基于模糊数学评判法的给排水实验平台优化设计和研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
给水排水系统是现代建筑的重要组成部分,为了满足现代建筑多样化的实用功能要求,其配套的给水排水工程衍生出了许多新系统,各系统的管道、设备布置日趋复杂化,为直观、完整地展示现代给排水系统的各系统的组成,我们研制了给排水自动控制实验平台。
     该实验平台采用模糊数学的模糊综合评判理论分别对实验平台给水系统供水方式、排水系统排水方式和消火栓灭火系统给水方式进行优化选择。得出结论:给排水实验平台生活给水系统采用变频泵直接加压分区并联的供水方式供水效果最佳;排水系统采用专用通气立管(设伸顶通气管)的排水系统,其技术指标、经济指标和社会环境指标较为优越;当假设实验平台建筑类型为规范中规定的一类建筑时,其消火栓灭火系统采用消防给水泵并联分区的给水系统;当假设实验平台为规范中规定的二类建筑时,其消火栓灭火系统应采用变频调速泵供水方式的消火栓系统。
     本文采用支管特性系数法对实验平台自动喷水灭火系统进行了优化设计,并通过对实验平台管道中的压强测试,将实际测得的管道压强值与经理论计算得出理论压强散点图的拟合曲线进行比对,得出结论:实验平台自动喷水灭火系统管道设计与理论计算结果基本符合。
     经过对实验平台生活给水系统、消火栓灭火系统和自动喷水灭火系统按所述测试方法的进行测试,该实验平台能够测定给排水各系统的设定点的压力、流速和管流量等参数,在该平台上能进行变频供水试验,各系统管道连接试验,排水系统中横立管的水、气流动规律试验,消火栓系统、自动喷水灭火系统和水喷雾系统灭火实验等基础实验,能够作为给排水工程实验室主要教学实验设备和建筑给排水工程系统管网设计计算是否合理的验证性工具。
A water supply and drainage system is one of the important components of a modern building. In order to satisfy the diverse requirements of practical function for the modern building, a lot of new systems are derived from the corresponding engineering of water supply and drainage, and the layout of pipes and equipments in each system becomes increasingly complex. An experimental platform is developed to fully and intuitively display the components of each system in the engineering of water supply and drainage.
     The fuzzy comprehensive evaluation theory of fuzzy mathematics is adopted to optimize the running methods for the water supply system, the drainage system, and the fire hydrant system in the experimental platform, respectively, which leads to the following results: the best effect for the water supply system is obtained by the parallel connection way of directly pressurized by a variable frequency pump and zoning; the technique,economy and social environment indexes are more excellent since the special venting pipes are used in the drainage system; when the type of the building in the experimental platform is assumed to be the first and second class construction in the national building code, respectively, the corresponding fire hydrant system adopts the water supply system of the parallel connection of fire pumps and zoning and the water supply one of the variable frequency pumps.
     The characteristic coefficient method of branch pipes is used to optimize the design of the automatic sprinkler system in this paper. By testing the pressures of the pipes in the experimental platform and comparing the measured values of the pipe pressures with the calculated ones of the fitting curve in the theoretical pressure scatter plot, the results can be obtained, indicating that the design of the automatic sprinkler system in the experimental platform is consistent with the results of theoretical calculation.
     According to the testing methods above, the systems of water supply, fire hydrant, and automatic sprinkler are tested, respectively. The results show that the experimental platform can measure the parameters of set point’s pressures, flow rates and pipe flows of each system in the engineering of water supply and drainage. The basic tests and experiments of the variable frequency water supply, the pipe’s connection of each system, the variable laws of water, air-flow in the horizontal tube and vertical tube of the drainage system, fire hydrant system, automatic sprinkler system, and water spray system fire-extinguishing can be carried out on the experimental platform. The experimental platform can be used as both the main teaching laboratory equipment of the water supply and drainage engineering laboratory and the tool to verify the design and calculation on pipe networks of the water supply and drainage system in the building.
引文
[1]关兴旺,张彬.关于促进建筑给水排水健康发展的思考[J].给水排水,2007,33(1):127-128
    [2]左亚洲.建筑给水排水技术发展动态[J].中国住宅设施,2005,11:32-36
    [3]刘文镔.给水排水工程快速设计手册(第三卷)[M].北京:中国建筑工业出版社,1998
    [4]王增长,高羽飞.建筑给水排水工程(第五版)[M].北京:中国建筑工业出版社,2004
    [5]张淼,刘振印,何冠钦等.建筑给水排水设计规范(GB 50015-2003)[M].北京:中国计划出版社,2009
    [6] Jack L B.Developments in the definition of fluid traction forces within building drainage vent systems[J].Building Servengers Technoly,2000,21(4):266-273
    [7] Tarasevich V V, Moroz A A.Pressure-and-free flows in complex piping systems [C].In:Advances in Hydraulics and Water Engineering.Singapore,2002,95-104
    [8] Jack L B, Swaffield J A.Embedding sustainability in the design of water supply and drainage systems for buildings[J].Renewable energy,2009,34(9):143-148
    [9] Jack L B, Cheng C.Numerical simulation of pressure and airflow response of building drainage ventilation systems[J].Building Services Engineering Research and Technology,2006,27(2):141-152
    [10]中国建筑标准设计研究所.全国民用建筑工程设计技术措施给水排水[M].北京:中国计划出版社,2009
    [11]周剑锋,黄晓家.谈高层民用建筑室内消火栓环状给水管网水力计算方法[J].给水排水,2004,3(30):75-76
    [12]公安部主编.建筑防火设计规范(GB 50016-2006)[M].北京:中国计划出版社,2006
    [13]王尔俊.高层及超高层消防给水设计问题的探讨[J].城市环境与城市生态,1998,11(2):49-52
    [14]姜文源.高层建筑消防给水的超压和泄压问题[J].给水排水,1999,25(9):45-46
    [15]刘金生,刘世美.高层建筑消防超压问题探讨[J].青海大学学报,2000,2:23-26
    [16] Li K Y, Hu L H, Huo R.A mathematical model on interaction of smoke layer with sprinkler sprays[J].Fire Safety Journal,2009,44:96-105
    [17]公安部主编.自动喷水灭火系统设计规范(GB 50084-2001)[M].北京:中国计划出版社,2005
    [18] Blanchard B S, Fabrycky W J.Systems Engineering and Analysis(5th edition) [M].London:Prentice Hall,2011,336-365
    [19]郭亚军.综合评价理论与方法[M].北京:科学出版社,2002
    [20]李春好,孙永河.变权层次分析法[J].系统工程理论与实践,2010,30(4):723-728
    [21]金菊良,魏一鸣,丁晶.基于改进层次分析法的模糊综合评价模型[J].水利学报,2004,3:65-69
    [22]卜广志,张宇文.基于灰色模糊关系的灰色模糊综合评判[J].系统工程理论与实践,2002,22(4):141-145
    [23] Aguilar-Lasserre A A, Bautista M A.An Ahp-based decision-making tool for the solution of multiproduct batch plant design problem under imprecise demand [J].Computers & Operations Research,2009,36(3):35-38
    [24]唐然,龙腾锐,龙向宇.模糊-灰色关联法在污水处理工艺优选中的应用研究[J].给水排水,2008,34(z2):336-340
    [25]徐泽水.层次分析法新标度法[J].系统工程理论与实践,1998,18(10):74-77
    [26]胡永宏,贺思辉.综合评价方法[M].北京:科学出版社,2000
    [27]谭跃进,陈英武,易进先.系统工程原理[M].长沙:国防科技大学出版社,1991
    [28]李明环.改进层次分析法在选择高层建筑给水方式中的应用[J].水资源与水工程学报,2004,15(1):67-70
    [29]张勤,宁海燕,傅斌.高层建筑给水系统能耗构成和节能措施分析[J],中国给水排水,2007,23(10):92-96
    [30]魏福森.高层建筑消防给水系统给水方式的选择[J].重庆建筑,2002,2:41-43
    [31]武剑英.不同压力控制点对高层建筑给水系统的影响比较分析探讨[J].中外建筑,2009,4(1):75-78
    [32] Cheng C L, Yen C J, Wong L T.An evaluation tool of infection risk analysis for drainage systems in high-rise residential buildings[J].Building Services Engineering Research and Technology,2008,29(3):233-248
    [33]王翼,王歆明.MATLAB基础及在经济学与管理科学中的应用[M].北京:机械工业出版社.2009
    [34]王中鲜.MATLAB建模与仿真应用[M].北京:机械工业出版社,2010
    [35]核工业部第二设计研究院.给水排水设计手册(第二册)[M].北京:中国建筑工业出版社,2001
    [36]黄晓家,姜文源等.自动喷水灭火系统设计手册[M].北京:中国建筑工业出版社,2002
    [37] Hauptmanns U,et al.Availability analysis for a fixed wet sprinkler system[J].FireSafety.(2008),doi:10.1016/j.firesaf.2008,3(2):21-27
    [38]武汉水利学院水力教研室.水力学计算手册(第二版)[M].北京:水利出版社,2006
    [39] Nayyar, Mohinder.Piping Handbook(7th Edition)[M].New York: McGraw-Hill Companies,Inc,2000
    [40] Finnemore E J, Franzini J B(著),钱翼谡(译).流体力学及其工程应用[M].北京:机械工业出版社,2005
    [41] Mays, Larry W.Hydraulic Design Handbook[M].New York:McGraw-Hill Comp- nies,Inc,2000,654-690
    [42]汪晓光,孙晓英.可编程控制器原理及应用[M].北京:机械工业出版社,2004
    [43]蔡行健.深入浅出西门子S7-200 PLC[M].北京.北京航空航天大学出版社,2003
    [44]西门子公司.SIEMENS SIMATIC S7-200可编程序控制器系统手册[M].北京:西门子公司,2008
    [45]曾庆波,孙华,周卫宏.监控组态软件及其应用技术[M].哈尔滨:哈尔滨工业大学出版社,2005
    [46]高欣和.可编程控制器应用技术及设计实例[M].北京:人民邮电出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700