Cu(Ⅱ)、Zn(Ⅱ)水溶液的微观结构及其对牛血清白蛋白构象的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜和锌是人体必需的微量元素,具有广泛的生物功能。对其毒理作用已经作了很多有意义的研究。在铜和锌对人体的致病过程中,水作为溶剂和维持蛋白质构象的稳定起着至关重要的作用。本论文对Cu~(2+)、Zn~(2+)对水分子团簇结构的影响和其水合离子结构进行了研究,并通过冷冻-解冻的方法改变其结构,进一步研究不同结构Cu~(2+)和Zn~(2+)水合离子和水分子团簇条件下牛血清白蛋白(BSA)构象的变化规律。论文主要包括以下几个部分:
     利用粘度法、核磁共振和拉曼光谱等方法,研究了ZnCl_2、AlCl_3、CuCl_2和CuSO4及其阴、阳离子对水分子结构的影响,这些化合物均具有促进水分子缔合,使水团簇加大的作用。阳离子对水结构的缔合促进作用程度为Al_3+>Zn~(2+)>Cu~(2+),Cl-对水缔合的破坏作用大于SO42-。
     三蒸水和不同浓度ZnCl_2、AlCl_3、CuCl_2溶液经冷冻处理后,水团簇变小,电导率增加,17O-NMR化学位移和半峰宽降低,这种结构可保持8小时左右。Cu~(2+)和Zn~(2+)水合离子随溶液浓度增加,第一水合层配位结构发生变化。Cu-O配位数介于3~4之间,键长在1.92~1.98 ?之间。随溶液浓度增加,Cu~(2+)原先结合O原子的位置被取代,配位数减小,键长增加;Zn-O配位数介于5~6之间,Zn-O键长在2.03~2.05 ?之间,随溶液浓度增加,水解络合物Zn(OH)n(H2O)m(2-n)所占的比例增大,配位数和键长均减小。
     Cu~(2+)和Zn~(2+)水溶液经冷冻-解冻处理后,溶液中自由水分子增多,金属离子水合效应增强,第一水合层配位结构发生明显变化。Cu-O配位数变大,键长变化无规律,热无序度增加;Zn-O配位数和键长均变大。
     Cu~(2+)和Zn~(2+)与BSA有强的结合作用,随摩尔比的增加,对BSA氢键的破坏作用增强,同时由于Cu~(2+)和Zn~(2+)对水结构的促进作用,水分子与BSA之间的疏水作用降低,BSA的稳定性降低,α-螺旋结构含量逐渐降低。对5.0×10-6mol·L-1BSA溶液,Cu~(2+)与BSA的摩尔比为5~15,Zn~(2+)与BSA摩尔比为10~15时,出现了由于Cu~(2+)和Zn~(2+)对BSA疏水基团作用的增大,α-螺旋结构增加的中间构象状态。
     CuCl_2和Zn(NO3)2溶液经冷冻处理,在解冻后8小时内,引起BSA紫外吸收增色效应、红外光谱酰胺Ⅰ带与酰胺Ⅱ带的位移和CD谱的峰强度变化减弱,对α-螺旋结构的氢键破坏作用降低,α-螺旋结构含量降低的程度变小。冷冻处理三蒸水后溶解BSA和CuCl_2、Zn(NO3)2反应,对BSA的构象影响明显。
As essential microelements, copper and zinc have important biological functions for human body. There had many meaningful studies on their toxicological effects. However, during the process of causing diseases to human body by copper and zinc, water act as important role which is the solvent and maintains the conformation stabilization of proteins. In this thesis, the effect of Cu~(2+)、Zn~(2+) on water cluster structure and the structure of its hydrated ions were studied, furthermore, the structures of water cluster and hydrated ions were changed by freeze-thaw disposing, and the change rule of BSA conformation correlated with different structures of water cluster and hydrated ions were investigated too. The detailed work of this thesis has been set out as follows:
     The influences of ZnCl_2、AlCl_3、CuCl_2、CuSO4 and their individual cations and anions on the water structure were studied with viscosity measurement、17O-NMR and Raman spectra. It was proved that all these compounds increased water association and the size of water clusters. The degree of cations increasing effect on water association were Al_3+>Zn~(2+)>Cu~(2+), and Cl- broke more water clusters than SO42-.
     After freeze-thaw disposed on the trinal distilled water and different concentrations of ZnCl_2、AlCl_3 and CuCl_2 solutions, the water cluster size became smaller, the conductivity increased, the 17O-NMR chemical shift and half-height widths of peaks decreased obviously, and these structures could hold at least 8 hours.
     The first hydrated shell coordination structure of Cu~(2+) and Zn~(2+) hydrated ions changed with the increasing of aqueous solution concentrations. Cu~(2+) had 3~4 oxygen nearest neighbors with the Cu-O distance being 1.92~1.98 ?. With increasing salt concentration, the coordination station of oxygen atom coordinated with Cu~(2+) were replaced which resulted in the coordination number of Cu~(2+) decreased and the Cu-O distance increased in its first coordination shell; the coordination number of Zn-O were 5~6 with the distance being 2.03~2.05 ?, the proportion of hydrolysis complexes Zn(OH)n(H2O)m(2-n) was increased with the aqueous solution concentrations increasing, which induced the Zn-O coordination number and distance minished.
     The first coordination shell structure of Cu~(2+) and Zn~(2+) hydrated ions changed obviously after freeze-thaw disposed resulted from the enriching of free water molecular and enhancing of hydrated effects of metal ions. The coordination number of Cu~(2+) and thermal disorder degree increase in first coordination shell, and there was no obvious chang rule of Cu-O distance; the Zn-O coordination number and distance increased in first coordination shell after freeze-thaw treatment.
     Cu~(2+) and Zn~(2+) combined with BSA strongly. The breaking effect on hydrogen bonds enhanced with the mole ratio of metal ions and BSA increasing, and for the increasing effect of Cu~(2+) and Zn~(2+)on water association, the hydrophobic effect between H2O and BSA molecules decreased. These two reasons resulted in the change of stability of BSA and decreasing of the amounts ofα-helices. To BSA solution of 5.0×10-6 mol·L-1, there was a intermediate state of the amounts ofα-helices increased for an enhancement in the hydrophobic interactions of BSA molecule with Cu~(2+) and Zn~(2+) when the mole ratio of Cu~(2+) and BSA were 5~15, Zn~(2+) and BSA were 10~15.
     It can be conclude that the interaction of CuCl_2 and Zn(NO3)2 solutions on BSA weakened in 8 hours after freeze-thaw disposing on CuCl_2 and Zn(NO3)2 solutions, which resulted in the weakening of UV hyperchromic effect、FTIR amideⅠandⅡbands shift and the change of CD spectra intensity, the decreasing of breaking effect on hydrogen bonds inα-helices of BSA, and the lessening of decreasing degree of theα-helices amounts. The effect on BSA conformation was more obviously when CuCl_2 and Zn(NO3)2 reacted with BSA dissolved in the trinal distilled water after freeze-thaw disposed.
引文
[1]周公度.浅谈水的结构化学[J].大学化学, 2002, 17 (1): 54-63.
    [2]Franks F. Water a Comprehensive Treatise: The Physics and Physical Chemistry of Water [M]. New York: Plenum Press, 1972.
    [3]Fine R A, Millero F J. Compressibility of water as a function of temperature and pressure [J]. The Journal of Chemical Physics, 1973, 59(10):5529-5536.
    [4]Speedy R J, Angell C A. Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at 45°C [J]. The Journal of Chemical Physics, 1976, 65(3):851-858.
    [5]Angell C A, Shuppert J, Tucker J C. Anomalous properties of supercooled water. Heat capacity, expansivity, and proton magnetic resonance chemical shift from 0 to -38% [J]. The Journal of Chemical Physics, 1973, 77(26):3092-3099.
    [6]Angell C A, Sichina W J, Oguni M. Heat capacity of water at extremes of supercooling and superheating[J]. The Journal of Physical Chemistry, 1982, 86(6): 998-1002.
    [7]Prielmeier F X, Lang E W, Speedy B J, et al. Dependence of self diffusion in supercooled light and heavy water [J]. Berichte der Bunsengesellschaft fur Physikalische Chemie, 1988, 92(10):1111-1117.
    [8]Osipov Y A, Zheleznyi B V, Bondarenko N F. The shear viscosity of water supercooled to -35℃[J]. Zh. Fiz. Khim., 1977,51:1264-1265.
    [9]Lang E W, Ludemann H D. Anomalies of liquid water [J]. Angewandte Chemie International Edition in English, 1982, 21(5):315-329.
    [10]Ludwig R, Weinhold F, Farrar T C. Experimental and theoretical determination of the temperature dependence of deuteron and oxygen quadrupole coupling constants of liquid water [J]. The Journal of Chemical Physics, 1995, 103(16): 6941-6950.
    [11]Blokzijl W, Engberts J B F N. Hydrophobic effects: Opinions and facts [J]. Angewandte Chemie International Edition in English, 1993, 32(11):1545-1579.
    [12]Hagler A T, Scheraga H A, Nemethy G. Structure of liquid water. Statistical thermodynamic theory [J]. The Journal of Physical Chemistry, 1972, 76(22): 3229-3243.
    [13]Eisenberg D, Kauzmann W. The Structure and Properties of Water [M]. New York: Oxford University Press, 1969.
    [14]王广厚.团簇物理的新进展[J].物理学进展, 1994,14 (2): 121-173.
    [15]Carton H R. Do clusters contribute to the infrared absorption of water vapor [J]. Infrared Physics, 1979, 19(3-4):549-557.
    [16]Kolb C E, Jayne J T, Worsnop D R, et al. Gas-phase reaction of sulfur-trioxide with water-vapor [J]. Journal of the American Chemical Society, 1994, 116(22): 10314–10315.
    [17]Hung L W, Wang X Y, Kin S H, et a1. Genomic amplication of a decay receptor for fas ligand in lung and colon cancer [J]. Nature, 1998, 396(6712):699-702.
    [18]Groll M, Ditzel L, Lowe J, et al. Structure of 20S proteasome from yeast at 2.4? resolution [J]. Nature, 1997, 386(6624):463-471.
    [19]Wiggins P M. High and low density water in gels [J]. Progress in Polymer Science, 1995, 20(6):1121-1127.
    [20]Nemethy G, Scheraga H A. Structure of water and hydrophobic bonding in proteins. I. A model for the thermodynamic properties of liquid water [J]. The Journal of Chemical Physics, 1962, 36(12):3382-3400.
    [21]Chaplin M F. A proposal for the structuring of water [J]. Biophysical Chemistry, 1993, 83(3):211-221.
    [22]廖沐真,吴国是,刘洪霖.量子化学从头计算方法[M].北京:清华大学出版社, 1984.
    [23]Plummer P L M, Chen T S A. Molecular dynamics study of water clathrates [J]. The Journal of Physical Chemistry, 1983, 87(21):4190-4197.
    [24]Toukan K, Rahman A. Moleculer-dynamics study of atomic motions in water [J]. Physical Review B, 1985, 31(5):2643-2648.
    [25]Honegger E, Leutwyler S. Intramolecular vibrations of small water clusters [J]. The Journal of Chemical Physics, 1988, 88(4):2582~2595.
    [26]Melerovich M, Mushinski A, Nightingale M P. Van der waals clusters in the ultraquantum limit: A monte carlo study [J]. The Journal of Chemical Physics, 1996, 105(15):6498-6504.
    [27]Estrin D A, Paglieri L, Corongiu G, et al. Small clusters of water molecules using density functional theory [J]. The Journal of Physical Chemistry, 1996, 100(21): 8701-8711.
    [28]Pedulla J M, Vila F, Jordan K D. Binding energy of the ring form of (H2O)6: Comparison of the predictions of conventional MP2 calculations [J]. The Journal of Chemical Physics, 1996, 105(24):11091-11099.
    [29]Tsai C J, Jordan K D. Theoretical study of the (H2O)6 cluster [J]. Chemical Physics Letters, 1993, 213(1,2):181-188.
    [30]松下和弘. NMR分光法からみた水の状态[J].食品工业, 1992, 35 (4):18-23.
    [31]李福志,张晓键,吕木坚.用17O核磁共振研究液态水的团簇结构[J].环境科学学报, 2004, 24(1):6-9.
    [32]Hoffmann M M, Conradi M S. Are there hydrogen bonds in supercritical water [J]. Journal of the American Chemical Society, 1997, 119(16):3811-3817.
    [33]Okouchi S, Yamanaka K, Ishihara Y, et al. Relationship between water qualities and treatments in ultra pure water production system [J]. Water Science and Technology, 1994, 30(10):237-241.
    [34]Machida Y, Kuroki S, Kanekiyo M, et al. A structure study of water in a poly (vinyl alcohol) gel by 17O NMR spectroscopy [J]. Journal of Molecular Structure, 2000, 554(1):81-90.
    [35]Blake G A, Laughlin K B, Cohen R C, et al. The Berkeley tunable far infrared laser spectrometers [J]. Review of Scientific Instruments, 1991, 62(7):1701-1716.
    [36]Pugliano N, Saykally R J. Measurement of quantum tunneling between chiral isomer of the cyclic water trimer [J]. Science, 1992, 257(5078):1937-1940.
    [37]Cruzan J D,Brown M G, Liu K, et al. The far infrared vibration-rotation-tunneling spectrum of the water tetramer-d8 [J]. The Journal of Chemical Physics, 1996, 105(16): 6634-6644.
    [38]Liu K, Brown M G, Carter C, et al. Characterization of a cage form of the water hexamer [J]. Nature, 1996, 381(6582):501-503.
    [39]Saykally R J, Blake G A. Molecular interactions and hydrogen bond tunneling dynamics: Some new perspectives [J]. Science, 1993, 259(5101):1570-1575.
    [40]赵柯,王佩琳.飞秒激光在超快过程中的应用研究[J].量子电子学报, 2001, 18(2): 97-102.
    [41]杨宏,张铁桥,王树峰,等.钛蓝宝石飞秒超快光谱技术及其应用进展[J].物理学报, 2000, 49(7): 1292-1296.
    [42] Kropman M F, Bakker H J. Dynamics of water molecules in aqueous solvation shells [J]. Science, 2001, 291(5511): 2118-2120.
    [43]Omta A W, Kropman M F, Woutersen S, et al. Negligible effect of ions on the hydrogen-bond structure in liquid water [J]. Science, 2003, 301(5631):347-349.
    [44]Omta A W, Kropman M F, Woutersen S. Influence of ions on the hydrogen-bond structure in liquid water [J]. The Journal of Chemical Physics, 2003, 119(23): 12457-12461.
    [45]Kropman M F, Bakker H J. Effect of ions on the vibrational relaxation of liquid water [J]. Journal of the American Chemical Society, 2004, 126(29):9135-9141.
    [46]Fumino K, Kato M, Taniguchi Y. Temperature and pressure effects on the spin-lattice relaxation rates of D nucleus for heavy water molecules in alkali earth chloride aqueous solutions [J]. Journal of Molecular Liquids, 2002, 100(2): 119-128.
    [47]Li R H, Jiang Z P, Yang H W, et al. Effects of ions in natural water on the 17O NMR chemical shift of water and their relationship to water cluster [J]. Journal of Molecular Liquids, 2006, 126(1-3):14-18.
    [48]Zhao H, Song Z Y. Nuclear magnetic relaxation of water in ionic-liquid solutions: Determining the kosmotropicity of ionic liquids and its relationship with the enzyme enantionselectivity [J]. Journal of Chemical Technology and Biotechnology, 2007, 82(3):304-312.
    [49]Baldwin R L. How Hofmeister ion interactions affect protein stability [J]. Biophysical Journal, 1996, 71(4):2056–2063.
    [50]Bostrom M, Williams D R M, Ninham B W. Why the properties of proteins in salt solutions follow a Hofmeister series [J].Current Opinion in Colloid & Interface Science, 2004, 9(1-2):48-52.
    [51]Zhao H. Are ionic liquids kosmotropic or chaotropic? An evaluation of available thermodynamic parameters for quantifying the ion kosmotropicity of ionic liquids [J]. Journal of Chemical Technology & Biotechnology, 2006, 81(6):877-891.
    [52]Jenkins H D B, Marcus Y. Viscosity B-coefficients of ions in solutions [J]. Chemical Reviews, 1995, 95(8):2695?2724.
    [53]Maemets V, Koppel I. Effect of ions on the 17O and 1H NMR chemical shifts of water [J].Journal of the Chemical Society, Faraday Transactions,1998, 94: 3261-3269.
    [54]李睿华,蒋展鹏,杨宏伟,等.离子对水的17O-NMR化学位移和水结构的影响[J].物理化学学报, 2004, 20(1): 98-102.
    [55]李睿华,蒋展鹏,师绍琪,等.拉曼光谱研究CaCl2和MgCl2对水结构的影响[J].物理化学学报, 2003, 19(2):154-157.
    [56]Yoshida K, Ibuki K, Ueno M. Estimated ionic B-coefficients from NMR measurements in aqueous electrolyte solutions [J]. Journal of Solution Chemistry, 1996, 25(5):435-453.
    [57]Yoshida K, Tsuchihashi N, Ibuki K, et al. NMR and viscosity B coefficients for spherical nonelectrolytes in nonaqueous solvents[J]. Journal of Molecular Liquids, 2005, 119(1-3):67-75.
    [58]Fumino K, Shimizu A, Taniguchi Y. Pressure effects on the spin-lattice relaxation rates of D and 17O nuclei for heavy water molecules in alkali bromide aqueous solutions [J]. Journal of Molecular Liquids, 1999, 82(3):219-230.
    [59]Walters R S, Pillai E D, Duncan M A. Solvation dynamics in Ni+ (H2O) n clusters probed with infrared spectroscopy [J]. Journal of the American Chemical Society, 2005, 127(47):16599-16610.
    [60]Leberman R, Soper A K. Effect of high salt concentrations on water structure [J]. Nature, 1995, 378(6555):364-366.
    [61]李睿华,蒋展鹏.阴离子对水的羟基伸缩振动拉曼光谱的影响[J].物理化学学报, 2007, 23(1):103-106.
    [62]Soper A K, Weckstrom K. Ion solvation and water structure in potassium halide aqueous solutions [J]. Biophysical Chemistry, 2006, 124(3):180-191.
    [63]Wachter W, Kunz W, Buchner R, et al. Is there an anionic Hofmeister effect on water dynamics? Dielectric spectroscopy of aqueous solutions of NaBr, NaI, NaNO3, NaClO4, and NaSCN [J]. The Journal of Physical Chemistry A, 2005, 109(39): 8675-8683.
    [64]Megyes T, Grosz T, Radnai T, et al. Solvation of calcium ion in polar solvents: An X-ray diffraction and ab initio study [J]. The Journal of Physical Chemistry A, 2004, 108(35):7261-7271.
    [65]Bujnicka K, Hawlicka E. Solvation of Ca2+ in aqueous methanol-MD simulation studies [J]. Journal of Molecular Liquids, 2006, 125(2-3):151-157.
    [66]Owczarek E, Rybicki M, Hawlicka E. Solvation of calcium ions in methanol-water mixtures: Molecular dynamics simulation [J]. The Journal of Physical Chemistry B, 2007, 111(51):14271-14278.
    [67]罗勤慧,沈孟长.配位化学[M].南京:江苏科学技术出版社,1987.
    [68]金家骏,陈民生,俞闻枫,等.分子热力学[M].北京:科学出版社,1990.
    [69]Burgess J.溶液中的金属离子[M].北京:原子能出版社,1987.
    [70]Swift T J, Sayre W G. Determination of hydration numbers of cations in aqueous solution by means of proton NMR [J]. Journal of Molecular Liquids, 1966, 44(9): 3567-3574.
    [71]俞斌,陈智,膝藤,等. Zn2+离子水合数及水在TBP-ZnCl2萃取体系中行为的核磁共振研究[J].金属学报, 1985, 21(2):51-57.
    [72]房艳,李可为,房春晖.溶液结构的X射线衍射研究—一种新的简易恒温技术[J].分析测试技术与仪器, 1995, 1(3):42-44.
    [73]Radnai T, May P M, Hefter G T, et al. Structure of aqueous sodium aluminate solutions: A solution X-ray diffraction study [J]. The Journal of Physical Chemistry A, 1998, 102(40):7841-7850.
    [74]Smith L S, Wertz D L. Solute structuring in aqueous lanthanum (Ⅲ) chloride solutions [J]. Journal of the American Chemical Society, 1975, 97(9):2365-2368.
    [75]房艳,房春晖,高世扬.不同浓度Li2SO4水溶液结构的X射线衍射研究[J].盐湖研究, 2003, 11(2):41-45.
    [76]房春晖,房艳,郭亚梅,等.过饱和MgSO4溶液结构的X射线衍射研究[J].化学学报, 2004, 62(3):268-273.
    [77]房春晖,马培华,房艳,等. Li2SO4·20H2O溶液结构的X射线衍射研究[J].化学学报, 2000, 58(11):1393-1397.
    [78] Ansell S, Barnes A C, Mason P E, et al. X-ray and neutron scattering studies of the hydration structure of alkali ions in concentrated aqueous solutions [J]. Biophysical Chemistry, 2006, 124(3):171-179.
    [79]Sobolev O, Cuello G J, Roman R G, et al. Hydration of Hg2+ in aqueous solution studied by neutron diffraction with isotopic substitution [J]. The Journal of Physical Chemistry A, 2007, 111(24):5123-5125.
    [80]Badyal Y S, Barnes A C, Cuello G J, et al. Understanding the effects of concentration on the solvation structure of Ca2+ in aqueous solution.II: Insights into longer range order from neutron diffraction isotope substitution [J]. The Journal of Physical Chemistry A, 2004, 108(52):11819-11827.
    [81]韦世强,孙治湖,潘志云,等. XAFS在凝聚态物质研究中的应用[J].中国科学技术大学学报, 2007, 37(4-5): 426-440.
    [82]Angelo P D, Barone V, Chillemi G, et al. Hydrogen and higher shell contributions in Zn2+, Ni2+, and Co2+ aqueous solutions: An X-ray absorption fine structure and molecular dynamics study [J]. Journal of the American Chemical Society, 2002, 124(9):1958-1967.
    [83]Angelo P D, Roscioni O M, Chillemi G, et al. Detection of second hydration shells in ionic solutions by XANES: Computed spectra for Ni2+ in water based on molecular dynamics [J]. Journal of the American Chemical Society, 2006, 128(6): 1853-1858.
    [84]韦世强,姜明,袁岚峰.同步辐射EXAFS研究溶液中Fe离子的区域结构[J].化学物理学报, 1998, 11(4): 359-362.
    [85]李贤良,潘纲,朱孟强,等.用EXAFS研究pH对水溶液中Zn(Ⅱ)微观结构的影响[J].核技术, 2004, 27(12): 895-898.
    [86]Ludwig K F, Warburton W K, Fontaine A. X-ray studies of concentrated aqueous solutions [J]. The Journal of Chemical Physics, 1987, 87(1):620-629.
    [87]Matsubara E, Okuda K, Waseda Y. Anomalous X-ray scattering study of aqueous solutions of YCl3 and ErCl3 [J]. Journal of Physics: Condensed Matter, 1990, 2(46): 9133-9143.
    [88]Lee H M, Min S K, Lee E C, et al. Hydrated copper and gold monovalent cations: Ab initio study [J]. The Journal of Chemical Physics, 2005, 122(6):1-10.
    [89]周健,陆小华,王延儒.离子水化的分子动力学模拟[J].化工学报, 2000, 51(2): 143-149.
    [90]Degreve L, Da Silva F L B. Structure of concentrated aqueous NaCl solution: A Monte Carlo study [J]. The Journal of Chemical Physics, 1999, 110(6):3070-3078.
    [91]李春喜,李以圭,杨林昱,等.氯化钠水溶液的Monte Carlo分子模拟研究[J].化学学报, 2000, 58(11): 1349-1352.
    [92]Guo Z, Sadler P J. Medicinal inorganic chemistry [J]. Advances in Inorganic Chemistry, 2000, 270(1):183-306.
    [93]Liu C, Xu H. The metal site as a template for the metalloprotein structure formation [J]. Journal of InorganicBiochemistry, 2002, 88(1):77-86.
    [94]梁宏,周永洽,申泮文. Mn(Ⅱ) -HSA和Mn(Ⅱ) -BSA金属中心的结构研究[J].科学通报, 1994, 39(11): 995-998.
    [95]周永洽,梁宏,宋仲容,等.金属—血清白蛋白的结构研究─Ⅶ配位环境对锌族离子—血清白蛋白结构的影响[J].南开大学学报(自然科学版), 1995, 28(2): 95-97.
    [96]Laurie S H, Pratt D E. A spectroscopic study of nickel(Ⅱ)-bovine serum albumin binding and reactivity [J]. Journal of InorganicBiochemistry, 1986, 28(4): 431-439.
    [97]宋玉民,吴锦绣,郑秀荣,等.稀土金属离子与人血清白蛋白的相互作用[J].无机化学学报, 2006, 22(9): 1615-1622.
    [98]郭晓君.荧光实验技术及其在分子生物学中的应用[M].北京:科学出版社,1979.
    [99]杨斌盛,杨频.稀土离子与人血清白蛋白的作用[J].生物化学与生物物理学报, 1988, 20(5): 499-503.
    [100]周永洽,张喜全,贺进田,等.金属-血清白蛋白的结构研究(Ⅷ)—HAS和BSA中锌离子中心的荧光EXAFS研究[J].高等学校化学学报, 1997, 18(6): 851-853.
    [101]王荫淞,吴忠华,葛永新,等.用EXAFS法研究糖尿病人血红蛋白的结构[J].核技术, 2001, 24(6): 483-486.
    [102]Zhou Y Q, Wang Y W, Hu X Y, et al. Equilibrium dialysis of meta serum albumin, successive stability constants of Zn (II)-serum albumin and the Zn2+-induced cross-linking self-association [J]. Biophysical Chemistry, 1994, 51:81-87.
    [103]周永洽,太俊哲,梁宏,等.金属—血清白蛋白的结构研究(Ⅳ)—Ni(Ⅱ) -HSA和Ni(Ⅱ)-BSA的新型减色效应[J].高等学校化学学报, 1996, 17(9): 1331-1335.
    [104]沈星灿,周永洽. Ni(Ⅱ)与HAS或BSA的结合平衡研究[J].无机化学学报, 2000, 16(1): 73-77.
    [105]Martin J. Encyclopedia of Molecular Biology[M]. New York: Johns Wiley&Sons Inc.,1999.
    [106]Mestel R. Special news report: Putting prions to the test [J]. Science, 1996, 273(5272): 184-189.
    [107]Petchanikow C, Saborio G P, Anderes L, et al. Biochemical and structural studies of the prion protein polymorphism [J]. FEBS Letters, 2001, 509(3): 451-456.
    [108]Tjandra N, Bax A D. Direct measurement of distance and angles in biomolecules by NMR in a dilute liquid crystalline medium [J].Science, 1997, 278(5340):1111- 1114.
    [109]Kaiden K, Matsui T, Tanaka S. A study of the amideⅢby FT-IR spectrometry of the secondary structure of albumin, myoglobin, andγ-globulin [J].Applied Spectroscopy, 1987, 41(2) :180-184.
    [110]谢孟峡,刘媛.红外光谱酰胺Ⅲ带用于蛋白质二级结构的测定研究[J].高等学校化学学报, 2003, 24 (2) : 226-231.
    [111]Ozaki Y, Murayama K, Wu Y. Two-dimensional infrared correlation spectroscopy studies on secondary structures and hydrogen bondings of side chains of proteins [J]. Spectroscopy, 2003, 17(2-3): 79-100.
    [112]Keiderling T A. Protein and peptide secondary structure and conformational determination with vibrational circular dichroism [J]. Current Opinion in Chemical Biology, 2002, 6(5):682-688.
    [113]Dockal M, Carter D C, Ruker F. Conformational transitions of the three recombinant domains of human serum albumin depending on pH [J]. Journal of Biological Chemistry, 2000, 275(5):3042-3050.
    [114]Wallace B A, Janes R W. Synchrotron radiation circular dichroism spectroscopy of proteins: Secondary structure, fold recognition and structural genomics [J]. Current Opinion in Chemical Biology, 2001, 5(5):567-571.
    [115]Catala S. Thermal analysis, differential scanning calorimetry and thermo qravimeetric analysis [J]. Ingenieria Quimica (Madrid), 1998, 30(343):171-176.
    [116]Pace C N, Shirley B A, Thomson J A. In Protien Structure—A Practical Approach [M]. Oxford: IRL Press, 1990.
    [117]Adeishvili K, Khoshtariya D E, Getashvili G, et al. On the DSC rate performance for a three-state thermal denaturation of globular proteins [J]. Bulletin of the Georgian Academy of Sciences, 1997, 156(3): 465-467.
    [118]陈灿,谢亚宁,杜永华,等.利用EXAFS研究酿酒酵母与Zn(Ⅱ)的相互作用机制[J].环境科学, 2008, 29(6): 1666-1670.
    [119]卢雁,徐全清,李向荣.氨基酸与蛋白质体系热容研究[J].化学进展, 2004, 16 (3):365-369.
    [120]Collins K D, Washabaugh M W. The Hofmeister effect and the behaviour of water at interfaces [J]. Quarterly Reviews of Biophysics, 1985, 18(4):323-422.
    [121]赵林,谭欣.水的六环结构及其对溶菌酶热变性的影响[J].天津大学学报, 2000, 33(1): 14-16.
    [122]Batchelor J D, Olteanu A, Tripathy A, et al. Impact of protein denaturants and stabilizers on water structure [J]. Journal of the American Chemical Society, 2004, 126(7):1958–1961.
    [123]Yu Z W, Chen L, Sun S Q. et al. Determination of selective molecular interactions using two-dimensional correlation FT-IR spectroscopy [J]. The Journal of Physical Chemistry A, 2002, 106 (28):6683–6687.
    [124]Bennion B J, Daggett V. Counteraction of urea-induced protein denaturation by trimethylamine N-oxide: A chemical chaperone at atomic resolution [J]. Proceedings of the National Academy of Sciences, 2004, 101(17):6433–6438.
    [125]Jones G, Dole M. The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride [J]. Journal of the American Chemical Society, 1929, 51(10):2950-2964.
    [126]Ali A, Hyder S, Akhtar Y. Viscometric strudies ofα-amino acid in aqueous NaCl and MgCl2 at 303K [J]. Indian Journal of Physics, 2005, 79:157-160.
    [127]Belibagli K B, Ayranci E. Viscosities and apparent molar volumes of some amino acids in water and in 6M guanidine hydrochloride at 25℃[J]. Journal of Solution Chemistry, 1990, 19(9):867-882.
    [128]Ernst R R, Bodenhausen G, Wokaun A.一维和二维核磁共振原理[M].北京:科学出版社,1997.
    [129]Franks F. Water(A Matrix of Life)[M]. Cambridge: Royal Society of Chemistry, 2000.
    [130]Matubayasi N, Wakai C, Nakahara M. Structure study of supercritical water. I. Nuclear magnetic resonance spectroscopy [J]. The Journal of Chemical Physics, 1997, 107(21):9133-9140.
    [131]Kushnarev D F, Alekseeva E V, Rokhin A V, et al. 17O NMR spectroscopy of electrolyte aqueous solutions [J]. Russian Journal of Physical Chemistry, 2005, 79(10):1704-1706.
    [132]Engel G., Hertz H G. On the negative hydration. A nuclear magnetic relaxation study [J]. Berichte der Bunsengesellschaft fur Physikalische Chemie, 1968, 72(7): 808-834.
    [133]Hertz H G. Nuclear Magnetic Relaxation Spectroscopy, in Water, a Comprehensive Treatise [M]. New York: Plenum Press, 1973.
    [134]Terpstra P, Combes D, Zwick A. Effect of salts on dynamics of water: A Raman spectroscopy study [J]. The Journal of Chemical Physics, 1990, 92(1):65-70.
    [135]毛希安.现代核磁共振实用技术及应用[M].北京:科学技术文献出版社, 2000.
    [136]Gurney R W. Ionic Processes in Solutions[M]. New York: Mc Graw-Hill, 1953.
    [137]Mandal P K, Seal B K, Basu A S. Structural aspects of ionic viscosity B-coefficients in relation to ion–solvent interaction in aqueous solutions [J]. Zeitschriftfuer Physikalische Chemie, 1973, 87:295-307.
    [138]Moulik S P, Rakshit A K. Viscosity of aqueous electrolyte solutions as a function of B-coefficients [J]. Journal of the Indian Chemical Society, 1975, 12: 450-453.
    [139]Li R H, Jiang Z P, Shi S Q, et al. Raman spectroscopic study of effect of CaCl2 and MgCl2 on structure of water [J]. Journal of Molecular Structure, 2003, 645(1): 69-75.
    [140]Hickey K, Waghorne W E. Viscosities and volumes of dilute solutions of formamide in water + acetonitrile and for formamide and N, N-dimethylformamide in methanol + acetonitrile mixed solvents: Viscosity B-coefficients, activation free energies for viscous flow, and partial molar volumes [J]. Journal of Chemical& Engineering Data, 2001, 46(4): 851-857.
    [141]George A J. An Introduction to Hydrogen Bonding [M]. New York: Oxford University Press, 1997.
    [142]Carey D M, Korenowski G M. Measurement of the Raman spectrum of liquid water [J]. The Journal of Chemical Physics, 1998, 108(7):2669-2675.
    [143]Bergstrom P A, Lindgren J, Kristiansson O. An IR study of the hydration of perchlorate, nitrate, iodide, bromide, chloride and sulfate anions in aqueous solution [J]. The Journal of Physical Chemistry, 1991, 95(22):8575-8580.
    [144]郁鉴源,周群.水和重水的拉曼光谱研究[J].光散射学报, 1994, 6(2): 81-85.
    [145]Nickolov Z S, Goutev N, Matsuura H. Hydrogen bonding in concentrated aqueous solutions of 1,2-dimethoxyethane: Formation of water clusters [J]. The Journal of Physical Chemistry A, 2001, 105(48):10884-10889.
    [146]Walrafen G E. Raman spectral studies of the effects of solutes and pressure on water structure [J]. The Journal of Chemical Physics, 1971, 55(2):768-792.
    [147]邹受忠,陈燕霞,田中群,等.不同电解质体系水的拉曼谱的研究[J].物理化学学报, 1996,12(2): 130-135.
    [148]Bloembergen N, Proton relaxation times in paramagetic solutions [J]. The Journal of Chemical Physics, 1957, 27(2):572-573.
    [149]Kobayashl K. Optical spectra and electronic structure of ice [J]. The Journal of Physical Chemistry, 1983, 87(21):4317-4321.
    [150]Liu K, Loeser J G, Elrod B C, et al. Dynamics of structural rearrangements in the water trimer [J]. Journal of the American Chemical Society, 1994, 116(8): 3507-3512.
    [151]赵林.水的微观结构及其功能的研究[D].天津:天津大学化工学院, 1999.
    [152]Clausse D. Thermal behaviour of emulsions studied by differential scanning calorimetry [J]. Journal of Thermal Analysis and Calorimetry, 1998, 51(1): 191-201.
    [153]Holysz L, Szczes A, Chibowski E. Effects of a static magnetic field on water and electrolyte solutions [J]. Journal of Colloid and Interface Science, 2007, 316(2): 996-1002.
    [154]Marcus Y. A simple empirical model describing the thermodynamics of hydration ions of widely varying charges, sizes, and shapes [J].Biophysical Chemistry, 1994,51(2-3): 111-127.
    [156]马礼敦,杨福家.同步辐射应用概论[M].上海:复旦大学出版社, 2001.
    [157]Marcus Y. Effect of ions on the structure of water: Structure making and breaking [J]. Chemical Reviews, 2009, 109(3): 1346-1370.
    [158]Koningsberger D C, Prins R. X-ray Absorption: Principles, Applications, Techniques of EXAFS, SESAFS, and XANES [M]. New York: John Wily, 1988.
    [159]Lee P A, Pendry J P. Theory of the extended X-ray absorption fine structure [J]. Physical Review B, 1975, 11(8): 2795-2811.
    [160]Ankudinov A L, Rehr J J. Relativistic calculations of spin-dependent X-ray absorption spectra [J]. Physical Review B, 1997, 56(4):1712-1715.
    [161]Valli M, Matsuo S, Wakita H, et al. Solvation of copper(II) ions in liquid ammonia [J]. Inorganic Chemistry, 1996, 35(19):5642-5645.
    [162]Fontaine A, Lagarde P, Raous D. Extended X-ray-absorbtion fine-structure studies of local ordering in highly concentrated aqueous solutions of CuBr2 [J]. Physical Review Letters, 1978, 41(7): 504-507.
    [163]张晋京,王帅,窦森,等. pH对溶液中Cu2+微观结构及Cu2+吸附对针铁矿微观结构的影响[J].农业环境科学学报, 2007, 26(1): 277-281.
    [164]Nilsson K B, Eriksson L, Kessler V G, et. al. The coordination chemistry of the copper (II), zinc(II) and cadmium(II) ions in liquid and aqueous ammonia solution, and the crystal structures of hexaamminecopper(II) perchlorate and chloride, and hexaamminecadmium(II)chloride [J]. Journal of Molecular Liquids, 2007, 131-132: 113-120.
    [165]Bersuker I B. Modern aspects of the Jahn?Teller effect theory and applications to molecular problems [J]. Chemical Reviews, 2001, 101(4):1067-1114.
    [166]Chaboy J, Munoz-Paez A, Merkling P J, et al. The hydration of Cu2+: Can the Jahn-Teller effect be detected in liquid solution [J]. Journal of Chemical Physics, 2006, 124(6): 064509 1-9.
    [167]Pasquarello A, Petri I, Salmon P S, et al. First solvation shell of the Cu (II) aqua ion: Evidence for fivefold coordination [J]. Science, 2001, 291(5505): 856-859.
    [168]Angelo P D, Bottari E, Festa M R. Structural investigation of copper(II) chloride solutions using x-ray absorption spectroscopy [J]. Journal of Chemical Physics, 1997, 107(8): 2807-2812.
    [169]Persson I, Persson P, Sandstrom M, et al. Structure of Jahn–Teller distorted solvated copper (II) ions in solution, and in solids with apparently regular octahedral coordination geometry [J]. Journal of the Chemical Society, Dalton Transactions, 2002, 7:1256-1265.
    [170]Gregory J K, Clary D C, Liu K, et al. The water dipole moment in water clusters [J]. Science, 1997, 275(5301):814-817.
    [171]庞小峰,张安英.微波的生物热效应的机理和特性研究[J].原子与分子物理学报, 2001,18(4): 421-425.
    [172]Bock C W, Katz A K, Markham G D, et al. Manganese as a replacement for magnesium and zinc: Functional comparison of the divalent ions [J]. Journal of the American Chemical Society, 1999, 121(32):7360-7372.
    [173]Pan G, Qin Y, Li X, et al. EXAFS studies on adsorption-desorption reversibility at manganese oxides-water interfaces II. Reversible adsorption of zinc onto manganite (γ-MnOOH) [J]. Journal of Colloid and Interface Science, 2004, 271(1): 28-34.
    [174]Toner B, Manceau A, Webb S M, et al. Zinc sorption to biogenic hexagonal-birnessite particles within a hydrated bacterial biofilm [J ]. Geochim Cosmochim Acta, 2006, 70(1):27-43.
    [175]朱孟强,潘纲.单核Zn(Ⅱ)水合和水解形态的量子化学计算[J].环境化学, 2005, 24(5): 497-501.
    [176]Khan M F, Norhayati Y, Khan G M. Role of copper and its complexes in biological systems [J]. Chinese Journal of Inorganic Chemistry, 1998, 3(1):29-39.
    [177]Wu L Z, Ma B L, Zou D W, et al. Influence of metal ions on folding pathway and conformational stability of bovine serum albumin [J].Journal of Molecular Structure, 2008,877(1-3):44-49.
    [178]Artali R, Bombieri G., Calabi L,et al. A molecular dynamics study of human serum albumin binding sites [J]. IL Farmaco, 2005, 60(6-7):485-495.
    [179]Surewicz W K, Moscarello M A, Mantsch H H. Secondary structure of the hydrophobic myelin protein in a lipid environment as determined by Fourier-transform infrared spectrometry [J]. Biochemistry, 1987, 262(18): 8598-8602.
    [180]Saba R I, Ruysschaert J M, Herchuelz A, et al. Fourier transform infrared spectroscopy study of the secondary and tertiary structure of the reconstituted Na+/Ca2+ exchanger 70-kDa polypeptide [J]. Journal of Biological Chemistry, 1999, 274(22):15510-15518.
    [181]Liu J Q, Tian J N, He W Y, et al. Spectrofluorimetric study of the binding of daphnetin to bovine serum albumin [J]. Journal of Pharmaceutical and Biomedical Analysis, 2004, 35(3):671-677
    [182]Shahid F, Gomez J E, Birnbqram E R, et al. The lanthanide-induced N = to F transition and acid expansion of serum albumin [J]. Journal of Biological Chemistry, 1982, 257(10):5618-5622.
    [183]Shen P W, Zhou Y Q, Wang S Y, et al. Structural studies on metal-serum albuminⅠ. An ultraviolet spectroscopic study of copper(Ⅱ) human serum albumin complexes[J]. Inorganica Chimica Acta, 1990, 169(2):161-166.
    [184]Sadler P J, Viles J H. 1H and 113Cd NMR investigations of Cd2+ and Zn2+ binding sites on serum albumin: Competition with Ca2+, Ni2+, Cu2+, and Zn2+ [J]. Inorganic Chemistry, 1996, 35(15):4490-4496.
    [185]Stewart A J, Blindauer C A, Berezenko S, et al. Interdomain zinc site on human albumin [J]. Proceedings of the National Academy of Sciences, 2003, 100(7): 3701-3706.
    [186]王克夷.蛋白质导论[M].北京:科学出版社, 2007.
    [187]Militello V, Vetri V, Leone M. Conformational changes involved in thermal aggregation processes of bovine serum albumin [J]. Biophysical Chemistry, 2003, 105(1): 133-141.
    [188]Ferrer E G, Bocsh A, Yantorno O, et al. A spectroscopy approach for the study of the interactions of bioactive vanadium species with bovine serum albumn [J]. Bioorganic&Medicinal Chemistry, 2008, 16(7):3878-3886.
    [189]Khan A M, Muzammil S, Musarrat J. Differential binding of tetracyclines with serum albumin and induced structural alterations in drug-bound protein [J]. International Journal of Biological Macromolecules, 2002, 30(5): 243-249.
    [190]Chen Y H, Yang J T, Martinez H M. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion [J]. Biochemistry, 1972, 11(22):4120-4131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700