蛋白质组学分析重组腺病毒介导hSSTR2基因转染对胰腺癌细胞蛋白表达的影响及Lv-VIM-shRNA的构建和鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分蛋白质组学分析重组腺病毒介导hSSTR2基因转染对胰腺癌细胞蛋白表达的影响
     目的探讨hSSTR2基因转染对胰腺癌细胞Panc-1蛋白表达的影响;寻找新的胰腺癌敏感治疗靶点。
     方法利用腺病毒载体Ad.CMV.eGFP.hSSTR2.将hSSTR2全长cDMA导入胰腺癌细胞Panc-1,用RT-PCR及Western Blot分别检测hSSTR2在mRNA水平及蛋白水平上的表达。采用荧光差异蛋白组学(2D-DIGE)技术分离并筛选转染hSSTR2的实验组、空载体对照组以及空白组胰腺癌细胞之间差异表达蛋白;用反射式基质辅助激光解吸附电离串联飞行时间质谱(MALD1-TOF/TOF)技术对差异蛋白进行鉴定。采用Western Blot验证波形蛋白、PKM2、SEPT11的差异表达;采用免疫组化检测上述三种蛋白在胰腺癌组织中的表达。
     结果hSSTR2成功的转染了胰腺癌细胞,建立了hSSTR2阴性和阳性表达胰腺癌细胞Panc-1荧光差异蛋白表达图谱。经DeCyder v6.5软件分机,其得到21个有统计学意义的差异蛋白质点;选择1.3倍以上的差异点18个,经质谱鉴定得到13个蛋白质,在转染hSSTR2的胰腺癌细胞中低表达蛋白为GMP合酶、磷酸化应激诱导蛋白、谷氨酸脱氢酶、Septin-11、波形蛋白、异柠檬酸脱氢酶α亚基、线粒体内膜易位酶;高表达蛋白为真核延长因子(?)α(?)、丙酮酸激酶异构体M2型、烯酰CoA水合酶、转录调节因子1-β、Mitofilin、HSP105。
     结论实验筛选的差异蛋白功能涉及到糖、脂肪以及核酸代谢,细胞生长调节和细胞凋亡等过程。对这些蛋白质功能的进一步验证,将有助于解析缺失hSSTR2基因表达胰腺癌细胞生长、侵袭转移的分子机制,从而为寻找新的胰腺癌敏感治疗靶点奠定基础。
     第二部分Lv-VIM-shRNA的构建和鉴定
     目的构建人VIM基因RNA干扰(RNAi)慢病毒表达载体,并评价其在胰腺癌细胞中的干扰效果。
     方法利用在线软件设计3条人VIM基因shRNA序列,并选用一条文献报道序列,合成、退火形成双链寡核酸后克隆到pGCL-GFP/U6载体的黏性末端,将连接产物转化到DH5α感受态细胞,经PCR筛选阳性克隆、测序鉴定。实时定量PCR和Western Blot用于在转染了过表达质粒pEGFP-N1-hVIM的293T细胞中筛选有效的pGCL-GFP/U6-shRNA,将其和pHelper1.0、pHelper2.0共转染293T细胞,包装产生慢病毒颗粒并测定病毒滴度。Real-time PCR和Western Blot在胰腺癌细胞Panc-1中验证慢病毒(Lv-VIM-shRNA)干扰Vim mRNA和波形蛋白表达效果。
     结果成功构建携带VIM基因干扰序列的慢病毒表达载体,病毒滴度为2×10~9TU/ml。在胰腺癌细胞Panc-1中验证其干扰VIM基因效果,Vim mRNA和Vimentin表达明显下调。
     结论成功构建出针对人VIM基因RNA干扰(RNAi)慢病毒载体,体外感染胰腺癌细胞Panc-1后可有效抑制VIM基因和蛋白的表达。为研究VIM在胰腺癌中涉及肿瘤发生和进展的信号转导机途径以及寻找新的治疗靶点提供一种研究工具。
PartⅠEffection of Differential Proteins Expression in PancreaticCancer Cells Transfected with Ad.CMV.eGFP.hSSTR2 by ProteomeAnalysis
     Objective To study the effection of differential proteins expression in pancreatic cancercells Panc-1 transfered hSSTR2 gene in vitro and search new sensitive therapeutic targetsof pancreatic cancer.
     Methods The full length hSSTR2 cDNA was introduced into pancreatic cancer cell linePanc-1 by adenovirus mediated transfection and stable expression of RNA and protein ofhSSTR2 were detected by RT-PCR and Westen blot.Comprehensive analyses of proteinswere focused on total protein spots exhibiting statistical alternations among theexperimental group,vector control and mock control by 2D-DIGE analysis.Proteinidentification was done by peptide mass finger printing with matrix-assisted laserdesorption/ionization time-of-flight mass spectrometry(MALDI—TOF/TOF).Western blotwas performed to verify the differential expression of vimentin,PKM2 and SEPT11.Immunohistochemistry was performed to detect the expression of vimentin,PKM2 andSEPT11 in pancreatinc carcer tissues.
     Results hSSTR2 gene was transfected into Panc-1 pancreatic cancer cells in vitro successfully,and fluorescence difference protein expression patterns were establishedbetween hSSTR2 negative and positive expression of pancreatic cancer cells Panc-1.ByDeCyder v6.5 software analysis,a total of 21 have been statistically significant differencesin protein spots.There had the difference 18 points (greater then 1.3-fold) and these proteinspots was identified by mass spectrometry for 13 proteins.Proteins found to have lowerabundance levels in pancreatic cancer cells Panc-1 with hSSTR2 positive expressioncompared to negative expression included GMP synthase,Stress induced phosphoprotein1,Glutamate dehydrogenase 1,Septin-11,vimentin,Isocitrate dehydrogenase [NAD] subunitalpha,Import inner membrane translocase subunit TIM50.Proteins found to have increasedabundance levels in Panc-1 pancreatic cancer cells with hSSTR2 negative expressioncompared to positive expression included Elongation factor 1-alpha 1,Isoform M2 ofPyruvate kinase isozymes M1/M2,Enoyl-CoA hydratase tripartite motif-containing 28protein,Isoform 1 of Mitochondrial inner membrane protein,Heat shock protein 105 kDa.
     Conclusion The function of screening difference proteins involved in the process ofmetabolism of sugar,fat and nucleic acid,and the regulation of cell growth.It was beenhelpful for revealing the molecular mechanisms of growth,invasion and metastasis ofpancreatic cancer cell which missed hSSTR2 gene expression to further validate theirfunctions.
     PartⅡConstruction and Identification of Lv-VIM-shRNA
     Objective To construct a lentiviral expression vector for RNA interference (RNAi) ofhuman VIM gene;and assess its gene silencing effect in pancreatic cancer cell line Panc-1.
     Methods Three pairs of human VIM gene short hairpin RNA (shRNA) sequences weredesigned following the procedure of a software available on-line and one pair came fromdocument.After synthesis and annealing,four double-stranded oligonucleotides (dsOligo) were cloned into the pGCL-GFP/U6 plasmid,which were subsequently confirmed by PCRand DNA sequencing analysis.Real-time PCR and Western Blot were used to screen theeffective pGCL-GFP-shRNA plasmid in 293T cells,then the most effective one was packedinto the recombinant lentivirus Lv-VIM-shRNA with lentiviral packing materials pHelper 1.0 and pHelper 2.0 in 293T cells.The titer of lentivirus was determined by hole-by-dilutiontiter assay.The silencing effect of Lv-V1M-shRNA in Panc-1 cells was validated byreal-time PCR and Western Blot.
     Results An effective Lv-VIM-shRNA was successfully constructed.The titer of lentiviruswas determined on 2×10~9TU/ml.The expression of VIM mRNA and vimentin wasdown-regluated in the Panc-1 cells infected with Lv-VIM-shRNA.
     Conclusion An effective Lv-VIM-shRNA could inhibit the expression of VIM gene inPanc-1 cells in vitro,which provides a tool for investigating the role of VIM gene in thesignaling pathway involved in tumorigenesis and progression of pancreatic cancer andsearching new therapitic targets.
引文
[1]Jemal A,Siegel R,Ward E,Murray T,Xu J,Smigal C,Thun MJ.Cancer statistics,2006.CA Cancer J Clin 2006;56 (2):106-30.
    [2]Guo X,Cui Z.Current diagnosis and treatment of pancreatic cancer in China.Pancreas 2005;31 (1):13-22.
    [3]Bardeesy N,DePinho RA.Pancreatic cancer biology and genetics.Nat Rev Cancer 2002;2 (12):897-909.
    [4]Li D,Xie K,Wolff R,Abbruzzese JL.Pancreatic cancer.Lancet 2004;363 (9414):1049-57.
    [5]Jafari M,Abbruzzese JL.Pancreatic cancer:future outlook,promising trials,newer systemic agents,and strategies from the Gastrointestinal Intergroup Pancreatic Cancer Task Force.Surg Oncol Clin N Am 2004;13 (4):751-60,xi.
    [6]Torrisani J,Buscail L.[Molecular pathways of pancreatic carcinogenesis].Ann Pathol 2002;22(5):349-55.
    [7]Li M,Li W,Kim HJ,Yao Q,Chen C,Fisher WE.Characterization of somatostatin receptor expression in human pancreatic cancer using real-time RT-PCR.J Surg Res 2004;119 (2):130-7.
    [8]Buscail L,Saint-Laurent N,Chastre E,Vaillant JC,Gespach C,Capella G,Kalthoff H,Lluis F,Vaysse N,Susini C.Loss of sst2 somatostatin receptor gene expression in human pancreatic and colorectal cancer.Cancer Res 1996;56 (8):1823-7.
    [9]Chen L,Liu Q,Qin R,Le H,Xia R,Li W,Kumar M.Amplification and functional characterization of MUC1 promoter and gene-virotherapy via a targeting adenoviral vector expressing hSSTR2 gene in MUC1-positive Panc-1 pancreatic cancer cells in vitro. Int J Mol Med 2005;15 (4):617-26.
    [10] Feng Y, Huang T, Gao J, Chang Q, Qin R. Inhibition of metastatic progression of SSTR2 gene transfection mediated by adenovirus in human pancreatic carcinoma cells. J Huazhong Univ Sci Technolog Med Sci 2006;26 (1):68-71.
    [11] Du ZY, Qin RY, Xia W, Tian R, Kumar M. Gene transfer of somatostatin receptor type 2 by intratumoral injection inhibits established pancreatic carcinoma xenografts. World J Gastroenterol 2005;ll (4):516-20.
    [12] Kumar M, Liu ZR, Thapa L, Qin RY. Anti-angiogenic effects of somatostatin receptor subtype 2 on human pancreatic cancer xenografts. Carcinogenesis 2004;25 (11):2075-81.
    [13] Kumar M, Liu ZR, Thapa L, Wang DY, Tian R, Qin RY. Mechanisms of inhibition of growth of human pancreatic carcinoma implanted in nude mice by somatostatin receptor subtype 2. Pancreas 2004;29 (2):141-51.
    [14] Kumar M, Liu ZR, Thapa L, Chang Q, Wang DY, Qin RY. Antiangiogenic effect of somatostatin receptor subtype 2 on pancreatic cancer cell line: Inhibition of vascular endothelial growth factor and matrix metalloproteinase-2 expression in vitro. World J Gastroenterol 2004;10(3):393-9.
    [15] Vernejoul F, Faure P, Benali N, Calise D, Tiraby G, Pradayrol L, Susini C, Buscail L. Antitumor effect of in vivo somatostatin receptor subtype 2 gene transfer in primary and metastatic pancreatic cancer models. Cancer Res 2002;62 (21):6124-31.
    [16] Celinski SA, Fisher WE, Amaya F, Wu YQ, Yao Q, Youker KA, Li M. Somatostatin receptor gene transfer inhibits established pancreatic cancer xenografts. J Surg Res 2003;115 (l):41-7.
    [17] Fisher WE, Wu Y, Amaya F, Berger DH. Somatostatin receptor subtype 2 gene therapy inhibits pancreatic cancer in vitro. J Surg Res 2002; 105 (l):58-64.
    [18] Cordelier P, Bienvenu C, Lulka H, Marrache F, Bouisson M, Openheim A, Strayer DS, Vaysse N,Pradayrol L, Buscail L. Replication-deficient rSV40 mediate pancreatic gene transfer and long-term inhibition of tumor growth. Cancer Gene Ther 2007;14 (l):19-29.
    [19] Carrere N, Vernejoul F, Souque A, Asnacios A, Vaysse N, Pradayrol L, Susini C, Buscail L, Cordelier P. Characterization of the bystander effect of somatostatin receptor sst2 after in vivo gene transfer into human pancreatic cancer cells. Hum Gene Ther 2005;16 (10):1175-93.
    [20] Wulfkuhle JD, Liotta LA, Petricoin EF. Proteomic applications for the early detection of cancer. Nat Rev Cancer 2003;3 (4):267-75.
    [21] Chen Y, Lin MC, Wang H, Chan CY, Jiang L, Ngai SM, Yu J, He ML, Shaw PC, Yew DT, Sung JJ, Kung HF. Proteomic analysis of EZH2 downstream target proteins in hepatocellular carcinoma. Proteomics 2007;7 (17):3097-104.
    [22] Yan G, Li L, Tao Y, Liu S, Liu Y, Luo W, Wu Y, Tang M, Dong Z, Cao Y. Identification of novel phosphoproteins in signaling pathways triggered by latent membrane protein 1 using functional proteomics technology. Proteomics 2006;6 (6):1810-21.
    [23] Stuhler K, Koper K, Pfeiffer K, Tagariello A, Souquet M, Schwarte-Waldhoff I, Hahn SA, Schmiegel W, Meyer HE. Differential proteome analysis of colon carcinoma cell line SW480 after reconstitution of the tumour suppressor Smad4. Anal Bioanal Chem 2006;386 (6): 1603-12.
    [24] Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 1997;18 (ll):2071-7.
    [25] Knowles MR, Cervino S, Skynner HA, Hunt SP, de Felipe C, Salim K, Meneses-Lorente G,McAllister G, Guest PC. Multiplex proteomic analysis by two-dimensional differential in-gel electrophoresis. Proteomics 2003;3 (7):1162-71.
    [26] Van den Bergh G, Arckens L. Fluorescent two-dimensional difference gel electrophoresis unveils the potential of gel-based proteomics. Curr Opin Biotechnol 2004;15 (1):38-43.
    [27] Huang HL, Stasyk T, Morandell S, Dieplinger H, Falkensammer G, Griesmacher A, Mogg M,Schreiber M, Feuerstein I, Huck CW, Stecher G, Bonn GK, Huber LA. Biomarker discovery in breast cancer serum using 2-D differential gel electrophoresis/ MALDI-TOF/TOF and data validation by routine clinical assays. Electrophoresis 2006;27 (8):1641-50.
    [28] Tian R, Wei LM, Qin RY, Li Y, Du ZY, Xia W, Shi CJ, Jin H. Proteome analysis of human pancreatic ductal adenocarcinoma tissue using two-dimensional gel electrophoresis and tandem mass spectrometry for identification of disease-related proteins. Dig Dis Sci 2008;53 (l):65-72.
    [29] Melle C, Ernst G, Escher N, Hartmann D, Schimmel B, Bleul A, Thieme H, Kaufmann R, Felix K, Friess HM, Settmacher U, Hommann M, Richter KK, Daffner W, Taubig H, Manger T, Claussen U, von Eggeling F. Protein profiling of microdissected pancreas carcinoma and identification of HSP27 as a potential serum marker. Clin Chem 2007;53 (4):629-35.
    [30] Hwang TL, Liang Y, Chien KY, Yu JS. Overexpression and elevated serum levels of phosphoglycerate kinase 1 in pancreatic ductal adenocarcinoma. Proteomics 2006;6 (7):2259-72.
    [31] Gronborg M, Kristiansen TZ, Iwahori A, Chang R, Reddy R, Sato N, Molina H, Jensen ON, Hruban RH, Goggins MG, Maitra A, Pandey A. Biomarker discovery from pancreatic cancer secretome using a differential proteomic approach. Mol Cell Proteomics 2006;5 (1):157-71.
    [32] Chen R, Pan S, Yi EC, Donohoe S, Bronner MP, Potter JD, Goodlett DR, Aebersold R, Brentnall TA. Quantitative proteomic profiling of pancreatic cancer juice. Proteomics 2006;6 (13):3871-9.
    [33] Mori-Iwamoto S, Kuramitsu Y, Ryozawa S, Mikuria K, Fujimoto M, Maehara S, Maehara Y,Okita K, Nakamura K, Sakaida I. Proteomics finding heat shock protein 27 as a biomarker for resistance of pancreatic cancer cells to gemcitabine. Int J Oncol 2007;31 (6):1345-50.
    [34] Imamura T, Kanai F, Kawakami T, Amarsanaa J, Ijichi H, Hoshida Y, Tanaka Y, Ikenoue T, Tateishi K, Kawabe T, Arakawa Y, Miyagishi M, Taira K, Yokosuka O, Omata M. Proteomic analysis of the TGF-beta signaling pathway in pancreatic carcinoma cells using stable RNA interference to silence Smad4 expression. Biochem Biophys Res Commun 2004;318 (l):289-96.
    [35] Delesque N, Buscail L, Esteve JP, Saint-Laurent N, Muller C, Weckbecker G, Bruns C, Vaysse N, Susini C. sst2 somatostatin receptor expression reverses tumorigenicity of human pancreatic cancer cells. Cancer Res 1997;57 (5):956-62.
    [36] Rochaix P, Delesque N, Esteve JP, Saint-Laurent N, Voight JJ, Vaysse N, Susini C, Buscail L. Gene therapy for pancreatic carcinoma: local and distant antitumor effects after somatostatin receptor sst2 gene transfer. Hum Gene Ther 1999;10 (6):995-1008.
    [37] Guillermet J, Saint-Laurent N, Rochaix P, Cuvillier O, Levade T, Schally AV, Pradayrol L,Buscail L, Susini C, Bousquet C. Somatostatin receptor subtype 2 sensitizes human pancreatic cancer cells to death ligand-induced apoptosis. Proc Natl Acad Sci U S A 2003;100 (1):155-60.
    [38] Liu ZR, Qin RY, Wu GS, Chang Q, Wang DY, Zou SQ, Qiu FZ. Effect of octreotide on human pancreatic cancer cells after transfected with somatostatin receptor type 2 gene. World J Gastroenterol 2004;10 (15):2292-4.
    [39] Manoj K, Liu ZR, Tian R, Qin RY. [Mechanisms of inhibition of growth of human pancreatic carcinoma implanted in nude mice by somatostatin receptor subtype 2]. Zhonghua Yi Xue Za Zhi 2004;84 (9):760-5.
    [40] Qin RY, Fang RL, Gupta MK, Liu ZR, Wang DY, Chang Q, Chen YB. Alteration of somatostatin receptor subtype 2 gene expression in pancreatic tumor angiogenesis. World J Gastroenterol 2004;10 (l):132-5.
    [41] Kahns S, Lund A, Kristensen P, Knudsen CR, Clark BF, Cavallius J, Merrick WC. The elongation factor 1 A-2 isoform from rabbit: cloning of the cDNA and characterization of the protein. Nucleic Acids Res 1998;26 (8):1884-90.
    [42] Bischoff C, Kahns S, Lund A, Jorgensen HF, Praestegaard M, Clark BF, Leffers H. The human elongation factor 1 A-2 gene (EEF1A2): complete sequence and characterization of gene structure and promoter activity. Genomics 2000;68 (l):63-70.
    [43] Kobayashi Y, Yonehara S. Novel cell death by downregulation of eEF1A1 expression in tetraploids. Cell Death Differ 2008.
    [44] Koiwai K, Maezawa S, Hayano T, Iitsuka M, Koiwai O. BPOZ-2 directly binds to eEF1A1 to promote eEF1A1 ubiquitylation and degradation and prevent translation. Genes Cells 2008;13 (6):593-607.
    [45] Friedman JR, Fredericks WJ, Jensen DE, Speicher DW, Huang XP, Neilson EG, Rauscher FJ, 3rd. KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev 1996;10 (16):2067-78.
    [46] Wolf D, Hug K, Goff SP. TRIM28 mediates primer binding site-targeted silencing of Lysl,2 tRNA-utilizing retroviruses in embryonic cells. Proc Natl Acad Sci U S A 2008;105 (34):12521-6.
    [47] Wolf D, Goff SP. TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell 2007; 131 (l):46-57.
    [48] Weber P, Cammas F, Gerard C, Metzger D, Chambon P, Losson R, Mark M. Germ cell expression of the transcriptional co-repressor TIFlbeta is required for the maintenance of spermatogenesis in the mouse. Development 2002; 129 (10):2329-37.
    [49] Nakamura J, Lou L. Biochemical characterization of human GMP synthetase. J Biol Chem 1995;270(13):7347-53.
    [50] Hirst M, Haliday E, Nakamura J, Lou L. Human GMP synthetase. Protein purification, cloning, and functional expression of cDNA. J Biol Chem 1994;269 (38):23830-7.
    [51] Smith TJ, Peterson PE, Schmidt T, Fang J, Stanley CA. Structures of bovine glutamate dehydrogenase complexes elucidate the mechanism of purine regulation. J Mol Biol 2001;307 (2):707-20.
    [52] Gadde DM, Yang E, McCammon MT. An unassembled subunit of NAD(+)-dependent isocitrate dehydrogenase is insoluble and covalently modified. Arch Biochem Biophys 1998;354
    [53] Lee SM, Koh HJ, Park DC, Song BJ, Huh TL, Park JW. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med 2002;32 (11):1185-96.
    [54] Janssen U, Davis EM, Le Beau MM, Stoffel W. Human mitochondrial enoyl-CoA hydratase gene (ECHS1): structural organization and assignment to chromosome 10q26.2-q26.3. Genomics 1997;40 (3):470-5.
    [55] Hwa JS, Park HJ, Jung JH, Kam SC, Park HC, Kim CW, Kang KR, Hyun JS, Chung KH. Identification of proteins differentially expressed in the conventional renal cell carcinoma by proteomic analysis. J Korean Med Sci 2005;20 (3):450-5.
    [56] Yokoyama Y, Kuramitsu Y, Takashima M, Iizuka N, Toda T, Terai S, Sakaida I, Oka M, Nakamura K, Okita K. Proteomic profiling of proteins decreased in hepatocellular carcinoma from patients infected with hepatitis C virus. Proteomics 2004;4 (7):2111-6.
    [57] Lin JF, Xu J, Tian HY, Gao X, Chen QX, Gu Q, Xu GJ, Song JD, Zhao FK. Identification of candidate prostate cancer biomarkers in prostate needle biopsy specimens using proteomic analysis. Int J Cancer 2007;121 (12):2596-605.
    [58] Yeh CS, Wang JY, Cheng TL, Juan CH, Wu CH, Lin SR. Fatty acid metabolism pathway play an important role in carcinogenesis of human colorectal cancers by Microarray-Bioinformatics analysis. Cancer Lett 2006;233 (2):297-308.
    [59] Hu Y, Pang E, Lai PB, Squire JA, MacGregor PF, Beheshti B, Albert M, Leung TW, Wong N. Genetic alterations in doxorubicin-resistant hepatocellular carcinoma cells: a combined study of spectral karyotyping, positional expression profiling and candidate genes. Int J Oncol 2004;25(5):1357-64.
    [60] Onuoha SC, Coulstock ET, Grossmann JG, Jackson SE. Structural studies on the co-chaperone Hop and its complexes with Hsp90. J Mol Biol 2008;379 (4):732-44.
    [61] Odunuga OO, Longshaw VM, Blatch GL. Hop: more than an Hsp70/Hsp90 adaptor protein. Bioessays 2004;26 (10): 1058-68.
    [62] Georgakis GV, Younes A. Heat-shock protein 90 inhibitors in cancer therapy: 17AAG and beyond. Future Oncol 2005;l (2):273-81.
    [63] Yi F, Regan L. A novel class of small molecule inhibitors of Hsp90. ACS Chem Biol 2008 ;3(10):645-54.
    [64] Gevorkyan-Airapetov L, Zohary K, Popov-Celeketic DA, Mapa K, Hell K, Neupert W, Azem A,Mokranjac D. Interaction of tim23 with tim50 is essential for protein translocation by the mitochondrial tim23 complex. J Biol Chem 2008.
    [65] Mokranjac D, Paschen SA, Kozany C, Prokisch H, Hoppins SC, Nargang FE, Neupert W, Hell K. Tim50, a novel component of the TIM23 preprotein translocase of mitochondria. EMBO J 2003;22 (4):816-25.
    [66] Yamamoto H, Esaki M, Kanamori T, Tamura Y, Nishikawa S, Endo T. Tim50 is a subunit of the TIM23 complex that links protein translocation across the outer and inner mitochondrial membranes. Cell 2002;111 (4):519-28.
    [67] Guo Y, Cheong N, Zhang Z, De Rose R, Deng T, Farber SA, Fernandes-Alnemri T, Alnemri ES. Tim50, a component of the mitochondrial translocator, regulates mitochondrial integrity and cell death. J Biol Chem 2004;279 (23):24813-25.
    [68] Gieffers C, Korioth F, Heimann P, Ungermann C, Frey J. Mitofilin is a transmembrane protein of the inner mitochondrial membrane expressed as two isoforms. Exp Cell Res 1997;232 (2):395-9.
    [69] Odgren PR, Toukatly G, Bangs PL, Gilmore R, Fey EG. Molecular characterization of mitofilin (HMP), a mitochondria-associated protein with predicted coiled coil and intermembrane space targeting domains. J Cell Sci 1996;109 ( Pt 9):2253-64.
    [70] John GB, Shang Y, Li L, Renken C, Mannella CA, Selker JM, Rangell L, Bennett MJ, Zha J. The mitochondrial inner membrane protein mitofilin controls cristae morphology. Mol Biol Cell 2005;16 (3): 1543-54.
    [71] Hatayama T, Yasuda K. Association of HSP105 with HSC70 in high molecular mass complexes in mouse FM3A cells. Biochem Biophys Res Commun 1998;248 (2):395-401.
    [72] Yamagishi N, Ishihara K, Hatayama T. Hspl05alpha suppresses Hsc70 chaperone activity by inhibiting Hsc70 ATPase activity. J Biol Chem 2004;279 (40):41727-33.
    [73] Ishihara K, Yamagishi N, Hatayama T. Protein kinase CK2 phosphorylates Hspl05 alpha at Ser509 and modulates its function. Biochem J 2003;371 (Pt 3):917-25.
    [74] Yamagishi N, Nishihori H, Ishihara K, Ohtsuka K, Hatayama T. Modulation of the chaperone activities of Hsc70/Hsp40 by Hspl05alpha and Hspl05beta. Biochem Biophys Res Commun 2000;272 (3):850-5.
    [75] Yamagishi N, Ishihara K, Saito Y, Hatayama T. Hspl05 but not Hsp70 family proteins suppress the aggregation of heat-denatured protein in the presence of ADP. FEBS Lett 2003 ;555 (2):390-6.
    [76] Kai M, Nakatsura T, Egami H, Senju S, Nishimura Y, Ogawa M. Heat shock protein 105 is overexpressed in a variety of human tumors. Oncol Rep 2003;10 (6):1777-82.
    [77] Nakatsura T, Senju S, Yamada K, Jotsuka T, Ogawa M, Nishimura Y. Gene cloning of immunogenic antigens overexpressed in pancreatic cancer. Biochem Biophys Res Commun 2001;281 (4):936-44.
    [78] Hosaka S, Nakatsura T, Tsukamoto H, Hatayama T, Baba H, Nishimura Y. Synthetic small interfering RNA targeting heat shock protein 105 induces apoptosis of various cancer cells both in vitro and in vivo. Cancer Sci 2006;97 (7):623-32.
    [79] Yamagishi N, Ishihara K, Saito Y, Hatayama T. Hspl05 family proteins suppress staurosporine-induced apoptosis by inhibiting the translocation of Bax to mitochondria in HeLa cells. Exp Cell Res 2006;312 (17):3215-23.
    [80] Mazurek S, Boschek CB, Hugo F, Eigenbrodt E. Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol 2005;15 (4):300-8.
    [81] Wong TS, Liu XB, Chung-Wai Ho A, Po-Wing Yuen A, Wai-Man Ng R, Ignace Wei W. Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling. Int J Cancer 2008;123 (2):251-7.
    [82] Kumar Y, Gurusamy K, Pamecha V, Davidson BR. Tumor M2-pyruvate kinase as tumor marker in exocrine pancreatic cancer a meta-analysis. Pancreas 2007;35 (2):114-9.
    [83] Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008;452 (7184):230-3.
    [84] Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 2008;452 (7184):181-6.
    [85] Stetak A, Veress R, Ovadi J, Csermely P, Keri G, Ullrich A. Nuclear translocation of the tumor marker pyruvate kinase M2 induces programmed cell death. Cancer Res 2007;67 (4):1602-8.
    [86] Yoo BC, Ku JL, Hong SH, Shin YK, Park SY, Kim HK, Park JG. Decreased pyruvate kinase M2 activity linked to cisplatin resistance in human gastric carcinoma cell lines. Int J Cancer 2004; 108 (4):532-9.
    [87] Wang N, Stamenovic D. Mechanics of vimentin intermediate filaments. J Muscle Res Cell Motil 2002;23 (5-6):535-40.
    [88] Vasko V, Espinosa AV, Scouten W, He H, Auer H, Liyanarachchi S, Larin A, Savchenko V, Francis GL, de la Chapelle A, Saji M, Ringel MD. Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc Natl Acad Sci U S A2007;104 (8):2803-8.
    [89] Tang HL, Lung HL, Wu KC, Le AH, Tang HM, Fung MC. Vimentin supports mitochondrial morphology and organization. Biochem J 2008;410 (l):141-6.
    [90] Paccione RJ, Miyazaki H, Patel V, Waseem A, Gutkind JS, Zehner ZE, Yeudall WA. Keratin down-regulation in vimentin-positive cancer cells is reversible by vimentin RNA interference, which inhibits growth and motility. Mol Cancer Ther 2008;7 (9):2894-903.
    [91] McInroy L, Maatta A. Down-regulation of vimentin expression inhibits carcinoma cell migration and adhesion. Biochem Biophys Res Commun 2007;360 (1): 109-14.
    [92] Wei J, Xu G, Wu M, Zhang Y, Li Q, Liu P, Zhu T, Song A, Zhao L, Han Z, Chen G, Wang S, Meng L, Zhou J, Lu Y, Ma D. Overexpression of vimentin contributes to prostate cancer invasion and metastasis via src regulation. Anticancer Res 2008;28 (1A):327-34.
    [93] Nakajima S, Doi R, Toyoda E, Tsuji S, Wada M, Koizumi M, Tulachan SS, Ito D, Kami K, Mori T, Kawaguchi Y, Fujimoto K, Hosotani R, Imamura M. N-cadherin expression and epithelial-mesenchymal transition in pancreatic carcinoma. Clin Cancer Res 2004;10 (12 Ptl):4125-33.
    [94] Shah AN, Summy JM, Zhang J, Park SI, Parikh NU, Gallick GE. Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann Surg Oncol 2007; 14(12):3629-37.
    [95] Yang AD, Camp ER, Fan F, Shen L, Gray MJ, Liu W, Somcio R, Bauer TW, Wu Y, Hicklin DJ, Ellis LM. Vascular endothelial growth factor receptor-1 activation mediates epithelial to mesenchymal transition in human pancreatic carcinoma cells. Cancer Res 2006;66 (1):46-51.
    [96] Hamada S, Satoh K, Hirota M, Kimura K, Kanno A, Masamune A, Shimosegawa T. Bone morphogenetic protein 4 induces epithelial-mesenchymal transition through MSX2 induction on pancreatic cancer cell line. J Cell Physiol 2007;213 (3):768-74.
    [97] Russell SE, Hall PA. Do septins have a role in cancer? Br J Cancer 2005;93 (5):499-503.
    [98] Kojima K, Sakai I, Hasegawa A, Niiya H, Azuma T, Matsuo Y, Fujii N, Tanimoto M, Fujita S. FLJ 10849, a septin family gene, fuses MLL in a novel leukemia cell line CNLBC1 derived from chronic neutrophilic leukemia in transformation with t(4;ll)(q21;q23). Leukemia 2004;18(5):998-1005.
    [99] Hanai N, Nagata K, Kawajiri A, Shiromizu T, Saitoh N, Hasegawa Y, Murakami S, Inagaki M. Biochemical and cell biological characterization of a mammalian septin, Septll. FEBS Lett 2004;568 (l-3):83-8.
    [100] Nagata K, Asano T, Nozawa Y, Inagaki M. Biochemical and cell biological analyses of a mammalian septin complex, Sept7/9b/ll. J Biol Chem 2004;279 (53):55895-904.
    [101] Blaser S, Roseler S, Rempp H, Bartsch I, Bauer H, Lieber M, Lessmann E, Weingarten L, Busse A, Huber M, Zieger B. Human endothelial cell septins: SEPT11 is an interaction partner of SEPTS. J Pathol 2006;210 (l):103-10.
    [102] Ding X, Yu W, Liu M, Shen S, Chen F, Cao L, Wan B, Yu L. GTP binding is required for SEPT12 to form filaments and to interact with SEPT11. Mol Cells 2008;25 (3):385-9.
    [1]Jemal A,Siegel R,Ward E,Murray T,Xu J,Smigal C,Thun MJ.Cancer statistics,2006.CA Cancer J Clin 2006;56 (2):106-30.
    [2]Guo X,Cui Z.Current diagnosis and treatment of pancreatic cancer in China.Pancreas 2005;31 (1):13-22.
    [3]Bardeesy N,DePinho RA.Pancreatic cancer biology and genetics.Nat Rev Cancer 2002;2 (12):897-909.
    [4]Chen L,Liu Q,Qin R,Le H,Xia R,Li W,Kumar M.Amplification and functional characterization of MUC1 promoter and gene-virotherapy via a targeting adenoviral vector expressing hSSTR2 gene in MUCl-positive Panc-1 pancreatic cancer cells in vitro.Int J Mol Med 2005;15 (4):617-26.
    [5]Feng Y,Huang T,Gao J,Chang Q,Qin R.Inhibition of metastatic progression of SSTR2 gene transfection mediated by adenovirus in human pancreatic carcinoma ceils.J Huazhong Univ Sci Technolog Med Sci 2006;26 (1):68-71.
    [6]Du ZY,Qin RY,Xia W,Tian R,Kumar M.Gene transfer of somatostatin receptor type 2 by intratumoral injection inhibits established pancreatic carcinoma xenografts.World J Gastroenterol 2005;11 (4):516-20.
    [7]Kumar M,Liu ZR,Thapa L,Qin RY.Anti-angiogenic effects of somatostatin receptor subtype 2 on human pancreatic cancer xenografts.Carcinogenesis 2004;25 (11):2075-81.
    [8]Vasko V,Espinosa AV,Scouten W,He H,Auer H,Liyanarachchi S,Larin A,Savchenko V,Francis GL,de la Chapelle A,Saji M,Ringel MD.Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion.Proc Natl Acad
    ??Sci U S A 2007; 104 (8):2803-8.
    [9] Suyama E, Iyo M, Taira K. siRNAs generated by recombinant human Dicer induce specific and significant but target site-independent gene silencing in human cells. Nucleic Acids Res 2006;34(8):2153.
    [10] Scherr M, Morgan MA, Eder M. Gene silencing mediated by small interfering RNAs in mammalian cells. Curr Med Chem 2003;10 (3):245-56.
    [11] Kawasaki H, Suyama E, Iyo M, Taira K. siRNAs generated by recombinant human Dicer induce specific and significant but target site-independent gene silencing in human cells. Nucleic Acids Res 2003;31 (3):981-7.
    [12] Sui G, Soohoo C, Affar el B, Gay F, Shi Y, Forrester WC. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci U S A 2002;99(8):5515-20.
    [13] Sinn PL, Sauter SL, McCray PB, Jr. Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors鈥攄esign, biosafety, and production. Gene Ther 2005;12(14):1089-98.
    [14] Mclnroy L, Maatta A. Down-regulation of vimentin expression inhibits carcinoma cell migration and adhesion. Biochem Biophys Res Commun 2007;360 (l):109-14.
    [15] Wang N, Stamenovic D. Mechanics of vimentin intermediate filaments. J Muscle Res Cell Motil 2002;23 (5-6):535-40.
    [16] Tang HL, Lung HL, Wu KC, Le AH, Tang HM, Fung MC. Vimentin supports mitochondrial morphology and organization. Biochem J 2008;410 (l):141-6.
    [17] Paccione RJ, Miyazaki H, Patel V, Waseem A, Gutkind JS, Zehner ZE, Yeudall WA. Keratin down-regulation in vimentin-positive cancer cells is reversible by vimentin RNA interference, which inhibits growth and motility. Mol Cancer Ther 2008;7 (9):2894-903.
    [18] Wei J, Xu G, Wu M, Zhang Y, Li Q, Liu P, Zhu T, Song A, Zhao L, Han Z, Chen G, Wang S, Meng L, Zhou J, Lu Y, Ma D. Overexpression of vimentin contributes to prostate cancer invasion and metastasis via src regulation. Anticancer Res 2008;28 (lA):327-34.
    [19] Nakajima S, Doi R, Toyoda E, Tsuji S, Wada M, Koizumi M, Tulachan SS, Ito D, Kami K, Mori T, Kawaguchi Y, Fujimoto K, Hosotani R, Imamura M. N-cadherin expression and epithelial-mesenchymal transition in pancreatic carcinoma. Clin Cancer Res 2004;10 (12 Pt1):4125-33.
    [20] Shah AN, Summy JM, Zhang J, Park SI, Parikh NU, Gallick GE. Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann Surg Oncol 2007;14(12):3629-37.
    [21] Yang AD, Camp ER, Fan F, Shen L, Gray MJ, Liu W, Somcio R, Bauer TW, Wu Y, Hicklin DJ, Ellis LM. Vascular endothelial growth factor receptor-1 activation mediates epithelial to mesenchymal transition in human pancreatic carcinoma cells. Cancer Res 2006;66 (1):46-51.
    [22] Hamada S, Satoh K, Hirota M, Kimura K, Kanno A, Masamune A, Shimosegawa T. Bone morphogenetic protein 4 induces epithelial-mesenchymal transition through MSX2 induction on pancreatic cancer cell line. J Cell Physiol 2007;213 (3):768-74.
    [23] Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucIeotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411 (6836):494-8.
    [24] Caplen NJ. A new approach to the inhibition of gene expression. Trends Biotechnol 2002;20(2):49-51.
    [25] Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001 ;409 (6818):363-6.
    [26] Zamore PD, Tuschl T, Sharp PA, Barrel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000;101 (1):25-33.
    [27] Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 2002;110 (5):563-74.
    [28] Nykanen A, Haley B, Zamore PD. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 2001;107 (3):309-21.
    [29] Wu-Scharf D, Jeong B, Zhang C, Cerutti H. Transgene and transposon silencing in Chlamydomonas reinhardtii by a DEAH-box RNA helicase. Science 2000;290 (5494):1159-62.
    [30] Knight SW, Bass BL. A role for the RNase Ⅲ enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 2001;293 (5538):2269-71.
    [31] Tavernarakis N, Wang SL, Dorovkov M, Ryazanov A, Driscoll M. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nat Genet 2000;24(2):180-3.
    [32] Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science 2002;296 (5567):550-3.
    [33] Yu JY, DeRuiter SL, Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci U S A 2002;99 (9):6047-52.
    [34] Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 2002; 16 (8):948-58.
    [35] Nam NH, Parang K. Current targets for anticancer drug discovery. Curr Drug Targets 2003;4(2): 159-79.
    
    [36] Gao X, Zhang P. Transgenic RNA interference in mice. Physiology (Bethesda) 2007;22:161-6.
    [37] Verhoeyen E, Wiznerowicz M, Olivier D, Izac B, Trono D, Dubart-Kupperschmitt A, Cosset FL. Novel lentiviral vectors displaying "early-acting cytokines" selectively promote survival and transduction of NOD/SCID repopulating human hematopoietic stem cells. Blood 2005;106(10):3386-95.
    [1]Hamilton SR,Aalton LA.World Health Organization Classification of Tumours.Pathology and Genetics of Tumours of the Digestive System.Lyon:IARC Press;2000.
    [2]Hezel AF,Kimmelman AC,Stanger BZ,et al.Genetics and biology of pancreatic ductal adenocarcinoma.Genes Dev.2006;20:1218-1249.
    [3]Karhu R,MahlamakiE,Kallioniemi A.Pancreatic adenocarcinoma-genetic portrait from.chromosomes to microarrays.Genes Chromosomes Cancer.2006;45:721-730.
    [4]Maitra A,Kern SE,Hruban RH.Molecular pathogenesis of pancreatic cancer.Best Pract Res Clin Gastroenterol.2006;20:211-226.
    [5]Sato N,Goggins M.The role of epigenetic alterations in pancreatic cancer.J Hepatobiliary Pancreat Surg.2006,13:286-295.
    [6]Benassai G,Mastrorilli M,Quarto G,et al.Factors influencing survival after resection for ductal adenocarcinoma of the head of the pancreas.J Surg Oncol.2000;73:212-218.
    [7]Brennan MF,Kattan MW,Klimstra D,et al.Prognostic nomogram for patients undergoing resection for adenocarcinoma of the pancreas.Ann Surg.2004;240:293-298.
    [8]Gebhardt C,MeyerW,Reichel M,et al.Prognostic factors in the operative treatment of ductal pancreatic carcinoma.Langenbecks Arch Surg.2000;385:14-20.
    [9]Kuhlmann KF,de Castro SM,Wesseling JG,et al.Surgical treatment of pancreatic adenocarcinoma;actual survival and prognostic factors in 343 patients.Eur J Cancer.2004;40:549-558.
    [10]Lim JE,Chien MW,Earle CC.Prognostic factors following curative resection for pancreatic adenocarcinoma:a population-based,linked database analysis of 396 patients.Ann Surg.2003;237:74-85.
    [11]Luttges J,Schemm S,Vogel I,et al.The grade of pancreatic ductal carcinoma is an independent prognostic factor and is superior to the immunohistochemical assessment of proliferation.J Pathol.2000;191:154-16]..
    [12]Millikan KW,Deziel D J,Silverstein JC,et al.Prognostic factors associated with resectable adenocarcinoma of the head of the pancreas.Am Surg.1999;65:618-623.
    [13]Moon HJ,An JY,Heo JS,et al.Predicting survival after surgical resection for pancreatic ductal adenocarcinoma.Pancreas.2006;32:37-43.
    [14]Sohn TA,Yeo CJ,Cameron JL,et al.Resected adenocarcinoma of the pancreas-616 patients:results,outcomes,and prognostic indicators.J Gastrointest Surg.2000;4:567-579.
    [15]Takai S,Satoi S,Toyokawa H,et al.Clinicopathologic evaluation after resection for ductal adenocarcinoma of the pancreas:a retrospective,single-institution experience.Pancreas.2003;26:243-249.
    [16]Tseng JF,Raut CP,Lee JE,et al.Pancreaticoduodenectomy with vascular resection:margin status and survival duration.J Gastrointest Surg.2004;8:935-949.
    [17]Wenger FA,Peter F,Zieren J,et al.Prognosis factors in carcinoma of the head of the pancreas.Dig Surg.2000;17:29-35.
    [18] Ridwelski K, Meyer F, Fahlke J, et al. Value of cytokeratin and Ca 19-9 antigen in immunohistological detection of disseminated tumor cells in lymph nodes in pancreas carcinoma. Chirurg. 2001;72:920-926.
    [19] Niedergethmann M, Rexin M, Hildenbrand R, et al. Prognostic implications of routine, immunohistochemical, and molecular staging in resectable pancreatic adenocarcinoma. Am J Surg Pathol. 2002;26: 1578-1587.
    [20] Locker GY, Hamilton S, Harris J, et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol. 2006;24:5313-5327.
    [21] Martin DB , Nelson PS. From genomics to proteomics : techniques and applications in cancer research. Trends Cell Biol, 2001 ,11(11) : 60265.
    [22] Wulfkuhle JD, Liotta LA, Petricoin EF. Proteomic applications for the early detection of cancer. Nat Rev Cancer. 2003;3:267-275.
    [23] Ro''cken C, Ebert MP, Roessner A. Proteomics in pathology, research and practice. Pathol Res Pract. 2004;200:69-82.
    [24] Fels LM, Buschmann T, Meuer J, et al. Proteome analysis for the identification of tumor-associated biomarkers in gastrointestinal cancer. Dig Dis. 2003;21:292-298.
    [25] Chambers G, Lawrie L, Cash P, et al. Proteomics: a new approach to the study of disease. J Pathol, 2000, 192 (3): 280-288
    [26] Martin DB, Nelson PS. From genomics to proteomics: techniques and applications in cancer research. Trends Cell Biol, 2001, 11 (11): S60-65
    [27] Hille JM, Freed AL, Watzig H. Possibilities to improve automation, speed and precision of proteome analysis: a comparison of two-dimensional electrophoresis and alternatives. Electrophoresis, 2001, 22 (19): 4035-4052
    [28] Hu L, Evers S, Lu ZH, et al. Two-dimensional protein database of human pancreas.Electrophoresis. 2004;25:512-518.
    [29] Gronborg M, Bunkenborg J, Kristiansen TZ, et al. Comprehensive proteomic analysis of human pancreatic juice. J Proteome Res. 2004; 3:1042-1055.
    [30] Shekouh AR, Thompson CC, Prime W, et al. Application of laser capture microdissection combined with two-dimensional electrophoresis for the discovery of differentially regulated proteins in pancreatic ductal adenocarcinoma. Proteomics. 2003;3:1988-2001.
    [31] Lu Z, Hu L, Evers S, et al. Differential expression profiling of human pancreatic adenocarcinoma and healthy pancreatic tissue. Proteomics. 2004;4:3975-3988.
    [32] Shen J, Person MD, Zhu J, et al. Protein expression profiles in pancreatic adenocarcinoma compared with normal pancreatic tissue and tissue affected by pancreatitis as detected by two-dimensional gel electrophoresis and mass spectrometry. Cancer Res. 2004;64:9018-9026.
    [33] Chen R, Yi EC, Donohoe S, et al. Pancreatic cancer proteome: the proteins that underlie invasion, metastasis, and immunologic escape. Gastroenterology. 2005;129:1187-1197.
    [34] Lin Y, Goedegebuure PS, Tan MC, et al. Proteins associated with disease and clinical course in pancreas cancer: a proteomic analysis of plasma in surgical patients. J Proteome Res.2006;5:2169-2176.
    [35] Deng R, Lu Z, Chen Y, et al. Plasma proteomic analysis of pancreatic cancer by 2-dimensional gel electrophoresis. Pancreas. 2007;34: 310-317.
    [36] Tian R, Wei LM, Qin RY, Li Y, Du ZY, Xia W, Shi CJ, Jin H. Proteome analysis of human pancreatic ductal adenocarcinoma tissue using two-dimensional gel electrophoresis and tandem mass spectrometry for identification of disease-related proteins. Dig Dis Sci 2008;53 (l):65-72.
    [37] Melle C, Ernst G, Escher N, Hartmann D, Schimmel B, Bleul A, Thieme H, Kaufmann R, Felix K, Friess HM, Settmacher U, Hommann M, Richter KK, Daffner W, Taubig H, Manger T, Claussen U, von Eggeling F. Protein profiling of microdissected pancreas carcinoma and identification of HSP27 as a potential serum marker. Clin Chem 2007;53 (4):629-35.
    [38] Hwang TL, Liang Y, Chien KY, Yu JS. Overexpression and elevated serum levels of phosphoglycerate kinase 1 in pancreatic ductal adenocarcinoma. Proteomics 2006;6(7):2259-72.
    [39] Gronborg M, Kristiansen TZ, Iwahori A, Chang R, Reddy R, Sato N, Molina H, Jensen ON, Hruban RH, Goggins MG, Maitra A, Pandey A. Biomarker discovery from pancreatic cancer secretome using a differential proteomic approach. Mol Cell Proteomics 2006;5 (1):157-71.
    [40] Chen R, Pan S, Yi EC, Donohoe S, Bronner MP, Potter JD, Goodlett DR, Aebersold R, Brentnall TA. Quantitative proteomic profiling of pancreatic cancer juice. Proteomics 2006;6 (13):3871-9.
    [41] Bloomston M, Zhou JX, Rosemurgy AS, et al. Fibrinogen gamma overexpression in pancreatic cancer identified by large-scale proteomic analysis of serum samples. Cancer Res.2006;66:2592-2599.
    [42] Koopmann J, Zhang Z, White N, et al. Serum diagnosis of pancreatic adenocarcinoma using surface-enhanced laser desorption and ionization mass spectrometry. Clin Cancer Res.2004;10:860-868.
    [43] Bhattacharyya S, Siegel ER, Petersen GM, et al. Diagnosis of pancreatic cancer using serum proteomic profiling. Neoplasia. 2004; 6:674-686.
    [44] Scarlett CJ, Smith RC, Saxby A, et al. Proteomic classification of pancreatic adenocarcinoma tissue using protein chip technology. Gastroenterology. 2006;130:1670-1678.
    [45] Honda K, Hayashida Y, Umaki T, et al. Possible detection of pancreatic cancer by plasma protein profiling. Cancer Res. 2005;65:10613-10622.
    [46] Rosty C, Christa L, Kuzdzal S, et al. Identification of hepatocarcinoma intestine pancreas/pancreatitis associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res. 2002;62:1868-1875.
    [47] Ehmann M, Felix K, Hartmann D, et al. Identification of potential markers for the detection of pancreatic cancer through comparative serum protein expression profiling. Pancreas.2007;34:205-214.
    [48] Garcea G, Neal CP, Pattenden CJ, et al. Molecular prognostic markers in pancreatic cancer: a systematic review. Eur J Cancer. 2005;41: 2213-2236.
    [49] Ro"cken C, Ebert MP. Pancreatic cancer proteome. Gastroenterology. 2006;130:1017-1018.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700