., Bryant G.Freezing,drying and/or vitrification of membrane-solute-water systems.Cryobiology, 1999,39: 103-129.
    177. Wolkers W.F.et al.Changed properties of the cytoplasmic matrix associated with desiccation tolerance of dried carrot somatic embryos.An in situ Fourier transform infrared spectroscopic study.Plant Physiol, 1999, 120: 153-163
    178. Wolkers W.F.Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro.Biochim.Biophys.Acta, 2001, 1544: 196-206
    179. Wood AJ, Goldsbrough PB.Characterization and expression of dehydrins in water-stresses sorghum bicolor.Physiologia Plantarum, 1997,99:144-152
    180. Wilson DO, McDonald MB.A convenient volatile aldehydes assay for measuring soybean seed vigor.Seed Sci & Technol, 1986, 14:269-300
    181. Woodstock LWm Simkin J, Schroeder E.Freeze-drying to improve seed storability.Seed Sci & Technol, 1976,4:301-311
    182. Williams RJ, Hirsh AG, Takahashi TA, Meryman HT.What is vitrification and how can it extend life? Japanese Journal of Freeze Drying, 1993, 39: 3-12
    183. Xu D, Duan X, Wang B, Hong B, Ho TH D, Wu R.Expression of a late Embryogenesis abundant protein gene, HVAI, from Barley confers tolerance to water deficit and salt stress in transgenic Rice.Plant Physiology, 1996, 110:249-257
    184. Zeng XY, Chen RZ, Fu JR et al.The effects of water content during storage on physiological activity of cucumber seeds.Seed Sci Res, 1998, 8(1) : 65-68
    185. Zheng Guang-Hua, Jing xin-Ming, Tao Kar-lling.Ultradry seed storage cuts cost of gene bank.Nature, 1998,393:223-224
    186. Zhu Cheng, Liu Xin et al.Difference of Ultra-drying Tolerance and Heat-stable Proteins in Seeds of Different Rice Cultivars.Chinese Journal of Rice Science, 2001, 15(4) : 287-290

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700