坡面径流侵蚀产沙及动力学过程的坡长效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
坡面径流侵蚀产沙及动力学过程的研究是揭示坡面侵蚀产沙机理的突破点,是泥沙运动力学、土壤侵蚀和水土保持学中亟待解决的基础问题。探明不同土地利用方式下坡面径流侵蚀产沙及水动力学过程的坡长效应,揭示室内与野外产流模数及土壤侵蚀模数的对应转化规律,将为红壤丘陵区坡面水土流失的预测及治理提供一定的科学依据。
     本文在系统总结国内外相关研究的基础上,针对两大主攻问题分十个章节进行了探讨和研究。第一个问题主要探讨了南方红壤区坡耕地、经济林地及裸坡地三种主要土地利用方式的土壤侵蚀强度及随坡长的变化特征;第二个问题重点揭示了室内模拟试验结果与野外实地水土流失情况的差异性,并求解出换算系数。针对第一个问题,设置5个不同的坡长及5个不同的雨强,采用人工模拟降雨的方法(共降雨164场,其中有效降雨150场),探讨三种土地利用方式下坡面径流侵蚀产沙及动力学过程的坡长效应,以及水动力学参数与侵蚀产流产沙的关系,在此基础上,对比分析了三种土地利用方式下坡面侵蚀强度大小及随坡长的变化规律。针对第二个问题,对应于野外裸坡试验,配以室内裸坡地径流侵蚀产沙及动力学过程的坡长效应研究(室内共降雨30场,其中有效降雨30场),将室内外裸坡面试验结果进行对比分析,求解出室内与野外产流模数及土壤侵蚀模数的换算系数,以期通过室内模拟试验结果乘以换算系数得到更加科学准确的野外实地水土流失预测值,从而合理配置水土保持措施。主要得出如下研究结果:
     1.不同土地利用方式下坡面土壤侵蚀强度分析
     以经济林坡地、坡耕地、裸坡地为对象,研究了三种土地利用方式下坡面径流侵蚀产沙过程,在对比分析三种土地利用方式下坡面次降雨土壤侵蚀模数的基础上,主要得出如下结论:相同降雨条件下坡面侵蚀强度从大到小排序为:坡耕地>裸坡地>经济林地;坡耕地随雨强增大侵蚀模数增量最大增速最快,裸坡地次之,经济林地最小;雨强30~120mm/h时,侵蚀模数随坡长每延长2m增速大小顺序为坡耕地>裸坡地>经济林地,雨强150mm/h时,其顺序为经济林地>坡耕地>裸坡地;雨强对于侵蚀模数的影响均大于坡长。
     2.坡面径流侵蚀产沙动力学过程分析以坡面薄层水流流速为初始测量值,计算出表现径流动力学过程的参数,进而分析了坡面薄层径流的流态、径流剪切力与坡长的关系、径流深与土壤侵蚀模数的关系以及水动力学参数对于坡面产沙量的影响效应。结果表明:三种土地利用方式下坡面径流剪切力随坡长的延长整体上呈增大趋势;土壤侵蚀模数与径流深的关系可用幂函数进行表达(R2>0.85);坡长2~10m,雨强30~150mm/h时,三种土地利用方式下,坡面径流紊动性随着雨强的增大及坡长的延长而增强,但均属于层流范畴,且为缓流,只有雨强150mm/h时,裸坡地坡面径流变为急流;裸坡地试验表明,径流深、雷诺数、佛汝德数、剪切力及流速与产沙量在0.01水平上呈极显著正相关,雷诺数与产沙量的相关性最大,说明径流流态对于坡面薄层水流侵蚀力有显著影响。
     3.红壤区三种土地利用方式对应的侵蚀性降雨临界雨强
     以雨强和坡长为变量,研究了不同雨强下三种土地利用方式坡面径流侵蚀产沙的坡长效应,揭示了不同土地利用方式下坡面侵蚀性临界雨强。结果表明:坡耕地由于人为扰动影响,裸坡地由于表面土壤裸露,二者对于雨强的敏感程度大于经济林地,60mm/h雨强是坡耕地及裸坡地水土流失加剧的临界雨强,当雨强大于60mm/h时,应要加大坡面水土保持防治力度;经济林地由于林冠截留、林下地表覆盖等原因,当雨强大于90mm/h时坡面水土流失量明显增大,是水土保持需检测的重点,应加强该林地坡面排水设施的建设,且注意林下地表面植被的维护与更新,以减少径流对土表的直接击溅及冲刷。
     4.红壤区三种土地利用方式下坡面水土保持工程措施布设的临界坡长
     从水土保持措施布设的实用性思考,通过探讨三种土地利用方式下坡面产流产沙过程的坡长效应,揭示出不同土地利用方式的水土保持措施布设的临界坡长。结果表明:三种土地利用方式下坡面径流量及产沙量总体上均随着坡长的延长呈增大趋势,但坡长每延长相同长度时,产流产沙量并非呈等差或等比趋势增加,而是在坡长延长到某个长度时坡面水土流失量有缓解的现象,鉴于此,研究建议种植经济林时以4-6m为净行间距,并设置水平沟或者水平阶,截短径流流线,能有效减缓坡面水土流失;在坡耕地坡面上,可每隔4m设置山坡截流沟,消减径流冲刷动力,强化降雨就地入渗或拦蓄的同时,将水汇集于坡面蓄水工程用于灌溉农田,也可以种植植物篱,一方面可防止水土流失导致的土壤粗化及土地生产力下降,还可以作为绿肥还田来增加土壤有机质含量、减少化肥用量及改善土壤水分状况等;而对于裸露坡面的水土流失治理,可以4~6m为步长设置水土保持植被或者工程措施。
     5.室内与野外土壤侵蚀模数与产流模数的换算系数求解
     在野外裸坡面侵蚀产沙试验结果的基础上,配以相似比例的室内裸坡面侵蚀产沙过程的人工模拟降雨试验,通过对比分析室内与野外试验数据,揭示出室内外裸坡面产沙量及径流量不按面积比例呈倍数的关系,室内试验结果远大于野外实地试验结果,二者存在一定的比例关系。鉴于此,本研究选用土壤侵蚀模数与产流模数为参数,运用概率统计的比值权重数学分析方法,求解出了室内与野外侵蚀模数与产流模数的换算系数,分别为0.86、0.63。
     本论文的创新点主要包括以下三个方面:
     1.求解出了室内与野外产流模数及土壤侵蚀模数的换算系数,提出试验条件下室内的产流模数及侵蚀模数与野外的产流模数及侵蚀模数转换的一种方法
     模型模拟试验是侵蚀产沙研究的重要方法,室内按一定比例尺缩小的物理模型试验结果能否在实际中正确运用是目前需攻克的难点,为此,本文采用室内外不同雨强和不同坡长下的产流模数及侵蚀模数的比值权重计算法,求解出室内与野外产流模数及侵蚀模数的换算系数,提出试验条件下室内的产流模数及侵蚀模数与野外的产流模数及侵蚀模数转换的一种方法,以期将室内试验得出的产流模数及侵蚀模数乘以换算系数来客观地预测野外实际水土流失量
     2.提出了不同土地利用方式下水土流失防治的临界坡长及雨强针对浙江省低丘缓坡主要以经济林地、坡耕地及裸坡地为主的利用特点,展开了坡面径流侵蚀产沙随坡长变化规律的研究,应用水动力学原理,探索水动力学特征值与产流产沙的关系,并提出了不同土地利用方式下水土保持措施布设的临界坡长,水土保持需重点检测的临界雨强。
     3.揭示了坡长增量相等时,产流产沙量的非等差增加的变化规律
     坡长效应研究是坡面水土保持工程措施布设的基础,就此实用目的,开展了室内外变坡长的人工模拟降雨条件下的侵蚀产流产沙模拟试验,分析了坡面薄层径流侵蚀产沙的坡长效应,揭示了坡长每增加相同长度时的产流产沙量的非等差增加的变化规律。
The study of slope length effect on runoff, sediment yield and dynamics process is the breakthrough to reveal erosion mechanism on slope and is the basic problem to solve sediment transport mechanics, soil erosion and soil and water conservation. The proven of slope length effect on runoff, sediment yield and hydrodynamics process under different land use types and solution of conversion coefficients of runoff modulus and soil erosion modulus between indoor and field experiments will provide scientific basis for prediction and conservation of soil and water loss in red soil region.
     Based on the systemic summary of correlative researches at home and abroad, this study mainly analyzed2issues, which included10chapters. The first one discussed the soil erosion intensity and their varieties versus slope length on sloping farmland, economic forest slope and bare slope, which are the primary land use types in red soil region, southern China. The second issue paid more attention to reveal the difference value of soil and water loss between indoor and field experiments and calculate the conversion coefficients between them. For the first issue, we designed5slope lengths and5rainfall intensities to discuss slope length effect on runoff, sediment yield and dynamics processes though artificial rainfall simulation (total of164rainfall events and150were effective) and relationships between hydrodynamics parameters and runoff and sediment yield. Based on above experimental results, the comparison of erosion intensities on three land use types was analyzed. For the second issue, experiments of slope length effect on runoff and sediment yield and dynamics processes on indoor bare slope, which were corresponding to field bare slope(total of30rainfall events and30were effective), were carried out. Compared indoor and field experiment results, the conversion coefficients of runoff modulus and erosion modulus were calculated and thus be used to predict more scientific and exact field soil loss values, which were obtained according to indoor simulated experiment results multiplied by conversion coefficients. And more reasonable soil and water conservation measures could be distributed on slope. And the main results are as follows:
     1. Soil erosion intensity analysis on three land use types
     Economic forest slope, sloping farmland and bare slope were chosen as the research objects, we studied runoff and sediment yield process on three land use types and compared the soil erosion modulus of individual rainfall event between them. Results showed that the order of erosion modulus for three land use types was sloping farmland>bare slope>economic forest slope under the same rainfall situation. The increment and increase velocity with rainfall intensity were highest on sloping farmland then on bare slope and the economic forest slope was the lowest. The increase velocity order of erosion modulus with every slope length increment2m under30-120mm/h rainfall intensities was sloping farmland>bare slope>economic forest slope, whereas, the order was economic forest slope>sloping farmland>bare slope under150mm/h rainfall intensity. Rainfall intensity had more impact on erosion modulus than slope length.
     2. Dynamics process analysis of slope runoff and sediment yield
     The runoff velocity was measured as original value to calculate hydrodynamic parameters, which represent runoff dynamic process, to further analyze the flow pattern, relationship between shear stress and slope length, relationship between runoff depth and soil erosion modulus and the impact effect of hydrodynamic parameters on sediment yield on slopes. Results demonstrated that runoff shear stress increased totally with increasing slope length and the relationship between soil erosion modulus and runoff depth could be described by power function(R2>0.85) on three land use types. The runoff turbulence enhanced with increasing slope lengths and rainfall intensities. The flow pattern were sluggish flow and laminar flow under2~10m slope length and30-150mm/h rainfall intensity on three land use types. Results from bare slope indicated that there was a positive correlation between runoff depth, Reynolds number, Froude number, runoff shear stress, runoff velocity and sediment yield at0.01level. The relativity between Reynolds number and sediment yield was the highest, which explained that the flow pattern had significant influence on shallow flow erosion force.
     3. The corresponding critical rainfall intensities on three land use types in red soil region
     The rainfall intensity and slope length were chosen as variables, we analyzed the slope length effect on runoff and sediment yield on three land use types, results showed that the bare slope with exposed soil surface and sloping farmland with artificial disturbance were more sensitive to rainfall intensity than economic forest slope,60mm/h rainfall intensity was the critical value that resulted in sudden increase of erosion for sloping farmland and bare slope, as a consequence, the soil and water conservation measures should be strengthened when rainfall intensity greater than60mm/h. For economic forest slope, there was a significant soil loss increase only when rainfall intensity greater than90mm/h due to the canopy interception and soil surface cover under forests. Therefore, the90mm/h rainfall intensity was critical value and the slope drainage establishment should be strengthened and we should pay more attention on maintenance and update of soil surface vegetation under forests to decrease the direct splash erosion by rainfall drops and erosion by runoff.
     4. Critical slope lengths on three land use types for soil and water conservation engineering measures in red soil region
     The critical slope lengths on three land use types for soil and water conservation engineering measures were revealed based on the study of slope length effect on runoff and sediment yield process. Results showed that the runoff volume and sediment amount increased as a whole with increasing slope length on three land use types, however, the increase of runoff volume and sediment yield didn't in terms of equidifferent or geometric proportion tendency with increasing slope length. The soil and water loss amounts were lower and loss velocity were slower when slope length increased to certain length. Therefore, we suggest that the economic forest could be planted with4-6m net interval and the level trenches and level steps be constructed to truncate the runoff path and decrease soil and water loss. For sloping farmland, the intercepting ditch on slope could be constructed with4m interval to decrease runoff scour power and strengthen the rainfall infiltration, at the same time, the runoff could be accumulated to irrigate farmland. On the other hand, the vegetable fencing could be planted to prevent the soil coursing and decrease of land productivity due to soil and water loss and it could be used as green manure to improve soil organic matter content and soil moisture condition and decrease the fertilizer used amount. For the bare slope, we could construct the engineering measures or plant vegetation with4~6m interval to decrease soil and water loss.
     5. Conversion coefficients calculation of soil erosion modulus and runoff modulus between indoor and field experiments
     Based on the experiment results from field bare slope, we matched indoor erosion process simulation experiment on bare slope with similar proportion as field. Results indicated that the runoff volume and sediment amount were not multiple relationships corresponding to indoor and field area, a significant difference value between them does exist. Therefore, soil erosion modulus and runoff modulus were chosen as parameters to calculate the conversion coefficients between field and indoor in red soil region and the values were0.86and0.63, respectively.
     The innovative points for this study are as follows:
     1. Obtained the conversion coefficients of runoff modulus and soil erosion modulus between indoor and field experiments and a conversion method was proposed
     The model simulated experiment is an important method for soil erosion research and the difficulty is whether the results from indoor experiment could be used to field exactly. Thus, we calculated the ratio of runoff modulus and soil erosion modulus between field and indoor experiments with different weights and obtained the conversion coefficients between field and indoor experiment and a conversion method was proposed, which could be used to predict field runoff modulus and erosion modulus objectively.
     2. Proposed the critical slope length and critical rainfall intensity for soil and water conservation under different land use types
     The changes of runoff and sediment yield with slope length were studied on economic forest slope, sloping farmland and bare slope, which are the main land use types on the low hilly gentle slope in Zhejiang province. Based on the hydrodynamics principle, we researched the relationship between hydrodynamics characteristic values and runoff and sediment yield, the critical slope length for soil conservation measures construction and critical rainfall intensity for soil and water conservation detection were obtained under different land use types.
     3. Revealed the non-arithmetical changes of runoff volume and sediment yield with the same increment of slope length
     Slope length effect research was basis for design of engineering measures on slope. Hence, the runoff and sediment yield simulated experiments were carried out under different slope lengths, we analyzed the slope length effect on runoff and sediment yield and revealed the non-arithmetical changes disciplinarian of runoff volume and sediment yield with the same increment of slope length.
引文
Abrahams A D, Li G, Krishnan C, Atkinson J F. A sediment transport equation for interrill overland flow on rough surfaces[J]. Earth Surface Processes and Landforms,2001,26(13): 1443-1459.
    Abraham C F, Zhu C W, Chen X D. Rainfall infiltration pattern in an unsaturated silty sand[J]. J ournal of Hydrologic engineering,2009,14(8):882-886.
    Abrahams A D, Parsons A J, LUK SH. Field measurement of the velocity of overland flow using dye tracing [J]. Earth Surface Processes and Landforms,1986,11(6):653-657.
    Bryan R B, Poesen J. Labor atory ex per iments on the influence of slope leng th o n runoff, percolation and r ill development [J].Ear th sur face processes and landforms,1989,14:211-231.
    Basic F, Kisic I, Nestroy O. Particle size distribution (texture) of eroded soil material[J]. Journal of Agronomy and Crop Science,2002,188,311-322.
    Bodman G B, Colman E A. Moisture and energy condition during downward entry of water into soil[J]. Soil science society of America Journal,1994,8(2):166-182.
    Birkinshaw S J, Bathurst J C. Model study of the relationship between sediment yield and river basin area[J]. Earth Surface Processes and Landforms,2006,31:750-761.
    Biron P, Lane S, Roy A, Bradbrook K, Richards K. Sensitivity of bed shear stress estimated from vertical velocity profiles:the problem of sampling resolution[J]. Earth Surface Processes and Landforms,1998,23,133-139.
    Christiansen J E. The uniformity of application of water by sprinkler systems[J]. Agricultural Engineering,1941,22:89-92.
    Chow V, Maidment D, Mays L. Applied hydrology.Water Resources and Environmental Engineering[M]. New York,1988,33.
    Chaplot V, Le Bissonais Y. Field measurements of interrill erosion under different slopes and plot sizes[J]. Earth Surf Process Landforms,2000,25:145-153.
    Duboys, M.,1879. Etudes du re'gime du rho'ne et de I'action exerce'e par les eaux sur un lit a' fond de graviers inde'finiment affouillable. Annales des Ponts et Chausse'es Se'rie 5 (18), 141-195.
    Emmett W W. The Hydraulics of Overland Flow on Hillslopes,U.S. Geological Survey Professional Paper,1970,662-A, A-l-A-68.
    Emmett W W. In Hillslope Hydrology, ed. By M. J. Kirkby, John Wiley & Sons, New York: Overland flow [M],1978.
    Esteves M, Planchon O, Lapetite J M, Silveira N, Cadet P. The'Emire'large rainfall simulator: design and field testing[J]. Earth Surface Process and Landforms,2000,25,681-690.
    Elliot W J, Liebenow A M, Laflen J M. Kohl K D. A compendium of soil erodibility data from WEPP farmland soil field erodibility experiments 1987 and 88. NSERL Rep.,1989. vol.3. USDA-ARS, West Lafayette, IN, p.317.
    Foster G R, Meyer L D. Transport of soil particles by shallow flow[J]. Trans of the ASAE,1972, 15(1):99-102.
    Foster G R, Meyer L D. Mathematical simulation of upland erosion by fundamental erosion mechanics[C]//USDA-ARS. Present and prospective technology for predicting sediment yield and sources. Sedimentation Lab, Oxford, Mississippi:USDA-ARS, November,1972,190-207.
    Foster G R, Meyer L D,Onstad C A. An erosion equation derived from basic erosion principles[J]. Trans, of ASAE,1977,20(4):678-682.
    Fang H Y, Chen H, Cai Q G, Huang X. Effect of spatial scale on suspended sediment concentration in flood season in hilly loess region on the Loess Plateau in China[J]. Environmental geology,2008,54(6):1261-1269.
    Gilley J E, Kottwitz E R, Simanton J R. Hydraulic characteristics of rills[J]. Transactions of American Society of Agriculture Engineering,1990,33,1900-1906.
    Gilley J E, Elliot WJ, Laflen J M, Simanton J R. Critical shear stress and critical flow rates for initiation of rilling[J]. Journal of Hydrology,1993,142:251-271.
    Guy B T, DickinsonW T, Rudra R P. The roles of rainfall and runoff in the sediment transport capacity of interrill flow[J]. Transactions of the ASAE,1987,30(5):1378-1386.
    Guy B T. Sediment transport capacity of shallow overland flow[D]. University of Guelph, Guelph, Ontario.1990.
    Guy B T, Dickenson W T, Sohrabi T M. Development of an empirical model for calculating sediment-transport capacity in shallow overland flows:Model calibration[J]. Biosystems engineering,2009,103(2):245-255.
    Guy B T, Dickinson W T, Sohrabi T M, Ramsh R P. An empirical model development for the sediment transport capacity of shallow overland flow:model validation[J]. Biosystems Engineering,2009,103(3):518-526.
    Govers G. A field study on topog raphic and topsoil effects on r unoff g eneration [J]. Catena, 1991,18:91-111.
    Horton R E, Leach H R, Van V R. Laminar sheet-flow[J]. Transactions of the American Geophysical Union,1934,15,393-404.
    Horton R E. Erosion development of streams and their drainage basins; Hydrophysical approach to quantitative morphology[J]. Bull. Soc. Am,1945,56:275-370.
    Hamed Y, Jean Albergel, Yannick Pepin. Comparison between rainfall simulator erosion and observed reservoir sedimentation in an erosion-sensitive semiarid catchment[J]. CATENA, 2002,50(1):1-16.
    Kirkby M J. In:Kirkby M J; Morgan R P C (eds). John Wiley and Sons, Chichester,1980.
    Kato H, Onda Y, Tanaka Y, Asano. Field measurement of infiltration rate using an oscillating nozzle rainfall simulator in the cold, semiarid grassland of Mongolia[J]. Catena,2009,76, 173-181.
    Luk S H, Merz W. Use of the salt tracing technique to determine the velocity of overland flow[J]. Soil Technology,1992,5,289-301.
    Li G, Abrahams A D, Atkinson J F. Conversion factors in the determination of mean velocity of overland flow[J]. Earth Surface Processes and Landforms,1996,21(6):509-515.
    Leonard J, Richard G. Estimation of runoff critical shear stress for soil erosion from soil shear strength[J]. Catena,2004,57,233-249.
    Li Chen, Michael H Y. Green-Ampt infiltration model for sloping surfaces[J]. Water resources research,2006,42:W07420.
    Lal R. Soil erosion by wind and water: problems and prospects. In:Lal, R. (Ed.), Soil Erosion Research Methods. Soil and Water Conservation Society, Ankeny, Iowa,1994,1-9.
    Lyle W M, Smerdon E T. Relation of compaction and other soil properties to erosion resistance of soils.Trans of the ASAE,1965,8,419-422.
    Meyer L D. Erosion Processes and Sediment Properties for Agricultural Farmland in Abrahams AD[J]. Hillslope Processes(ED),1986.
    Nearing M A, Lane L J. Modeling Rill Erosion Using Rill Hydraulics[J]. ASAE Paper No. 89-2045. Am. Soc.1989.
    Nearing M A, Foster G R, Lane L J. A process_based soil erosion model for USDA_water erosion prediction project technology[J]. Trans, of ASAE,1989,32(5):1578-1593.
    Nearing M A, Norton L D, Bulgakov D A, et al. Hydraulics and erosion in eroding rills[J]. Water Resources Res,1997,33,865-876.
    Nearing M A, Bradford J M, Parker S C. Soil detachment by shallow flow at low slopes.Soil Sci Soc Am J,1991,55,339-344.
    Nadal-Romero E, Regues D, Latron J. Relationships among rainfall,runoff,and suspended sediment in a small catchment with badlands [J]. CATENA,2008,74,127-136.
    Neff E L. Why rainfall simulation? In Proceedings of Rainfall Simulator Workshop,1979. Tucson, Az. USDA-SEA ARM-W-10:3-7.
    Nord G, Esteves M. The effect of soil type, meteorological forcing and slope gradient on the simulation of internal erosion processes at the local scale[J]. Hydrological processes,2010, 24(13):1766-1780.
    Sobrinho T A. A portable integrated rainfall and overland flow simulator[J]. Soil Use and Management,2008,24,163-170.
    Salles C, Poesen J, Sempere-Torres D. Kinetic energy of rain and its functional relationship with intensity[J]. Journal of Hydrology,2002,257(1-4):256-270.
    Selby M J. Hillslope mater ials and pr ocesses [M]. England:Oxford University Press,1993.
    Tailong Guo et al.Sediment and solute transport on soil slope under simultaneous influence of rainfall impact and scouring flow. Hydrological Processes.2010,(24):1446-1456.
    Wischmerier H H, Smith D D, Uhland R E. Evaluation of factors in the soil loss equation[J]. Agricultural Engineering,1958,39(8):458-462.
    Wischmerier H H, Smith D D. Predicting rainfall erosion losses:A guide to conservation planning, USDA Agric. Handb[M],1978,537.
    Walker P H, Hutka J, Moss A J, Kinnell P I A. Use of a versatile experimental system for soil erosion studies[J]. Soil Science Society of America Journal,1977,41,610-612.
    Walling D E. The sediment delivery problem[J].Journal of Hydrology,1983,65:209-237.
    Xu J X. Hyperconcentrated flows in the slope-channel systems in gullied hilly areas on the loess plateau, China[J]. Geografiska annaler series A-physical geography,2004,86(4):349-366.
    Xu J X, Yan Y X. Scale effects on specific sediment yield in he Yellow River basin and geomorphological explains[J]. J ydrol,2005,307:219-232.
    Yalin M S. An expression for bed-load transportation. Proceedings of the American Society of Civil Engineers[J]. Journal of the Hydraulic Division,1963,89(HY 3),221-250.
    Zingg AW. Degree and Length of Land Slope as It Affects Soil Loss in Runoff[J]. Agricultural Engineering,1940,21(2):59-64.
    Zhang G H, Liu G B, Wang G L, Wang Y X. Effects of vegetation cover and rainfall intensity on sediment-associated nitrogen and phosphorus losses and particle size composition on the Loess Plateau[J]. Journal of Soil and Water Conservation,2011,66(3):192-200.
    Zheng M G, Qin F, Sun L U, Qi D L, Cai Q G. Spatial scale effects on sediment concentration in runoff during flood events for hilly areas of the Loess Plateau, China[J]. Earth surface processes and landforms,2011,36:1499-1509.
    Zheng F L, He X B, Gao X T, Zhang C E, Tang K L. Effects of erosion forms on nutrient loss following deforestation on the Loess Plateau of China[J]. Agric Eco Environ,2005,108: 85-97.
    蔡强国.黄土坡耕地上坡长对径流侵蚀产沙过程的影响.水土流失规律与坡地改良利用[M].北京:环境科学出版社,1995,50-58.
    蔡强国,王贵平,陈永宗.黄土高原小流域侵蚀产沙过程与模拟[M].北京:科学出版社,1998,190-196.
    陈永宗.黄土高原现代侵蚀与治理[M].北京:科学出版社,1998.
    陈力,刘青泉,李家春.坡面降雨入渗产流规律的数值模拟研究[J].泥沙研究,2001,(4):61-67.
    陈洪松,邵明安,王克林.土壤初始含水率对坡面降雨入渗及土壤水分再分布的影响[J].农业工程学报,2006,22(1):44-47.
    程冬兵,左长清,蔡崇法.不同下垫面每次降雨水土流失特征及影响因素分析[J].草业学报,2007,16(5):84-89.
    管新建,姚文艺,李占斌,等.不同介质陡坡降雨侵蚀产沙试验研究[J].水土保持通报,2007,27(6):12-15.
    耿晓东,郑粉莉,张会茹.红壤坡面降雨入渗及产流产沙特征试验研究[J].水土保持学报,2009,23(4).39-43.
    黄兴法.坡面降雨径流的一种数值模拟方法[J].中国农业大学学报,1997,2(2):45-50.
    黄道友,陈桂秋,刘守龙,张广平.红壤丘陵区坡地固土径流基本理化性状探讨[J].中国生态农业学报,2005,13(3):87-90.
    黄志刚,曹云,欧阳志云,等.南方红壤丘陵区杜仲人工林产流产沙与降雨特征的关系[J].生态学杂志,2008,27(3):311-316.
    侯辉昌.漭河流域坡面水土保持工程措施作用的分析[M].北京:水利出版社.1958.
    郝春红,潘英华,陈曦,等.坡度、雨强对壤土入渗特征的影响研究[J].土壤通报,2011,42(5):1040-1044.
    洪惜英.水力学[M].北京:中国林业出版社,1992,53-55.
    何小武,张光辉,刘宝元.坡面薄层水流的土壤分离实验研究.农业工程学报,2003,19(6):52-55.
    靳长兴.论坡面侵蚀的临界坡度[J].地理学报,1995,50(3):234-239.
    靳长兴.坡度在坡面侵蚀中的作用[J].地理研究,1996,15(3):57-63.
    琚彤军,刘普灵,徐学选.不同次降雨条件对黄土区主要地类水沙动态过程的影响及其机理研究[J].泥沙研究,2007,(4):65-71.
    敬向峰,吕宏兴,潘成忠,等.坡面薄层水流流态判定方法的初步探讨[J].农业工程学报,2007,23(5):56-61.
    孔亚平,张科利,唐克丽.坡长对侵蚀产沙过程影响的模拟研究[J].水土保持学报,2001,15(2):17-24.
    孔亚平,张科利.黄土坡面侵蚀产沙沿程变化的模拟试验研究[J].泥沙研究,2003,(1):33-38.
    李占斌,鲁克新,丁文峰.黄土坡面土壤侵蚀动力过程试验研究[J].水土保持学报.2002,16(2):5-7.
    李占斌,鲁克新.透水坡面降雨径流过程的运动波近似解析解[J].水利学报,2003,(6):8-14.
    李勇,朱显谟,田积莹.黄土高原植物根系提高土壤抗冲性的有效性[J].科学通报,1991,36(12):935-938.
    柳玉梅,张光辉,李丽娟,等.坡面水动力学参数对土壤分离能力的定量影响[J].农业工程学报,2009,25(6):96-101.
    李新平,陈欣,马琨,张如良.等高植物篱笆条件下红壤坡耕地水土流失的发生特征[J].浙江大学学报(农业与生命科学版),2003,29(4):368-374.
    吕喜玺,史学正,于东升.用人工模拟降雨研究南方低丘土壤的渗透[J].水土保持学报,1995,9(3):1-8.
    雷俊山,杨勤科.坡面薄层水流侵蚀试验研究及土壤抗冲性评价[J].泥沙研究,2004,6:22-26.
    雷阿林,唐克丽.土壤侵蚀模型试验中的降雨相似及其实现[J].科学通报.1995,40(21):2004-2006.
    雷阿林,史衍玺,唐克丽.土壤侵蚀模型试验中的土壤相似性问题[J].科学通报,1999,41(19):1801-1804.
    马琨,陈欣,王召骞.模拟暴雨下红壤坡面产流产沙及养分流失特征研究[J].宁夏农学院学报,2004,25(1):1-4.
    马廷,周成虎,蔡强国.不同植物篱坡面的土壤侵蚀过程CA模拟[J].地理研究,2006,25(6):959-966.
    毛天旭,朱元骏,邵明安,吴冰.模拟降雨条件下含砾石土壤的坡面产流和入渗特征[J].土壤通报,2011,42(5):1214-1218.
    潘成忠,上官周平.牧草对坡面侵蚀动力参数的影响[J].水利学报,2005,36(3):371-377.
    戚隆溪,黄兴法.坡面降雨径流和土壤侵蚀的数值模拟[J].力学学报,1997,29(3):343-348.
    邱轶兵.试验设计与数据处理[M].合肥:中国科学技术大学出版社,2008.
    史学正,于东升,吕喜玺.用人工模拟降雨仪研究我国亚热带土壤的可蚀性[J].水土保持学报,1995,9(3):38-42.
    唐克丽.黄土高原水土流失与土壤退化的研究[J].水土保持通报,1987,7(6):12-18.
    唐克丽.中国水土保持.北京:科学出版社,2004.
    唐亚,谢嘉穗,陈克明,等.等高固氮植物篱技术在坡耕地可持续耕作中的应用[J].水土保持研究,2001,8(1):104-109.
    王礼先,孙保平,余新晓.中国水利百科全书—水土保持分册[M].北京:中国水利水电出版社,2004.
    王占礼,黄新会,张振国,等.黄土裸坡降雨产流过程试验研究[J].水土保持通报,2005,25(4):1-4.
    王玉宽,王占礼,周佩华.黄土高原坡面降雨产流过程的试验分析[J].水土保持学报,1991,5(2):25-28.
    王万忠,焦菊英.黄土高原坡面降雨产流产沙过程变化的统计分析[J].水土保持通报,1996,16(5):21-28.
    王万中,焦菊英,郝小品.黄土高原极强烈侵蚀(灾害性)的降雨产流产沙特征[J].自然灾害学报,1998,7(1):78-82.
    王瑄,李占斌,丁文峰,等.土壤剥蚀率与水流剪切力关系试验研究[J].沈阳农业大学学报,2004,35(5-6):592-594.
    王瑄,李占斌,郑良勇.土壤剥蚀率与水流剪切力关系室内模拟试验[J].沈阳农业大学学报,2007,38(4):577-580.
    王文龙,雷阿林,李占斌,唐克丽.黄土丘陵区坡面薄层水流侵蚀动力机制实验研究[J].水利学报.2003,(9):66-70.
    王文龙,莫翼翔.雷阿林,等.坡面侵蚀水沙流时间变化特征的模拟实验[J].山地学报,2003.21(5):610-614.
    王礼先.中国水利百科全书[M],水土保持分册.北京:中国水利水电出版社,2004.
    王洁,胡少伟,周跃.人工模拟降雨装置在水土保持方面的应用[J].水土保持研究,2005,1(4):188-194.
    吴长文,王礼先.林地坡面的水动力学特性及其延阻地表径流的研究[J].水土保持学报,1995.
    吴长文,王礼先.陡坡坡面流的基本方程及其近似解析解[J].南昌水专学报,1994,S1,142-149.
    吴发启,赵晓光,刘秉正.缓坡耕地降雨、入渗对产流的影响分析[J].水土保持研究,2000,7(1):12-17.
    吴淑芳,吴普特,宋维秀,卜崇峰.坡面调控措施下的水沙输出过程及减流减沙效应研究[J].水利学报,2010,41(7):870-875.
    吴淑芳,吴普特,原立峰.坡面径流调控薄层水流水力学特性试验[J].农业工程学报,2010,26(3):14-19.
    吴普特,周佩华.黄土坡面薄层水流侵蚀实验研究[J].土壤侵蚀与水土保持学报,1996,2(2):40-45.
    吴光艳,祝振华,成婧,等.人工模拟降雨特性对坡面产流产沙量的影响研究[J].节水灌溉,2011,(6):44-47.
    汪邦德,肖胜生,张光辉,等.南方红壤区不同利用土地产流产沙特征试验研究[J].农业工程学报,2012,28(2):239-243.
    徐宪立,张科利,庞玲,等.青藏公路路堤边坡产流产沙规律及影响因素分析[J].地理科学,2006,26(2):211-216.
    肖培青,郑粉莉,贾媛媛.基于双土槽试验研究的黄土坡面侵蚀产沙过程[J].中国水土保持科学,2003,1(4):10-15.
    谢俊奇.中国坡耕地[M].北京:中国大地出版社,2005.
    谢颂华,曾建玲,杨洁,等.南方红壤坡地不同耕作措施的水土保持效应[J].农业工程学报,2010,26(9):81-86.
    姚文艺,汤立群.水力侵蚀产沙过程及模拟[M].河南:黄河水力出版社,2001,63.
    姚文艺,肖培青,申震洲,杨春霞.坡面产流过程及产沙临界对立地条件的响应关系[J].水利学报,2011,42(12):1438-1444.
    张洪江.土壤侵蚀原理[M].北京:中国林业出版社,1999.
    张洪江.土壤侵蚀原理[M].北京:中国林业出版社,2000.
    郑良勇,李占斌,李鹏.黄土区陡坡径流动力学特性试验研究[J].水利学报,2004,(5):46-51.
    郑粉莉,唐克丽.坡耕地细沟侵蚀影响因素的研究[J].土壤学报,1989,26(2):109-116.
    郑粉莉,康绍忠.黄土坡面不同侵蚀带侵蚀产沙关系及其机理[J].地理学报,1998,53(5):422-428.
    朱显谟.黄土高原水蚀的主要类型及其相关因素[J].水土保持通报,1981,1(3):1-9.
    张国华,张展羽,左长清,等.坡地自然降雨入渗产流的数值模拟[J].水利学报,2007,38(6):668-673.
    张相炎,史学正,于东升,等.前期土壤含水量对红壤坡面产流产沙特性的影响[J].水科学进展,2010,21(1):23-29.
    左长清,马良.红壤坡地果园不同耕作措施的水土保持效应研究[J].水土保持学报,2004,10(3):12-15.
    赵其国.红壤物质循环及其调控[M].北京:科学出版社,2002.
    周昌涵.我国南方典型水土流失的防治对策[M].湖北:华中理工大学出版社,1998.
    张光辉.坡面薄层水流水动力学特性的实验研究[J].水科学进展,2002,13(3):159-165.
    张丽萍,张妙仙.土壤侵蚀正态模型试验中产流畸变系数[J].土壤学报,2000,37(4):449-455.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700