间作垄沟灌溉作物水分调控试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
间作是世界范围内提高和保持粮食产量稳定性的最有效措施之一。以往有关间作的研究主要集中在充分灌水和平地大水漫灌条件下,虽然提高了产量,但不利于水资源可持续利用,影响了农业生产系统的稳定性。针对以上问题,本研究将沟灌节水模式引入间作复合群体,提出了“间作垄沟灌溉种植模式”,简称“垄沟间作”。于2010年4月~9月春播作物生长季和2010年7月~11月夏播作物生长季进行大田试验,以玉米和大豆作为供试材料,在春播405mm(W1)、270mm(W2)和135mm灌水量(W3)、夏播180mm(W1)、90mm(W2)和0mm(W3)灌水量下设105cm垄沟间作(RF105)、90cm垄沟间作(RF90)、75cm垄沟间作(RF75)、60cm垄沟间作(RF60)、传统间作(TI)、玉米单作(SM)和大豆单作(SS)7个种植方式,研究间作垄沟灌溉模式对农田土壤水分动态和耗水特征、作物光合生态生理特性、产量和水分利用效率(WUE)的影响。初步得出如下主要研究结果:
     1)垄沟间作在作物生育前期增大了土壤蒸发量,明显降低播种~玉米拔节期/大豆花芽分化期0-40cm土壤含水量,其中以RF60较平作下降幅度最大。在作物生育后期,垄沟间作有利于抑制蒸发,促进蒸腾,在水分充足时将将更多的水分保蓄在土层中,在缺水时,通过尽可能的消耗土壤贮水而为作物多供水。
     2)不同地表操作和栽培措施明显影响土壤水分在各层次之间的一致性。随着灌水量降低,垄沟间作各处理不同土层水分之间的一致性增强;在相同灌水处理下,RF75各土层土壤水分变化之间一致性较好,有利于外来水分的入渗和农田水分的保蓄。
     3)灌水量对生育期总耗水量影响显著,种植方式间总耗水量无明显差异。随灌水量减少,农田总耗水量以及灌水占农田总耗水量的比例显著降低,降雨和土壤贮水消耗量占农田总耗水量的比例显著升高。春季作物135mm灌水和夏季作物不灌溉条件下垄沟间作能通过对土壤水分的充分利用尽可能的较少产量损失。棵间蒸发占蒸散量的比例(E/ET)随灌水量减少而降低。垄沟间作显著降低E/ET,在W1、W2、W3下较传统间作分别降低7.14%和7.35、11.83%。特别是RF90和RF75在生育后期较TI明显降低E/ET,增加农田耗水的有效性。
     4)全生育期内,W2玉米叶片水分利用效率较W1和W3分别平均提高9.37%和2.82%。在W1、W2和W3灌水量下分别以RF75、RF90和RF75叶片WUE最大,较TI处理分别提高15.66%、27.46%和21.77%。大豆叶片水分利用效率在W2和W3灌水下分别较W1下提高33.62%和46.71%。间作处理提高大豆功能叶WUE,其中,在W2和W3灌水下,RF90和RF75叶片水平WUE较TI明显提高。W1灌水下,垄沟间作较TI对提高作物水分利用效率效果不明显,甚至有所降低。
     5)不同灌水量和种植方式对复合群体作物总产量影响显著。玉米//大豆垄沟间作春播作物在W2下增产效果最好、夏播W3增产效果最好。间作较SM减产,但较SS明显增产。适宜的垄沟间作处理土地当量比(LER)较TI显著提高,尤其是RF75,较TI平均提高9.86%,增产效应最大。通过土地当量比与垄宽之间的相关关系发现垄沟间作条件下,在W1、W2和W3灌水条件下,当垄宽分别为85.07cm、75.87cm和72.71cm时,春季作物可以获得最大的增产潜力,当垄宽分别为95.63cm、74.91cm和71.5cm时,夏季作物可以获得最大的增产潜力。而且,垄沟间作和传统间作相比,能够通过转化农田组分之间的竞争关系而获得更高的产量。
     6)春播作物W1、W2和W3下间作系统的平均WUE分别为9.95kg·hm~(-2)·mm~(-1)、12.93kg·hm~(-2)·mm~(-1)和14.34kg·hm~(-2)·mm~(-1),分别较SM降低28.26%、23.67%和28.18%,较SS升高239.43%、168.38%和189.02%。夏播作物间作系统平均水分利用效率在W1、W2、W3下分别较SM降低13.87%、13.95%和-4.83%,较SS升高234.73%、189.36%和185.15%。RF75处理WUE较SM降低幅度最小较SS增加幅度最大,节水优势明显。回归分析表明,在W1、W2和W3灌水下,垄沟间作分别在85.17cm、77.16cm和79.33cm垄宽下可以取得最大的水分利用效率。
Intercropping system is one of the most effective practices to preserve and enchance thesustainability of grain yield in worldwide. There are many precious studies on intercroppingsystems, which have improved grain yield greatly, but those practices would do harm to thesustainable utilization of water resources, which have affected the the stabilization ofagricultural production system. Based on the problem discussed above, we cooperatedintercropping models into furrow irrigation and proposed a new plant technique called ridgeand furrow irrigated intercropping(RFII) system. Field experiments (using maize and soybeanas indicator crops) were conducted in the experimental station of Institute of Water-savingAgriculture in Arid Areas of China(IWSA), Northwest A&F University(108°04ˊE,34°20ˊN) during the spring planted crop growth duration (from April toSuptember,2010) and summer planted crop growth duration (from July to November,2010).In order to investigate the effects of RFII system, the experiment comprised soil waterdynamics, crop water consumption, eco-physiological characteristics and the yield and wateruse efficiency under two experimental factors, which are irrigation quato and plant model,respectively. The irrigation quato was set three levels which are405mm (W1),270mm(W2)and135mm(W3) in spring planted crop growth duration and180mm (W1),90mm(W2) and0(W3) in summer planted crop growth duration, respectively. The plant models wereconventional flat practice including sole maize(SM), sole soybean(SS) and traditional maizeand soybean intercropping system (TI), and ridge and furrow planting system includingRF105, RF90, RF75and RF60(furrow width was all60cm and ridge width was105cm,90cm,75cm and60cm respectively). The main results showed as follows:
     1)RFII system decreased soil water content compared with that of conventional practice(TI, SM and SS) in0~40cm soil layer before the maize jointing stage/soybean flower buddifferentiation stage. In maize flowering stage/soybean podding and blossom stage, soil watercontent has a larger amplitude of decrease in RFII system compared with that in conventionalflat practice in spring planted crop growth duration. RFII system was helpful to soil water reservation in summer planted crop growth duration.
     2)Different soil surface management and cultivation significantly affected the soil moistureuniformity between soil moisture of different soil layers. Soil moisture uniformity in RFIIsystem increased with the decrease of irrigation quato. Soil moisture uniformity in RF75wasthe highest at the same irrigation level, which was helpful for the external water infiltrationand soil moisture conservation.
     3)Irrigation quato has significant effects on total crop water consumption, plant models,however, has little effect. With the decrease of irrigation quato, total water consumptiondecreased and the ratios of precipitation and soil water consumption to total crop waterconsumption increased significantly. RFII under W2irrigation quato in spring planted cropduration and W3n summer planted crop duration could reduce yield loss ceused by watershortage as far as possible by making full use of the soil moisture.The ratio of soilevaporation to evaportraspiration(E/ET) decreased with the decrease of irrigation quota. E/ETin RFII system decrease by7.14%,7.35and11.83%compared with that in TI under W1, W2and W3respectively. RFII system could decrease E/ET in the later of crop growth duration,especially for RF90and RF75, which could increase the valibility of field water consumption.
     4)Mean leaf instantaneous WUE under W2increased by9.37%and2.82%, comparedwith that under W1and W3, respectively. Leaf instantaneous WUE of RF75under W1, RF90under W2and RF75under W3was the largest in the corresponding irrigation amount, whichincreased by15.66%,27.46%and21.77%compared with that of TI1, respectively. Leafinstantaneous WUE was also increased by intercropping system. Leaf instantaneous WUE ofRF90and RF75under W2and W3was obviously higher than that of TI. Under W1, leafinstantaneous WUE in RFII system even declined.
     5)Irrigation and plant models effected crop yield in interopping system significantly. Inspring planted and summer planted, mean crop yield in W2and W3was the largest,respectively. Total yield in intercropping system decreased compared with that in SM andincreased significantly compared with that in SS. RF75was the best treatment because of thesmallest yield decrease amplitude and the largest yield increase amplitude. Proper RFIIsystem could increase LER siggnificantly, especially for RF75, yield increasing effect was themost significant. Correlation analysis between LER and ridge width showed that the yieldincreasing effects was the largest when ridge width was85.07cm,75.87cm and72.71cm inspring planted crop growth duration and95.63cm,74.91cm and71.5cm in summer plantedcrop growth duration under W1, W2and W3, respectively.
     6) For spring planted crops, water use efficiency(WUE) in intercropping system was9.95kg·hm~(-2)·mm~(-1),12.93kg·hm~(-2)·mm~(-1)and14.34kg·hm~(-2)·mm~(-1)which decreased by28.26%, 23.67%and28.18%compared with that in SM and increased by239.43%,168.38%and189.02%compared with that in SS, under W1, W2and W3, respectively. For summer plantedcrops, mean WUE in intercropping system decreased by13.87%,13.95%and-4.83%compared with that in SM and increased by234.73%,189.36%and185.15%compared withthat in SS, under W1, W2and W3, respectively. RF75was the best treatment because of thesmallest WUE decrease amplitude compared with that of SM and the largest WUE increaseamplitude compared with that of SS. Correlation analysis between LER and ridge widthshowed that WUE was the highest when ridge width was85.17cm,77.16cm and79.33cmunder W1, W2and W3, respectively.
引文
[1]刘晓冰,王光华,金剑,等.作物根际和产量生理研究[M].科学出版社,2009.
    [2] Cheng, G. D., Xiao, H. L., Xu, Z. M., et al. Water issue and its countermeasure in theinland river basin of northwest China-a case in Heihe river basin [J]. Journal of Glaciologyand Geocryology,2006,28:406-413.
    [3] Gao, Y., Duan, A., Sun, J. S., et al. Crop coefficient and water use efficiency of winterwheat/spring maize strip intercropping [J]. Field Crops Research,2009,11:65-73.
    [4] Willey, R. W. Intercropping its importance and research needs.Part I: Competition andyield advantages [J]. Field Crop Abstract,1979,32(1):1-10.
    [5]卢良怒.挖掘资源潜力,发展立体农业[J].耕作与栽培,1990,6(5):1-5.
    [6]柴良植,刘世铎,李得举.大力发展间作套种提高灌区综合效益[J].干旱地区农业研究,1997,15(2):37-43.
    [7]郑毅,汤利.间作作物的养分吸收利用与病虫害控制关系研究[M].昆明:云南科技出版社,2008
    [8] Zhu, Y. Y., Chen, H. R., Fan, J. H., et al. Genetic diversity and disease control in rice [J].Nature,2000,17(406):718-723.
    [9]张凤云,吴普特,赵西宁,等.间套作提高农田水分利用效率的节水机理[J].应用生态学报,2012,23(5):1400-1406.
    [10]刘巽浩,韩湘玲,赵明斋,等.华北平原地区麦田两熟制的光能利用、作物竞争与产量分析[J].作物学报,1981,7(1):63-72.
    [11]赵秉强.间套带状种植小麦的高产机理与技术研究[D].山东农业大学博士学位论文,1996.
    [12] Zhang, F., Li, L. Using competitive and facilitative interactions in intercropping systemsenhances crop productivity and nutrient-use efficiency [J]. Plant Soil,2003,248,305-312.
    [13]肖焱波,李隆,张福锁.小麦/蚕豆间作体系中的种间相互作用及氮转移研究[J].中国农业科学,2005,38(5):965-973.
    [14]岳万福.小麦蚕豆间作系统中施氮水平与作物病虫害发生的关系[D].云南农业大学硕士学位论文,2004.
    [15]肖焱波,段宗颜,金航,等.小麦/蚕豆间作体系中的氮节约及产量优势[J].植物营养与肥料学报,2007,13(2):267-271.
    [16]肖焱波,李隆,张福锁.小麦/蚕豆间作中的种间氮营养差异比较研究[J].植物营养与肥料学报,2003,9(4):396-400.
    [17]陈阜,逄焕成.冬小麦/春玉米/夏玉米间套作复合群体的高产机理探讨[J].中国农业大学学报,2000,5(5):12-16.
    [18] Sinoquet, H., Bonhomme, R. Modeling radiative transfer in mixed and row intercroppingsystems [J]. Agricultural and Forest Meteorology,1992,62,219-240.
    [19] Keating, B.A., Carberry, P.S. Resource capture and use in intercropping: solar radiation[J]. Field Crop Research,1993,34,273-301.
    [20] Faurie, O., Soussana, J.F., Sinoquet, H. Radiation interception, partitioning and use ingrass-clover mixtures [J]. Annals of Botany,1996,77,35-45.
    [21]张恩和.作物间套作复合群体根系营养竞争与补偿效应研究[D].甘肃农业大学博士学位论文,1997.
    [22] Getachew, A., Amare, G., Woldeyesus, S. Yield performance and land-use efficiency ofbarley and faba bean mixed cropping in Ethiopian highlands [J]. European Journal ofAgronomy,2006,25:202–207.
    [23]刘广才,李隆,黄高宝.大麦/玉米间作优势及地上部和地下部因素的相对贡献研究[J].中国农业科学,2005,38(9):1787-1795.
    [24]李隆,李晓林,张福锁,等.小麦大豆间作条件下作物养分吸收利用对间作优势的贡献[J].植物营养与肥料学报,2000,6(2):140-146.
    [25]李隆,李晓林.小麦/大豆间作中作物种间的竞争作用和促进作用[J].应用生态学报1999,10(2):197-202.
    [26] Gustave, N. M., Jean, F.L., Xavier, D. Shoot and root competition in potato/maizeintercropping: Effects on growth and yield [J]. Environmental and Experimental Botany,2008,64:180-188.
    [27] Black, C., Ong, C. Utilization of light and water in tropical agriculture [J]. Agriculturaland Forest Meteorology,2000,104:25-47.
    [28]高国治,王明珠,张斌.低丘红壤南酸枣-花生复合系统作物种间水肥光竞争的研究.Ⅱ.南酸枣与花生利用光能分析[J].中国生态农业学报,2004,12(2):92-94.
    [29] Walker, S., Ogindo, H.O. The water budget of rainfed maize and bean intercrop [J].Physics and Chemistry of the Earth,2003,28:919-926.
    [30]武志杰,王仕新,张玉华.玉米和小麦间作农田水分动态变化的研究[J].玉米科学,2001,9(2):61-63.
    [31] Zhang, B.C., Huang, G.B., Li, F.M. Effect of limited single irrigation on yield of winterwheat and spring maize relay intercropping [J]. Pedosphere,2007,17(4):529-537.
    [32]王兴祥,张斌,何园球,等.低丘红壤花生南酸枣间作系统研究Ⅲ土壤水分[J].土壤,2003,35(3):232-235.
    [33]赵英,张斌,王明珠.农林复合系统中物种间水肥光竞争机理分析与评价[J].生态学报,2006,26(6):1792-1801.
    [34]李俊祥,宛志沪.淮北平原杨-麦间作系统的小气候效应与土壤水分变化研究[J].应用生态学报,2002,13(4):390-394.
    [35] Olesantan, F.O. The effect of soil temperature and moisture content and crop growth andyield of intercropping maize with melon [J]. Experimental Agriculture,1988,24:67-74.
    [36] Snaydon, R. W., Harris, P. M. Interaction below-ground--the use of nutrients and water[J]. in: ICRISAT (ed) Proceedings of International Workshop on intercropping,1981:188-201.
    [37]杜社妮,白岗栓.黄土丘陵区仁用杏园不宜间作沙打旺[J].园艺学报,2007,34(5):1135-1140.
    [38]黄瑞冬,马鸿图,李永奎,邱福林.玉米高粱及其间作小麦的土壤水分动态和产量[J].辽宁农业科学,1993,(4):20-22
    [39] Ghosh, P. K., Tripathi, A. K., Bandyopadhyay, K. K., et al. Assessment of nutrientcompetition and nutrient requirement in soybean/sorghum intercropping system [J]. EuropeanJournal Agronomy,2009,31:43-50.
    [40] Baumann, D. T., Bastiaans, L., Goudriaan, J., et al. Analysing crop yield and plant qualityin an intercropping system using an eco-physiological model for interplant competition [J].Agricultural Systems,2002,73:173-203.
    [41] Zhang, L., Werf, W., Zhang S., et al. Growth, yield and quality of wheat and cotton inrelay strip intercropping systems [J]. Field Crops Research,2007,103:178-188.
    [42]胡恒觉,黄高宝.新型多熟种植研究[M].甘肃科学技术出版社.1998.
    [43] Piper, J. K. Growth and seed yield of three perennial grains within monocultures andmixed stands [J]. Agriculture, Ecosystems and Environment,1998:68:1-11.
    [44] Casper, B.B, Jackson, R. B. Plant competition underground [J]. Annual Review ofEcology and Systematics,1997,28:545-570.
    [45] Haymes, R., Lee, H. C. Competition between autumn and spring planted grain intercropsof wheat (Triticum aestivum) and field bean (Vicia faba)[J]. Field Crops Research,1999,62:167-176.
    [46] Marina, S., Michael, J., Hutchings, E. A. Challenging the tragedy of the commons in rootcompetition: confounding effects of neighbour presence and substrate volume [J]. Journal ofEcology,2007,95:252-260.
    [47]郝艳茹,劳秀荣.玉米/小麦间作对根际土壤和养分吸收的影响[J].中国农学通报,2002, ll8(4):20-23.
    [48]张恩和,黄高宝,黄鹏.不同供磷水平下粮豆间套种植对根系分布和根际效应的影响[J].草业学报,1999,8(3):35-38.
    [49]张恩和,李玲玲,黄高宝,等.供肥对小麦间作蚕豆群体产量及根系的调空[J].应用生态学报,2002,13(8):939-942.
    [50]宋日,王玉兰,吴春胜,郭继勋.玉米,大豆间作对两种作物根系形态特征的影响[J].东北师大学报(自然科学版),2002,34(3):83-86.
    [51] Li, L., Sun, J. H., Zhang, F. S., et al. wheat/maize or wheat/soybean strip intercropping II.Recovery or Compensation of maize and soybean after wheat harvesting [J]. Field CropsResearch.2001,71:173-181.
    [52]左元梅,李晓林.玉米花生间作对花生铁营养的影响[J].植物营养与肥料学报,1997,3(2):153-159.
    [53]高阳,段爱旺.冬小麦间作种植方式下棵间蒸发试验研究[J].灌溉排水学报,2005,24(2):13-17.
    [54] Olasantan, F. O., Ezumah, H. C., Lucas, E. O. Effects of intercropping with maize on themicro-environment, growth and yield of cassava [J]. Agriculture, Ecosystems andEnvironment,1996,57:149-158.
    [55] Awal, M. A., Koshi, H., Ikeda T. Radiation interception and useby maize/peanut intercropcanopy[J]. Agricultural and Forest Meteorology,2007,139:74-83.
    [56] Willey, R. W. Resource use in intercropping systems [J]. Agricultural Water Management,1990,17:215-231.
    [57] Tsubo, M., Walker, S. A model of radiation interception and use by a maize-beanintercrop canopy[J]. Agricultural and Forest Meteorology,2002,110:203-205.
    [58]高阳,段爱旺.冬小麦-春玉米间作模式下光合有效辐射特性研究[J].中国生态农业学报,2006,14(4):115-118
    [59] Reddy, M. S., Willey, R. W., Growth and resource use studies in an intercrop of pearlmillet/groundnut [J]. Field Crops Research,1981,4:13-24.
    [60] Willey, R.W. Intercropping-its importance and research needs. Part1.Competition and yieldadvantages [J]. Field Crop Abstract.,32:1-10.
    [61]刘晶,陈颖,袁远峰,等.光、风、气对玉米大豆间作群体产量及生态效应的影响[J].耕作与栽培,2008,(2):13-15.
    [62] Inal, A., Gunes, A., Zhang F., et al. Peanut/maize intercropping induced changes inrhizosphere and nutrient concentrations in shoots [J]. Plant Physiology and Biochemistry,2007,45:350-356
    [63] Zhang, J. S., Meng, P., Yin, C. J., et al.Summary on the Water Ecological Characteristicsof Agroforestry System [J].World Forestry Research,2003,16(1):10-14.
    [64] Wang, X. X., Zhang, T. L., He Y. Q., et al. N recovery in Choerospondias axillarisandPeanut (Arachis hypogaea) alley cropping systems on Udic Ferrosol in subtropical China [J].Acta Pedologica Sinica,2003,40(4):588-592.
    [65]朱清科,朱金兆.黄土塬面农林符合系统的生态位特征[J].中国水土保持科学,2003,1(1):49-52.
    [66] Ghosh, P. K., Mohanty, M., Bandyopadhyay, K. K., et al. Growth, competition, yieldadvantage and economics in soybean/pigeonpea intercropping system in semi-arid tropics ofIndia I. Effect of subsoiling [J]. Field Crops Research,2006,96:80-89.
    [67]庄辉发,王华,王辉.槟榔间作香草兰种植园土壤养分变化趋势研究[J].热带农业科学,2012,32(5):22-25.
    [68] Stern, W. R. Nitrogen fixation and transfer in intercrop system [J].Field Crops Research,1993,34:335-356.
    [69]朱树秀.玉米单作及与大豆混作中氮来源的研究[J].西北农业学报,1994,3(1):59-61.
    [70] Ae, N., Arihara, J., Okada, K., et al. Phos-phorus uptake by pigeon pea and its role incropping systems of the Indian subcontinent [J]. Science,1990,248,477-480.
    [71]曹鸿鸣,贺明荣,王明友,等.麦棉套作条件下棉麦以氮素吸收规律的研究[J].核农学报,1996,10(2):104-108.
    [72]张恩和,黄高宝.间套种植复合群体根系时空分布特征[J].应用生态学报,2003,8(14):1301-1304.
    [73]黄高宝,张恩和.调亏灌溉条件下春小麦玉米间作农田根、水肥时空协调性研究[J].农业工程学报,2002,18(1):53-56.
    [74] Van Duivenbooden N., Paln, M., Studer, C., et al. Cropping systems and cropcomplementarity in dryland agriculture to increase soil water use efficiency: a review [J].Netherlands Journal of Agricultural Science,2000,48:213-236.
    [75] Abiye, A., Mohamed Saleem M. A. Effect of different cropping options onplant-available water of surface-drained Vertisols in the Ethiopian highlands [J]. AgriculturalWater Management,1998,36:11l-120.
    [76] Mclntyre, B. D., Riha, S. J., Ong, C.K. Competition for water in a hedge-intercropsystem [J]. Field Crops Research,1997,52:151-160.
    [77] Morris, R. A., Garrity, D. P. Resource capture and utilization in intercropping:non-nitrogen nutrients [J]. Field Crops Research,1993,319-334.
    [78] Angelika, N., Jochen, W., Rolf, Rauber. Evaluation of yield-density relationships andoptimization of intercrop compositions of field-grown pea-oat intercrops using thereplacement series and the response surface design [J]. Field Crops Research,2009,114:286-294
    [79] Hauggaard-Nielsen, H., Andersen, M. K., Jornsgaard, B., et al. Density and relativefrequency effects on competitive interactions and resource use in pea–barley intercrops [J].Field Crops Research,2006,95:256-267.
    [80] Kizito, F., Dragila, M., Sène M., et al. Seasonal soil water variation and root patternsbetween two semi-arid shrubs co-existing with Pearl millet in Senegal, West Africa [J].Journal of Arid Environments,2006,67:436-455.
    [81] Olasantan, F. O., Ezumah, H. C., Lucas, E. O. Response of cassava and maize to fertilizerapplication, and a comparison of the factors affecting their growth during intercropping [J].Nutrient Cycling in Agroecosystems,1996,46(3)215-223.
    [82] Oljaca, S., Cvetkovic, R.,Kovacevic, D.,et al..Effect of plant And irrigation onefficiency of maize(Zea mays)and bean (Phaeolus vulgaris) intercropping system[J].Journal of Agricultural Scienee,2000,135:261-270.
    [83] Rees, D.J. The effects of population density and intercropping with cowpea on the wateruse and growth of sorghum in semi-arid conditions in Botswana [J].Agricultural and forestmeteorology,1986,37:293-308.
    [84] Singh, S., Narwal, S. S., Chander, J. Effect of irrigation and cropping systems onconsumptive use, water use efficiency and moisture extraction patterns of summer fodders [J].International journal of tropical agriculture,1988,6:76-82.
    [85] Vories, E. D. Optimizing Irrigation Management for Humid Climates [J]. University ofMissouri Delta Center2008Annual Report.2009,33-34.
    [86]王法宏,王旭清,任德昌,等.水浇地冬小麦垄作栽培技术研究[J].麦类作物学报,2004,24(2):68-72.
    [87]石培泽,杨秀英.垄植玉米控制性隔沟交替灌溉节水高效技术及效应[J].甘肃水利水电技术,1999,1:35-37.
    [88] Saayman, D., Huyssteen, L. V. Soil preparation studies: I. The effect of depth andmethodof soil preparation and of organic material on the performance of Vitisvinifea (var.Chenin blanc) on Hutton/Sterkspruit soil [J]. South African Journal for Enology andViticulture,1980,1(2):107-121.
    [89]骆文光.免耕垄作覆盖技术的水土保持及经济效益分析[J].水土保持通报,1994,3:35-38.
    [90]杨爱民,孙彦坤,孟莉,等.坡耕地垄作区田保水增产效益的研究[J].旱地区农业研究,1997,4:6-9.
    [91] Wang, F. H., Wang, X. Q., Ken, S. Comparison of conventional, flood irrigated, flatplanting with furrow irrigated, raised bed planting for winter wheat in China [J]. Field CropsResearch,2004,87:35-42.
    [92]王旭清,王法宏,董玉红,等.小麦垄作栽培的肥水效应及光能利用分析[J].山东农业科学,2002,4:3-5.
    [93] Daamen C. C., Simmonds L. P., Wallance J. S., et al. Use of microlysimeters to measureevaporation from sandy soils [J]. Agricultural and Forest Meteorology,1993,65:159-173.
    [94]牛俊义,杨祁峰.作物栽培学研究方法[M].甘肃民族出版社.1997.
    [95]张胜全,方保停,王志敏,等.春灌模式对晚播冬小麦水分利用及产量形成的影响[J].生态学报,2009,29(4):2035-2044.
    [96] Zhang S. Q., Fang B. T., Wang Z. M., et al. Influence of different spring irrigationtreatments on water use and yield formation of late-sowing winter wheat [J]. Acta EcologicaSinica,2009,29(4):2035-2044.
    [97] Hu H. J., Huang G. B.. Study on the new farm structure of multiple systems [M].Lanzhou: Gansu Science and Technology Press,1999,60-61.
    [98]刘巽浩.耕作学[M].北京:中国农业出版社,1994:117-120.
    [99] Li, F. M., Wang, J., Zhao, S. L., T he development of water supply and high efficiencyagriculture in the semiarid Loess Plateau[J]. Journal of Applied Ecology,1999,19(2):152-157.
    [100] Boers, T. M., Zondervan. K,, Ben-Asher, J. Micro-catchments water harvesting(MCWH) for arid zone development [J]. Agricultural Water Management,1986,(12):21-39.
    [101] Boers, T. M., Ben–Asher, J., A review of rain water harvesting[J]. Agricultural WaterManagement,1982,5:145-158.
    [102] Li, J., Wang, L. C., Song, X. W., The study of effects for moisture content improvingand yield improving in water micro-collection in semiarid areas of Ninglan[J]. AgricuturalResearch in the Arid Areas,1997,15(1):8-13.
    [103] Li, X. Y. Experimental study on rainfall and run off observation of manualwater-collection ridges[J]. Journal of Soil and Water Conservation,2001,15(1):1-4.
    [104] Liu, X. Z, Kang, S. Z., Discussion of strategies for precipitation infiltration and run off[J]. Journal of Northwest Agricutural University,2000,28(4):16-20.
    [105] Wang, J. P., Han, Q. F., Wang. L.C., et al. The technique of cultivation off arm landwater micro-collection in semiarid areas of Ninglan[J]. Agricultural Research in the AridAreas,1997,15(1):8-13.
    [106] Achary, C. L., Kapur, O. C., Dixit, S. P. Moisture conservation for rain-fed wheatproduction with alternative mulches and conservation tillage in the hills of north-west India[J].Soil&Tillage Research,1998,46:153-163.
    [107] Baumhardt, R. L., Jones, O. R. Residue management and tillage effects on soil-waterstorage and grain yield of dry-land wheat and sorghum for a clay loam in Texas [J]. Soil&Tillage Research,2002,68:71-82.
    [108] Carter, M. R. Characterization of soil physical properties and organic matter underlong-term primary tillage in a humid climate[J]. Soil&Tillage Research,1996,38:251-263.
    [109] Willis, W. O., Bond, J. J. Soil water evaporation: reduction by simulated tillage [J]. SoilSc.i Sot. Am. Proc,1971,35:526-529.
    [110] Lafond, G. P., Loeppky, H., Derksen, D. A. The effects of tillage systems and croprotations on soil water conservation, seedling establishment and crop yield[J]. CanadianJournal of Plant Science,1992,72:103-115.
    [111]李廷亮,谢英荷,任苗苗,等.施肥和覆膜垄沟种植对旱地小麦产量及水氮利用的影响[J].生态学报,2011,31(1):212-220.
    [112]王琦,张恩和,李凤民.半干旱地区膜垄和土垄的集雨效率和不同集雨时期土壤水分比较[J].生态学报,2004,24(8):1820-1823.
    [113]段喜明,吴普特,白秀梅,等.旱地玉米垄膜沟种微集水种植技术研究[J].水土保持学报,2006,20(1):143-146.
    [114]郭瑞林.作物灰色育种学[M].北京:中国农业科技出版社.1995.
    [115]刘昌明,王会肖.节水内涵商榷.节水农业应用基础研究进展[M].北京:中国农业出版社,1995:7-19.
    [116] Willey, R. W.,Rao, M. R. A competitive ratio for quantifying between intercrops[J].Experimental Agriculture,1980,16:117-125.
    [117] Morris, R. A. Water use by monocropped and intercropped cowpea and sorghum grownafter rice [J]. Agronomy Journal,1990,82:664-668.
    [118] Boast, C. W, Robertson, T. M. A microlysimeter method for determing evaporation frombare soil: description and laboratory evaluation [J]. Soil Science Society of America Journal,1982(46):689-696.
    [119]彭晓邦,仲崇高,沈平,等.玉米大豆对农林复合系统小气候的光合响应[J].生态学报,2010,30(3):710-716.
    [120]焦念元,李增嘉,宁堂原,等.套作对不同类型玉米苗期展开叶生长的影响[J].玉米科学,2003,11(1):60-62.
    [121]王德梅,于振文.灌溉量和灌溉时期对小麦耗水特性和产量的影响[J],应用生态学报,2008,19(9):1965-1970.
    [122] Daamen, C. C., Simmonds, L. P., Sivakumar, M. V. K. The impact of sparse miller cropson evaporation from soil in semiarid Niger[J]. Agricultural Water Management,1995,27:225-242.
    [123] Allen, S. J. Measurement and estimation of evaporation from soil under sparse barleycrops in northern Syria [J]. Agricultural and Forest Meteorology,1990,49:291-309.
    [124] Yang R. Estimation of maize evapotranspiration and yield under different deficitirrigation on a sandy farmland in Northwest China [J]. African Journal of AgriculturalResearch,2012,7(33):4698-4707.
    [125] Daamen, C. C., Simmonds, L. P., Wallace, J. S., et al. Use microlysimeters to measureevaporation from sandy soils [J]. Agricultural and Forest Meteorology,1993,65:159-173.
    [126] Evett, S. R., Warrick, A. W., Matthias, A. D. Wall material and capping effects onmicrolysimeters temperatures and evaporation[J]. Soil Science Society of America Journal,1995,59:329-336.
    [127] Walker, G. K. Measurement of evaporation from soil beneath crop canopies[J].Canadian Journal of Soil Science,1983,63:137-141.
    [128]孙宏勇,刘昌明,张永强,等.微型蒸发器测定土面蒸发的试验研究[J].水利学报,2004,(8):114-118.
    [129]山仑,徐萌.节水农业及其生态生理基础[J].应用生态学报,1991,2(1):70-76.
    [130]付士磊,周永斌,何兴元,等.干旱胁迫对杨树光合生理指标的影响[J].应用生态学报,2006,17(11):2016-2019.
    [131] Hileman, D. R., Huluka, G., Kenjige P. K., et al. Canopy photosynthesis andtranspiration of field-grown cotton exposed to free-air CO2enrichment (FACE) anddifferential irrigation [J]. Agricultural and Forest Meteorology,2009,11:189-207.
    [132] Zhang, H. H., Sharifi, M. R., Nobel, P. S. Photosynthetic characteristics of sun versusshade plants of encelia farinose as affected by photosynthetic photon flux density, intercellularCO2concentration, leafwater potential, and leaf temperature. Australian Journal PlantPhysiology,1995,22:833-844.
    [133] Gomes-Laranjo, J., Coutinho, J.P., Galhano, V., et al. Responses of five almondcultivars to irrigation: Photosynthesis and leaf water potential [J]. Agricultural WaterManagement,2006,83:261-265.
    [134] Chaves, M. M., Flexas, J., Pinheiro, C. Photosynthesis under drought and salt stress:regulation mechanisms from whole plant to cell [J]. Annals of Botany,2009,103:551-560.
    [135] Intrigliolo, D.S., Nicolas, E., Bonet, L., et al. Water relations of field grownPomegranate trees (Punica granatum) under different drip irrigation regimes [J]. AgriculturalWater Management,2011,98:691-696.
    [136] Meng, W. W., Zhang, Y. L., Ma, X. H., et al. Effects of irrigation stage and amount onwater consumption characteristics, flag leaf photosynthesis, and grain yield in wheat [J]. ActaAgronomica Sinica,2009,35:1884-1892.
    [137]许大全.光合作用效率[M].上海:上海科学技术出版社,2002.
    [138]董合忠,李维江,唐薇,等.干旱和淹水对棉苗某些生理特性的影响[J].西北植物学报,2003,23(10):1695-699.
    [139] Zhang, L., Werf W., Bastiaans, L. Light interception and utilization in relay intercropsof wheat and cotton [J]. Field Crops Research,2008,107:29-42.
    [140] Willey, R.W. Resource use in intercropping systems [J]. Agricultural water management,1990,17:215-231.
    [141]韩邵林,吴继承.旱作农业综合技术研究及应用[M].黄河水利出版社,2010:52-63.
    [142]黄进勇,李新平,孙敦立.黄淮海平原冬小麦-春玉米-夏玉米复合种植模式生理生态效应研究[J].应用生态学报,2003,14(1):51-56.
    [143]武玉叶,李德全,赵世杰,等.土壤水分胁迫下小麦叶片渗透调节与光合作用[J].作物学报,1999,25(6):752-758.
    [144] Hirasawa, T., Hsiao, T. C. Some characteristics of reduced leaf photosynthesis atmidday in maizegrowing in the field [J].Field Crop Research,1999,(62):53-62.
    [145]殷毓芬,张存良,姚凤霞.冬小麦不同品种叶片光合速率与气孔导度等性状之间关系的研究[J].作物学报,1995,21(5):561-567.
    [146]丁瑞霞.贾志宽.韩清芳.等.宁南旱区微集水种植条件下谷子边际效应和生理特性的响应[J].中国农业科学,2006,39(3):494-501.
    [147]任小龙,贾志宽,陈小莉,等.模拟降雨条件下垄沟集水种植对玉米光合生态生理特性的影响[J].作物学报.2008.34(5):838-845.
    [148] Tang, L., Li, Y., Zhang, J. H. Physiological and yield responses of cotton under partialrootzone irrigation[J]. Field Crop Research,2005,94(2/3):214-223.
    [149]孙景生,康绍忠,蔡焕杰,等.控制性交替灌溉技术的研究进展[J].农业工程学报,2001,17(4):1-5.
    [150] Yu, G. R., Nakayama, K., Matsuoka, N., et al. A combinationmodel for estimatingstomatal conductance ofmaize (Zeamays L.) leaves over a long term [J]. Agricultural andForest Meteorology,1998,92:9-28.
    [151] Yu, G. R., Zhuang, J., Yu, Z. L. An attempt to establish a synthetic model ofphotosynthesis-transpiration based on stomatal behavior formaize and soybean plants grownin field [J]. Journal of Plant Physiology,2001,158:861-874.
    [152] Shan, L. Water use efficiency. In: Zou C L ed. Present biology. Beijing: ChineseZhigong Press,2000.399-400.
    [153] Cowan, I. R., Farquhar, G. D. Stomatal function in relation to leaf metabolism andenvironment[J]. Symposium of the Society for Experimental Biology,1977,31:471-505.
    [154] Leuning, R. Modeling stomatal behavior and photosynthesis of Eucalyptus grandis [J].Australian Journal of Plant Physiology,1990,17:159-175.
    [155]王建林,温学发,赵风华,等. CO2浓度倍增对8种作物叶片光合作用、蒸腾作用和水分利用效率的影响[J].植物生态学报,2012,36(5):438-446.
    [156] Jones, H. G. Plants and Microclimate.2nd ed. New York: Cambridge University Press,1992.163-214.
    [157] Leuning, R. A critical appraisal of a combined stomatal-photosynthesis model for C3plants. Plant, Cell and Environment.1995,18:339-355.
    [158] Lloyd, J. Modelling stomatal responses to environment in Macadamia integrifolia.Australian Journal of Plant Physiology,1991,18:649-660.
    [159] Wertin, T. M., McGuire, M. A., Teskey, R. O. Effects of predicted future and currentatmospheric temperature and [CO2] and high and low soil moisture on gas exchange andgrowth of Pinus taeda seedlings at cool and warm sites in the species range[J]. Treephysiology,2012,32(7):847-858.
    [160]成雪峰,柴守玺,张凤云.河西绿洲灌区不同灌溉模式下春小麦主要农艺性状与产量和WUE的灰色关联分析[J].麦类作物学报,2007,27(4):699-704.
    [161]董宝娣,刘孟雨,张正斌.不同灌水对冬小麦农艺性状与水分利用效率的影响研究[J].中国生态农业学报,2004,12(1):140-143.
    [162] Willey, R. W. Intercropping-Its importance and research needs. Part II. Agronomy andresearch approaches [J]. Field Crops Abstract,1979,32(2):73-85.
    [163]黄高宝.一熟制灌区带田群体受光结构及生产力研究[D].北京:中国农业大学博士学位论文,1996.
    [164]刘广才,杨祁峰,李隆,等.小麦/玉米间作优势及地上部与地下部因素的相对贡献[J].植物生态学报.2008,32(2):477-484.
    [165] Mandal, B.K., Das, D., Saha, A., et al. Yield advantage of wheat (Triticum aestivum)and chickpea (Cicer arietinum) under different spatial arrangements in intercropping. IndianJournal of Agronomy.1996,41(1),17-21.
    [166]李妍妍,丰光,齐华,等.中单808和丹豆14间作系统生态生理指标及产量的比较分析[J].作物杂志,2010,2:44-49.
    [167] Dalal R. S. Effect of intercropping maize with pigedpeas on grain yield and nutrientuptake [J]. Experiment Agriculture,1999,10:219-224.
    [168] Subedi, K. D. Wheat intereropped with tore (Brassica campestris var. toria) andpea(Pisum sativum) in the subsistence farming system of the NePalese hills[J]. Journal0fAgricultural Seienee,1997,128:283-289.
    [169]周苏玫,马淑琴,李文,等.玉米花生间作系统优势分析[J].河南农业大学学报,1998,3(32):17-22.
    [170] Morris, R. A., Garrity, P. Resource capture and utilization in intercropping water [J].Field Crops Research,1993,34,303-317.
    [171]卢良怒.挖掘资源潜力,发展立体农业[J].耕作与栽培,1990,6(5):1-5.
    [172]柴良植,刘世铎,李得举.大力发展间作套种提高灌区综合效益[J].干旱地区农业研究,1997,15(2):37-43.
    [173]郑毅,汤利.间作作物的养分吸收利用与病虫害控制关系研究[M].昆明:云南科技出版社,2008.
    [174] Zhu, Y. Y., Chen, H. R., Fan, J. H., et al. Genetic diversity and disease control in rice [J].Nature,2000,17(406):718-723.
    [175]彭世彰,徐俊增,黄乾,等.控制灌溉水稻叶片的水分利用效率试验研究[J].农业工程学报,2006,22(11):47-52.
    [176]康绍忠,杜太生,孙景生,等.基于生命需水信息的作物高产节水调控理论与技术[J].水利学报,2007,38(6):661-667.
    [177]李全起,陈雨海,周勋波,等.灌溉和种植模式对冬小麦播前土壤含水量的消耗及水分利用效率的影响[J].作物学报,2009,35(1):104-109.
    [178]李全起,陈雨海,周勋波,等.不同种植模式麦田水资源利用率及边际效益分析[J].农业机械学报,2010,41(7):90-95.
    [179] Li, Q. Q., Chen, Y. H., Liu, M. Y., et al. Effects of irrigation and planting patterns onradiation use efficiencyand yield of winter wheat in North China[J]. Agricultural WaterManagement,2008,95(4):469-476.
    [180] Li, Q. Q., Dong, B. D., Qiao, Y. Z., et al. Root growth, available soil water, andwater-use efficiency of winter wheatunder different irrigation regimes applied at differentgrowth stages in North China[J]. Agricultural Water Management,2010,97(10):1676-1682.
    [181]王海霞,李玉义,任天志,等.冬小麦生长季不同灌溉模式对冬小麦-夏玉米产量与水分利用的影响[J].应用生态学报,2011,22(7):1759-1764.
    [182]韩惠芳,李全起,董宝娣,等.灌溉频次和时期对冬小麦籽粒产量及品质特性的影响[J].生态学报,2010,30(6):1548-1555.
    [183] Han, H. F., Li, Z. J., Ning, T. Y., et al. Radiation useefficiency and yield of winter wheatunder deficit irrigation in North China[J]. Plant Soil and Environment,2008,54(7):313-319.
    [184] Willey R W and Osiru D S O.Studies on mixtures of maize and bean (phaseolusvulgaris) with Partieula rreference to Plant population [J].Journal of Agriculture5eienee,1972,79:517-529.
    [185]吴开贤,安瞳昕,范志伟,等.玉米与马铃的间作优势和种间关系对氮投入的响应[J].植物营养与肥料,1006-1012.
    [186] Lithourgidis, A. S., Vlachostergios, D. N., Dordas, C. A., et al. Dry matter yield,nitrogen content, and competition in pea-cereal intercropping systems[J]. European Journal ofAgronomy,2011,287-294.
    [187]肖靖秀,汤利,郑毅,等.大麦/蚕豆间作条件下供氮水平对作物产量和大麦氮吸收累积的影响[J].麦类作物学报,2011,31(3):499-503.
    [188] Ghaffarzadeh, M., Prechac, F. G., Cruse, R. M. Grain yield response of corn, soybeanand oat grown in a strip intercropping system [J]. American Journal of Alternative Agriculture,1994,9:171-177.
    [189] West, T. D., Griffith, D. R. Effect of strip-intercropping corn and soybean on yield andprofit [J]. Journal of Production Agriculture,1992,5:107-110.
    [190]李来祥,刘广才,李隆.小麦/玉米间作优势及地上部与地下部因素的相对贡献研究[J].干旱地区农业研究,2008,26(1):74-80.
    [191]叶优良,包兴国,宋建兰,等.长期使用不同肥料对小麦/玉米间作产量、氮吸收利用和土壤硝态氮累积的影响[J].植物营养与肥料学报,2004,10(2):113-119.
    [192]李卫东,张孟臣.黄淮海夏大豆及品种参数[M].北京:中国农业科学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700