红壤和紫色土坡面加速侵蚀过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红壤和紫色土是长江中上游地区的两种最具代表的水蚀性土壤,目前该区域土壤厚度普遍仅30~50cm,只为黄土的1/200,在强烈的侵蚀作用下有限的土壤资源将很快流失殆尽。随着开发建设项目的大量增加,尤其是长江流域红壤、紫色土等主要水蚀区域,人们迫切需要对其造成的土壤侵蚀严重区域进行合理、科学的综合治理。因此,保护红壤和紫色土及防治其水土流失具有重要的意义。
     本论文主要针对原状和扰动的红壤、紫色土坡面侵蚀过程展开研究,根据开发建设项目水土流失自身的特点,力图阐明其水土流失机制,并推求加速侵蚀系数。本研究利用人工模拟降雨实验和径流小区、侵蚀槽的手段实测原状红壤、紫色土和扰动红壤、紫色土在不同坡度、不同雨强情况等条件下的产流产沙相关数据,并结合原状和扰动的红壤、紫色土的理化性质,通过比较分析原状红壤、紫色土和扰动红壤、紫色土的侵蚀过程、侵蚀率及其影响因素,得到其主要结论如下:
     (1)原状和扰动红壤、紫色土的初始产流时间均随着雨强的增大而缩短,相同情况下,红壤的初始产流时间比紫色土短,也就是说红壤坡面产流速度快于紫色土。
     (2)原状红壤、紫色土的产流过程受雨强的影响较大;相同的情况下,红壤径流小区的地表径流深大于紫色土径流小区。扰动红壤和紫色土产流过程比较相似,在坡度相同时地表径流深的随雨强的增大而增大。
     (3)原状红壤和紫色土的产沙过程随降雨历时的变化不尽相同:红壤径流小区产沙量均随降雨的进行逐渐增大至峰值,而后随着降雨过程波动;紫色土小区在0.8mm/min雨强下的整体趋势较平稳且无较大波动,但在1.1和1.4mm/min雨强下产沙量先随降雨历时逐渐增大到峰值,之后呈现下降趋势。扰动红壤和紫色土的产沙过程较为相似,在坡度相同时产沙量随雨强的增大而增大。
     (4)原状红壤和紫色土的侵蚀率有较大差异,小雨强时(0.8mm/min),红壤的侵蚀率大于紫色土;中大雨强时(1.1和1.4mm/min)与之相反。扰动红壤和紫色土的侵蚀率都表现出相似的规律,既侵蚀率随着雨强和坡度的增大而增大。
     (5)扰动红壤的加速侵蚀系数大多随着坡度的增加而降低。紫色土的加速侵蚀系数在20°坡15min时段达到最大,在此坡度条件下符合规律:45min时段加速侵蚀系数<30min时段加速侵蚀系数<15min时段加速侵蚀系数。
Red soil and purple soil are two representative soils in the upper reaches of the Yangtze River. Generally soil depth in this region is only 30 ~ 50 cm as 1/200 as that of loess. Their nutrimental surface soil is strongly eroded and washed away. With the increase of development and construction projects in this region, the effective prevention and control measures are urgently needed to prevent and control soil loss. As a result, it is necessary to protect the red soil and purple soil and control their soil loss
     Combined with the soil loss characteristics of the development and construction projects, the purpose of this study is to analyze the soil erosion processes and mechanism of undistributed red soil and purple soil, distributed red soil and purple soil, and to estimate the expedited coefficient of soil loss. In this study artificial rainfall simulators, runoff plots and erosive grooves are used to collect the runoff and sediment yield data under four rainfall intensity and four slopes. Based on the collected data, the erosion processes, erosion rate and influencing factors of these two kinds soil were analyzed.
     The conclusions are as follows:
     (1) With the increasing rainfall intensity, the initial runoff time of undistributed red soil and purple soil, distributed red soil and purple soil decrease. And the initial runoff time of the red soil are less than the purple soil in the same condition, which shows the runoff velocity of red soil are greater than that of soil.
     (2) The rainfall intensity deeply affects the runoff processes of red soil and purple soil. In the same conditions the depth of runoff of red soil are greater than that of purple soil. The runoff processes of distributed red soil are similar with purple soil. The runoff depth of both kinds of soil increases with the increasing rainfall intensity at the same slopes.
     (3) The sediment processes of red soil are different with purple soil. The sediment yield of red soil gradually increases to peak value. Subsequetly it fluctuates. The sediment yield of the purple soil changes very small under 0.8mm/min rainfall intensity while it gradually increases to peak and subsequently decreases under 1.1 and 1.4mm/min rainfall intensity. The sediment production processes of distributed red soil are similar with purple soil, and the sediment production of both kinds soil increases with the increasing rainfall intensity at the same slopes.
     (4)The erosion rate of the red soil differentiates with the purple soil. The erosion rate of the red soil is bigger than purple soil under 0.8mm/min rainfall intensity, and it is opposite under 1.1 and 1.4mm/min rainfall intensity. The erosion rate of distributed red soil is similar with distributed purple soil, and the erosion rate of these two kinds of soil increases with the increasing rainfall intensity at the same slope.
     (5)The expedited coefficient of soil erosion of distributed red soil almost decreased as slope increases. The expedited coefficient of soil erosion of distributed purple soil reaches the maximum under 20°slope and 15min period, and when the slope is 20°, the relationship of expedited coefficient is: 45min periods﹤30min periods﹤15min periods.
引文
[1]《唐克丽论文选集》编辑委员会编.唐克丽论文选集[M].西安:陕西人民出版社,2004.
    [2] Wemple B C,Jones J A,Grant G E. Channel network extension by logging roads in two basins,western Cascades,Oregon[J]. Water Resources BuUetin,1996,32:1195~1207.
    [3] Crake J,Mockler S. Gully initiation and road-to-strem linkage in a forested catchment,southeastern Australia[J]. Earth Surface Process and Landforms。200l,26:205~217.
    [4]李斌斌,李占斌,鲁克新等.宁南山区人为水土流失现状及其防治对策研究[J].水资源与水工程学报,2008,19(3):20-23.
    [5]李智广,郭索彦.人为水土流失因素及其防治措施研究[J].水土保持通报,1998,18(2):48-52.
    [6]马琳中.河西地区开发建设项目水土流失危害及预测[J].甘肃农业,2004,9:74~75.
    [7] Sidle R C. Sasaki S,Otsuki M,Noguehi S,et a1. Sediment pathways in a tropical forest:effects of logging roads and skid trails[J]. Hydrological Process,2004,18:703~720.
    [8]陈宗伟,江玉林,张洪江,等.高速公路弃土场边坡沟蚀规律研究[J].中国水土保持科学,2006,4:6-10.
    [9]肖建芳,张洪江,江玉林,等.沪蓉西高速公路弃土场渣体侵蚀特征[J].水土保持研究,2007,14(3):121-123.
    [10]储小院,张洪江,王玉杰,等.高速公路建设中不同类型弃土场的土壤流失特征[J].中国水土保持科学,2007,5(2):102-106.
    [11]陈廷方,崔鹏.西昌—攀枝花高速公路弃土场土壤侵蚀预报[J].自然灾害学报,2007,16(1):109-112.
    [12]王青杵.煤炭开采区废弃物堆置体坡面侵蚀特征研究[J].中国水土保持,1998,8:26-29.
    [13]王文龙,李占斌,李鹏,等.神府东胜煤田开发建设弃土弃渣冲刷试验研究[J].水土保持学报,2004,18(5):68-71.
    [14]胡振华,王电龙,呼起跃.煤矸石松散堆置体坡面侵蚀规律研究[J].水土保持学报,2007,21(3):23-27.
    [15] Amaez J,IAUTea V,Ortigosa L. Surface runof and soil erosion on unpaved forest roads from rainfall simulation tests in northeastern Spain[J]. Catena,2004,57:1~14.
    [16]李宗武,蔡强国,吴淑安,等.内昆铁路施工期不同下垫面土壤侵蚀模拟研究[J].水土保持学报,2001,15(2):5-8.
    [17]倪含斌,张丽萍,张登荣.模拟降雨试验研究神东矿区不同阶段堆积弃土的水土流失[J].环境科学学报,2006,26(12):206-207.
    [18]叶翠玲,许兆义,杨成永.秦沈客运专线建设过程中的水土流失实验研究[J].水土保持学报,2001,15(2):9-13.
    [19] Wischmeier W H, Smith D D. Rainfall energy and its relationship to soil loss. Trans AmGeophys Union, 1958, 39:285-291.
    [20]王万忠.黄土地区降雨侵蚀力R指标的研究[J].中国水土保持,1987,12: 34-38.
    [21] Ekern P C. Problems of raindrop impact erosion. Agric,1953, 34: 23-25.
    [22] Bagarello V,D’msaro F.Estimation single storm erosion index[J].Transactions of the ASAE,1994,37(3):785—791.
    [23]王万忠.中国降雨侵蚀力a值的计算与分布(Ⅱ) [J].土壤侵蚀与水土保持学报,1996, 20:29-40.
    [24]肖培青,郑粉莉,姚文艺.坡沟系统侵蚀产沙及其耦合关系研究[J].泥沙研究,2007, (2):30-35.
    [25]卫伟,陈利项,傅伯杰,等.半干旱黄土丘陵沟壑区降水特征值和下垫面因子影响下的水土流失规律[J].生态学报,2006,26(11):5-8.
    [26]左长清,胡根华,张华明.红壤坡地水土流失规律研究[J].水土保持学报,2003,17(6):89-91.
    [27]唐克丽等编著.中国水土保持[M].北京:科学出版社,2004.
    [28]陈永宗,景可,蔡强国.黄土高原现代侵蚀与治理[M].北京:科学出版社,1988.
    [29] Ellison W D. Study of rain drop erosion, agric Eng, 1994, 25: 131-136.
    [30] Paimer R S. The influence of a thin water layer on water drop impact forces. Inter Assocdrol, 1963, 65:141-148.
    [31] Foster GR,Huggins LF,Meyer LD.A laboratory study of rill hydraulics.I:Velocity relationships[J].Transactions of ASAE,1984,27(3):790-796.
    [32] Kirkby M. Modelling the interactions between soil surface properties and water erosion[J].Catena, 2002, 46:89-102.
    [33]靳长兴.论坡面侵蚀的临界坡度[J].地理学报.1995,50(3):234-239.
    [34]赵晓光.黄土源区坡面水蚀作用过程[J].水土保持学报,2000 (3 ): 122-124.
    [35]李鹏,李占斌,郑良勇.黄土坡面径流侵蚀产沙动力过程模拟与研究[J].水科学进展,2006,17 (4): 444-449.
    [36]郑良勇,李占斌,李鹏.黄土高原陡坡土壤侵蚀特性试验研究[J].水土保持研究,2003,10 (2): 47-49.
    [37] Evans H E,Frank E,Kurczewski.Observations on the nesting behaviour of seven species of Crabro (Hymenoptera, Sphecidae). Journal of Natural History, 1464-5262, Volume 14, Issue 6, 1980, Pages 865– 882
    [38]杨武德,王兆骞.红壤坡地不同利用方式土壤侵蚀模型研究,土壤侵蚀与水土保持,1999,5(1):52-58,68.
    [39] Fox D M,Le Bissonnais Y.Process-based analysis of aggregate stability efects on sealing,infiltration an dinterrill erosion.Soil Science Society of America Journal,1998,62:717-724
    [40]闫峰陵,史志华,蔡崇法,等.红壤表土团聚体稳定性对坡面侵蚀的影响[J].土壤学报,2007,44(4):577-583.
    [41]黄丽,丁树文等.三峡库区紫色土坡地耕作利用方式与水土流失初探[J].华中农业大学学报,1998,17 (1 ): 45-49.
    [42]黄丽,张光远等.侵蚀紫色土土壤颗粒流失的研究[J].土壤侵蚀与水土保持学报.1999,4(1):8-21.
    [43]阮伏水.花岗岩侵蚀坡地重建植被的几个关键问题[J].水土保持学报,1995,9 (2): 19-25.
    [44]陈明华,周伏建,黄炎和,等.坡度和坡长对土壤侵蚀的影响[J].水土保持学报,1995,9(1):314-36.
    [45]朱波,高美容,刘刚才.紫色泥页岩的风化侵蚀与工程建设增沙[J].山地学报,2001,19(增):50-55.
    [46]谢小立,王凯荣.红壤坡地雨水地表径流及其侵蚀[J].农业环境科学学报,2004,23(5):839-845.
    [47]蔡强国,吴淑安,马绍嘉,等.花岗岩发育红壤坡地侵蚀产沙规律试验研究[J].泥沙研究,1996, (1):89-95.
    [48]王志刚,郑粉莉,李靖.不同近地表条件下紫色土坡面土壤侵蚀过程研究[J].水土保持通报,2007,27(6):9-11,79.
    [49]辛伟,朱波,唐家良,等.紫色土丘陵区典型坡地产流及产沙模拟试验研究[J].水土保持通报,2008,28(2):31-35.
    [50]李青云,蒋顺清,孙厚才.长江上游紫色土丘陵区小流域地面侵蚀量的确定[J].长江科学院院报,1995,12(1):51-56.
    [51]王玉宽,文安邦,张信宝.长江上游重点水土流失区坡耕地土壤侵蚀的137Cs法研究[J].水土保持学报,2003,17(2):77-80.
    [52]侯建材,李占斌,李勉.紫色丘陵区小流域土壤侵蚀产沙空间分布的137Cs法初步研究[J].农业工程学报,2007,23(3):46-50.
    [53]朱兵兵,张平仓,王一峰,等.长江中上游地区土壤入渗速率的空间分异研究[J].长江科学院院报,2006,23(6):32-34,38.
    [54]丁文峰,李占斌,丁登山,等.坡面细沟侵蚀产沙时空分布规律试验研究[J].水科学进展,2004,15(1):19-23.
    [55]蔡强国,朱远达,王石英.几种土壤的细沟侵蚀过程及其影响因素[J].水科学进展,2004,15(1):12-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700