PTC陶瓷的细晶化及其与Ni电极共烧技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为适应电子元器件的小型化、片式化、高性能的发展需要,PTCR也必须朝着小型、多层片式化的方向发展。PTC半导瓷是利用晶界效应的功能陶瓷,要获取高性能的多层片式PTC瓷,必须使多层片式PTCR单层瓷体在垂直电极方向上包含一定数量的晶界,而多层片式PTCR单层瓷体的厚度只有10-40μm,这就要求晶粒尺寸随之相应的减小,至少使单层PTC瓷体具有一定数量的晶界,因而晶粒尺寸应该在0.5-2μm。本文以制取高性能片式PTC陶瓷为目标,对水热法和固相法的BaTiO3基细晶PTC瓷的制备、高性能Ni内电极浆料的制备及与瓷体匹配问题、细晶PTC陶瓷流延工艺优化、界面效应与气氛对片式PTC陶瓷性能影响、再氧化处理与片式PTC陶瓷性能的关系等展开研究工作。
     本文以水热法粉体和固相法粉体为原料,通过适当提高施受主掺杂比、提高预烧温度、降低烧结温度、添加不同玻璃相等方法来减小陶瓷的晶粒尺寸和改善PTC电学性能。采用市售水热法粉体作为原料制备了平均晶粒尺寸为2-5μm、室温电阻率在100Ω·cm左右、升阻比大于104的半导化良好圆片型PTC,实验表明水热法粉体存在钡钛比失衡、杂质多等缺点使进一步减小晶粒尺寸存在极限;而采用传统固相法粉体作为原料,通过调整Y/Mn、经1220℃预烧和1300℃烧结等方法得到平均晶粒尺寸2μm、室温电阻率为205Ω·cm、升阻比大于104的圆片型PTC。
     多层片式PTCR用Ni内电极制作过程中,为获取性能良好的Ni内电极浆料,Ni粉为采用的液相还原法制备的亚微米级粉体,有机溶剂选用松油醇和邻苯二甲酸二丁酯,有机粘合剂选用松香,Ni电极浆料中BaTiO3粉的添加量为10wt%,促使电极与陶瓷线胀系数趋于一致,很好的解决了分层现象的发生,Ni电极中还加入了15wt%Cr粉,提高了电极的抗氧化温度、同时在后续再氧化处理过程中起到很好保护Ni电极的作用。
     而采用固相法粉料的有机流延法,通过适当增加施受主掺杂比、提高预烧温度,降低烧结温度等方法来实现了陶瓷晶粒尺寸的细小化和PTC性能的优越化;适当提高流延浆料固含量后实验表明PTC具有更好的升阻比、更小的晶粒尺寸、更低的室温电阻率,通过A位引入Ca和Sr结合高能球磨的方法,空气中烧结制备出了晶粒尺寸为1.5μm、室温电阻率为150Ω·cm、密度为5.64g/cm3、升阻比达4.5数量级的的PTC陶瓷。
     本文最后研究了片式PTC陶瓷的还原烧结机制、再氧化机制与叠层体性能之间关系、Ni-BaTiO3界面效应与多层片式PTCR性能关系。片式PTC陶瓷在N2/H2混合气氛内于1240-1320℃烧结0.5小时,其中氧分压PO2=10-8-10-12MPa,在1050-1280℃以400℃/h升温速率,高温降到850℃选定的降温速率为300℃/h,温度降到850℃时,停止通气直到室温。800℃其再氧化1h,片式PTC陶瓷晶粒尺寸小于1μm、升阻比为2.5个数量级、室温电阻率为98.8Ω·cm。界面效应实验表明适度的金属-陶瓷互扩散对形成性能优异的多层片式PTCR很有好处,但是过重的互扩散会恶化多层片式PTCR的性能。瓷体与Ni电极的共烧中的扩散等效应为多层片式PTCR的研制奠定了一定的实验基础。
In order to meet the miniaturization of electronic components, chip-based, high-performance development needs, PTCR must also be moving in a small, multi-chip-oriented direction. To obtain high-performance multi-layer chip PTCR as much as possible, We must make multi-layer chip PTCR body in the vertical direction contains a number of grain, while the multi-layer chip PTCR body thickness of single-layer is 10-40μm, which requires the corresponding reduction in grain size. The single-layer must at least include many grain boundaries, so the grain size should be between 0.5μm and 2μm. Preparation of this paper, high-performance multi-layer chip PTCR was the target, hydrothermal method and solid-phase method of fine-grained BaTiO3-based PTC ceramics were used, which high-performance nickel electrodes and the matching issue of electrode and ceramic, the best tape casting process to obtain fine-grained ceramic, interface effects and atmosphere on the PTCR properties of multilayer chip relations, the relationship between re-oxidation method and the properties of multi-layer chip PTCR were researched.
     In this paper, powder by hydrothermal method and solid-phase powder as raw material, through improving the ratio of acceptor and dopant, improving pre-sintering temperature, decreasing sintering temperature, adding the equivalent of different ways, we reduced the glass-ceramic grain size and improved the electrical properties of PTC. By hydrothermal method using outsourcing as a raw material powder we got the PTCR with an average grain size of 2-5μm, room-temperature resistivity in the 100Ω·cm or so, lift-drag ratio greater than 104, but the hydrothermal method presence of barium titanium powder ratio imbalanced, impurities and other defects was difficult to further reduce its grain size; using the traditional solid-phase powder as raw material, by adjusting the Y/Mn, after pre-sintering at 1220℃,sintering at 1300℃including other methods we got the PTC with an average of grain size of 2μm, room-temperature resistivity of 205Ω·cm, lift-drag ratio greater than 104.
     Within the process of Ni inner electrode production for multilayer chip PTCR, in order to obtain good performance Ni electrode paste, sub-micron Ni powder was gotten by liquid-phase reduction method. Alcohol and pine oil phthalate ding ester were used for organic solvent, rosin was selected for organic binder. Ni electrode paste in the adding amount of 10 wt% BaTiO3 powder could promote a better match between electrode and ceramic, which was a good solution to the occurrence of stratification. The 15 wt% Cr powder was also joined in Ni electrode, adjusting the sintering temperature of electrode, increasing the use temperature of electrode which played the well-protected role of Ni electrode in re-oxidation process.
     We used the method of organic cast of which powders were gotten by solid-phase, through increasing the ratio of acceptor and doping appropriately, increasing the pre-sintering temperature, lowering sintering temperature and other methods we achieve a small grain size of ceramic which had good performance. By improving the solids extension of flow slurry, experiments showed that the PTC had a better lift-drag ratio, smaller grain size, lower electrical resistivity at room temperature. Through introducing Ca used for the A-bit diversified and using the method of high-energy ball milling we obtained the PTC of which grain size was 1.5μm, room-temperature resistivity was 150Ω·cm, density was 5.64 g/cm3, lift-drag ratio was up to 4.5 orders of magnitude.
     We studied the mechanism of the multilayer chip PTCR in the sintering surrounding of reducing oxygen, with the relationship between re-oxidation mechanism and the the performance of laminated body, the relationship between Ni-BaTiO3 interface effect and multi-layer chip PTCR properties were also researched. The green sheets with Ni paste as inner electrodes were sintered at 1240-1320℃for half an hour under a N2/H2 mixing gas with the oxygen partial pressure P(O2)=10-8-10-12 MPa, and then re-oxidation at 800℃for one hour to form multilayer PTCR. In the process of 1050-1280℃and high temperature down to 850℃, the heating rate and cooling rate were 400℃/h and 300℃/h. With this mechanism we got we got the PTC with an average of grain size of less than 1μm, room-temperature resistivity of 98.8Ω·cm, lift-drag ratio of 2.5 orders of magnitude. Interface effect experiments showed that an appropriate degree of metal-ceramic inter-diffusion on the formation of high performance multi-layer chip PTCR was very good, but too heavy inter-diffusion could worse the performance of multi-layer chip PTCR. Dispersion effects in ceramics cofired with Ni electrodes were benefit for the development of multilayer chip PTCR.
引文
[1]周东祥,龚树萍.PTC材料及应用.第1版.武汉:华中理工大学出版社,1989.1-11.
    [2]Zhou D. X., Chen Y., Zhang D. L. et al.. Fabrication and characterization of the multilayered PTCR ceramic thermistors by slip casting. Sensors and Actuators A: Physical,2004,116(03):450~454.
    [3]Gong S. P., Sang P. G., Zhou D. X.. Research on the manufacture of laminated BaTiO3-based thermistor by roll forming. Materials Science and Engineering B,2003, 99(1-3):425~427.
    [4]冯玉萍.全球片式热敏电阻器技术发展与市场前景.电子质量,2003,(02):77-79.
    [5]Wada N., Hiramatsu T., Tamura T. et al.. Investigation of grain boundaries influence on dielectric properties in fine-grained BaTiO3 ceramics without the core-shell structure. Ceramics International,2008,34(04):933~937.
    [6]Pientschke C., Kouvatov A., Steinhausen R. et al.. Polarisation kinetics of electrically connected electroconductive ferroelectric multilayer structures. Journal of the European Ceramic Society,2005,25(12):2547~2551.
    [7]Pu Y. P., Yang W. H., Chen S. T.. Influence of Rare Earths on Electric Properties and Microstructure of Barium Titanate Ceramics. Journal of Rare Earths,2007,25(01): 154~157.
    [8]Lee J. H., Kim S. K., Kim N. H.. Effects of the addition of multi-walled carbon nanotubes on the positive temperature coefficient characteristics of carbon-black-filled high-density polyethylene nanocomposites. Scripta Materialia, 2006,55(12):1119~1122.
    [9]陈艳,龚树萍.多层片式PTCR注浆成型工艺的研究.华中科技大学学报,2003,31(07):22-24.
    [10]郑志平,周东祥,龚树萍等.多层片式PTCR热敏陶瓷注凝成型工艺.中国有色金属学报,2002,15(11):34-37.
    [11]Hrovat M., Belavic D., Kita J. et al.. Thick-film PTC thermistors and LTCC structures: The dependence of the electrical and microstructural characteristics on the firing temperature. Journal of the European Ceramic Society,2007,27(5):2237-2243.
    [12]Affleck L., Seaton J., Leach C.. Characterisation of the R-T response of BaTiO3 thermistors on three different length scales. Journal of the European Ceramic Society, 2007,27(12):3439~3444.
    [13]Koferstein R., Jager L., Zenkner M. et al.. Shrinkage mechanism and phase evolution of fine-grain BaTiO3 powder compacts containing 10 mol% BaGeO3 prepared via a precursor route. Materials Chemistry and Physics,2008,112(2):531~535.
    [14]Lee C., Yoo H.. Ba/Ti ratio effect on oxygen re-equilibration kinetics of donor-doped BaTiO3. Solid State Ionics,2008,179(9-10):338~346.
    [15]Lee Y. C., Lu W. H., Shieu F. S.. Investigation of thin film end-termination on multilayer ceramic capacitors with base-metal-electrode. Ceramics International, 2009,35(02):869~874.
    [16]Kokabi H. R., Rapeaux M., Aymami J. A. et al.. Electrical characterization of PTC thermistor based on chromium doped vanadium sesquioxide. Materials Science and Engineering B,1996,38(1~2):80~89.
    [17]万代治文.正の抵抗温度特性を有すゐ半导体磁器とその制造方法.特开昭61-15302.1986.1-3.
    [18]西村弘治,鹤田智広,渡边浩一.積眉型PTCRサ一ミマタ及びその制造方法.日本,特开平10-12404,1998.1-4.
    [19]Mitsutoshi K.. Monolithic semiconducting ceramics electronic component. US patent, 6680527,2004.1-6.
    [20]Atsushi K., Hideaki N.. Chip electronic component. US patent,6791163B2,2004. 1~4.
    [21]Zhou D. X., Zheng Z. P., Gong S. P.. The influence of shaping process on microstructure and properties of BaTiO3-based chip thermistors. Ceramics International,2006,32(7):839~824.
    [22]薛泉林.叠层PTC热敏电阻器的近期研究动向.江苏陶瓷,1996,29(02):29-31.
    [23]向勇,谢道华,张昊.片式元器件与SMT技术新进展.电子工艺技术,2001,22(3):93-95.
    [24]Mamunya Y. P., Muzychenko Y. V., Lebedev E. V. et al.. PTC effect and structure of polymer composites based on polyethylene/polyoxymethylene blend filled with dispersed iron. Polymer Engineering and Science,2007,47(01):34~42.
    [25]佐野晴信.箦眉型半导体ャテツク素子.日本,特开平5-159903,1993.1-6.
    [26]Wang T., Wang X., Wen H. et al.. Effect of milling process on the core-shell structures and dielectric properties of fine-grained BaTiO3-based X7R ceramic materials. International Journal of Minerals, Metallurgy and Materials,2009,16(3):345~348.
    [27]Hideaki N., Akira A.O.. Semiconducting ceramic material, process for producing the ceramic material, and thermistor. US patent,6984355B2,2006.1~4.
    [28]Huang Z. Z., Adikary S. U., Chan H. L.. Preparation and properties of PTCR ceramics with low resistivity sintered at low temperature. Journal of Materials Science:Materials in Electronics,2002,13(04):221~224.
    [29]Huang Z. Z., Adikary S. U., Chan H.L.. Processing characteristics of PTCR ceramics with low sintering temperature. Journal of Materials Science:Materials in Electronics, 2002,13(10):605~608.
    [30]三原贤二良,岸本敦司,新见秀明.叠层PTC热敏电阻器的制造方法.中国专利,CN 0315093.1,2003.1-10.
    [31]Brutchey R. L., Cheng G. S., Gu Q. et al.. Positive temperature coefficient of resistivity in donor-doped BaTiO3 ceramics derived from nanocrystals synthesized at low temperature. Advanced Materials,2008,20(05):1029~1033.
    [32]畅柱国,解红妮,吴淑荣等.BaTiO3陶瓷基质粉料的合成路线.陕西化工,1995(01):20~24.
    [33]张剑光,张明福,韩杰才等.高能球磨法制备纳米钛酸钡的晶化过程.压电与声光,2001,23(05):381-383.
    [34]赵艳敏,王越.纳米钛酸钡的水热合成进展.合成化学,2003,4(11):300-306.
    [35]Lee Y. C., Lu W. H., Wang S. H. et al.. Effect of SiO2 addition on the dielectric properties and microstructure of BaTiO3-based ceramics in reducing sintering. International Journal of Minerals, Metallurgy and Materials,2009,16(01):124~127.
    [36]续京,张杰.电子陶瓷材料纳米钛酸钡制备工艺的研究进展.石油化工应用,2009,8(01):1-5.
    [37]Bomlai P., Sirikulrat N., Tunkasiri T.. Effect of heating rate on the properties of Sb and Mn-doped barium strontium titanate PTCR ceramics. Materials Letters,2005, 59(01):118~122.
    [38]Kim C. H., Park K. J., Yoon Y. J. et al.. Role of yttrium and magnesium in the formation of core-shell structure of BaTiO3 grains in MLCC. Journal of the European Ceramic Society,2008,28(06):1213~1219.
    [39]Xue J. M., Wang J., Wan D. M.. Nanosized BaTiO3 Powder by mechanical activation. Journal of the American ceramics society,2000,83(01):232~235.
    [40]Chatterjee S., Stojanovic B. D., Maiti H. S.. Effect of additives and powder preparation techniques on PTCR properties of barium titanate. Materials Chemistry and Physics,2003,78(03):702~710.
    [41]Hur S. H., Lee J. K., Park K. W. et al.. Relationship between microstructure and properties of semi-conducting barium titanate prepared by a semi-alkoxide route. Materials Letters,1998,35(01-02):78~84.
    [42]Jain T. A., Chen C. C., Fung K. Z.. Effects of Bi4Ti3O12 addition on the microstructure and dielectric properties of Mn-doped BaTiO3-based X8R ceramics. Journal of Alloys and Compounds,2009,476(1-2):414~419.
    [43]Wang J., Fang J., Ng S. C. et al.. Ultrafine barium titanate powders via micro emulsion processing routes. Journal of the American ceramics society,1999,82(04): 873~881.
    [44]Anuradha T. V., Ranganathan S., Mimani T. et al.. Combustion synthesis of nanostructured barium titanate. Scripta materialia,2001,44(08-09):2237~2241.
    [45]Wang X. H., Chen R. Z., Gui Z. L.. The grain size effect on dielectric properties of BaTiO3 based ceramics. Materials Science and Engineering B,2003,99(1-3): 199~202.
    [46]Luo Y., Liu X. Y, Li X. Q. et al.. PTCR behaviour of Ba2LaBiO6-doped BaTiO3 ceramics. Journal of Alloys and Compounds,2008,452(02):397~400.
    [47]周东祥,郑志平,龚树萍等.液相法制备BaTiO3基PTCR粉体的研究.无机材料学报,2005,20(03):593-597.
    [48]汤玉琴.PTC纳米粉体的水热法制备及其性能研究:[硕士学位论文].武汉:华中 科技大学,2004.
    [49]Zubair M. A., Leach C.. The effect of SiO2 addition on the development of low-∑ grain boundaries in PTC thermistors. Journal of the European Ceramic Society,2010, 30(01):107~112.
    [50]周东祥,张绪礼,李标荣.半导体陶瓷及应用.第1版.武汉:华中理工大学出版社,1991.21-35.
    [51]Ding S. W., Jia G., Wang J. et al.. Electrical properties of Y- and Mn-doped BaTiO3-based PTC ceramics. Ceramics international,2008,34(8):2007~2010.
    [52]Zubair M. A., Leach C.. The influence of cooling rate and SiO2 additions on the grain boundary structure of Mn-doped PTC thermistors. Journal of the European Ceramic Society,2008,28(09):1845~1885.
    [53]丁士文,贾光,安彩秀.纳米BaTiO3基PTCR瓷粉的制备及其性能.功能材料与器件学报,2007,13(04):81-85.
    [54]Russell J. D., Leach C.. Problems associated with imaging resistive barriers in BaTiO3 PTC ceramics using the SEM conductive mode. Journal of the European Ceramic Society,1995,15(07):617~622.
    [55]吴雪梅,姚景相,陶珍东等.高能球磨法制备BaTiO3陶瓷.山东化工,2007,36(02):8-11.
    [56]Chang A. M., Jian J. W.. The orientational growth of grains in doped BaTiO3 PTCR materials by microwave sintering. Journal of Materials Processing Technology,2003, 137(1-3):100~101.
    [57]Kwon S. W., Yoon D. H.. Effects of heat treatment and particle size on the tetragonality of nano-sized barium titanate powder. Ceramics International,2007, 33(07):1357~1362.
    [58]Dong W. H., Young H. H.. Quantitative analysis of oxidation-reduction behavior of Mn-doped BaTiO3. Ceramics international,2008,34(5):1341~1344..
    [59]罗光华.晶粒尺寸对钛酸钡陶瓷的介电性能影响的研究:[硕士学位论文].成都:西华大学,2007.
    [60]Louh R. F., Hsu Y. H.. Fabrication of barium titanate ferroelectric layers by electrophoretic deposition technique. Materials Chemistry and Physics,2003,79(2~3): 226~229.
    [61]Li W. C., Kuraganti N. P., Tsai M. T. et al.. Dispersion of nano-sized BaTiO3 powders in nonaqueous suspension with phosphate ester and their applications for MLCC. Journal of the European ceramic society,2008,28(6):1205~1212.
    [62]霍伟荣,李平,于天来等.A位施主掺杂剂对PTC陶瓷性能的影响.压电与声光,2009,31(03):108-110,114.
    [63]Kuo D. H., Wang C. H., Tsai W. P.. Donor- and acceptor-cosubstituted BaTiO3 for nonreducible multilayer ceramic capacitors. Ceramics International,2006,32(01): 1~5.
    [64]Kong M., Jiang S. L., Xie T. T. et al.. Low temperature sintering properties of Y-doped BaTiO3 ceramics by BaB2O4 sintering aid. Microelectronic Engineering, 2009,86(11):2320~2323.
    [65]Cui B., Yu P.F., Wang X.. Preparation and characterization of BaTiO3 powders and ceramics by sol-gel process using decanedioic acid. Journal of alloys and compounds, 2008,459(01-02):589~593.
    [66]陈勇.高温共烧叠层PTCR用镍内电极的研究:[硕士学位论文].上海:上海大学,2004.
    [67]Masuda Y, Koumura T., Okawa T. et al.. Micropatterning of Ni particles on a BaTiO3 green sheet using a self-assembled monolayer. Journal of Colloid and Interface Science,2003,263(01):190~195.
    [68]陈祥冲,黄新友.贱金属内电极多层陶瓷电容器研发进展.材料导报,2004,18(11):20-22.
    [69]钟建薇,梁力平.多层片式瓷介电容器贱金属电极的制造方法.电子元件与材料,2004,23(12):34-37.
    [70]Park D. H., Jung Y. G., Paik U.. Crack suppression behavior with post-process parameters in BaTiO3-based Ni-MLCCs. Ceramics International,2005,31(05): 655~661.
    [71]Shin Y, Kang K. M., Jung Y.G. et al.. Internal stresses in BaTiO3/Ni MLCCs. Journal of the European Ceramic Society,2003,23(09):1427~1434.
    [72]白柳杨,袁方利,阎世凯等.MLCC内电极用超细镍粉的制备进展.电子元件与材料,2006,25(10):9-12.
    [73]Kim S. G., Terashi Y., Purwanto A. et al.. Synthesis and film deposition of Ni nanoparticles for base metal electrode applications. Colloids and surfaces A: Physicochemical and engineering aspects,2009,337(01-03):96~101.
    [74]Zhao G. G., Zhou Y. B., Zhang H. J.. Sliding wear behaviors of electrodeposited Ni composite coatings containing micrometer and nanometer Cr particles. Transactions of nonferrous metals society of China,2009,19(02):319~323.
    [75]Ji Z., Zhang Y., Gu Y. S. et al.. Non-reducible BaTiO3-based dielectric ceramics for Ni-MLCC synthesized by soft chemical method. Ceramics International,2006, 32(04):447-450.
    [76]李杏英,刘志强,林衍洲.制备超细镍粉的研究进展.广东有色金属学报,2005,15(01):19-21.
    [77]牛明勤,吴介达.超细镍粉的制备进展.精细化工,2003,20(12):715-717.
    [78]姜力强,张晓忠,毛信表等.超细镍粉电解制备工艺研究.材料科学与工艺,1999,7(01):87-91.
    [79]Chatterjee S., Sengupta K., Maiti H. S.. A miniature PTC thermistor based sensor element fabricated by tape casting technique. Sensors and Actuators B:Chemical, 1999,60(2~3):155~160.
    [80]李鹏,官建国,张清杰等.1,2丙二醇液相还原法制备纳米镍粉的研究.材料科学与工艺,2001,9(03):259-262.
    [81]沈勇,张宗涛,赵斌等.溶液还原法制备球形超细镍粉.物理化学学报,1995,12(05):460-463.
    [82]Lee S. G., Paik U., Shin Y. et al.. Control of residual stresses with post process in BaTiO3-based Ni-MLCCs. Materials & Design,2003,24(03):169~176.
    [83]Kang K. M., Jung Y. G., Paik U. et al.. Pore evolution and microstructure with heating profile in BaTiO3-based Ni-MLCCs with Y5V specification. Materials Research Bulletin,2003,38(04):555~565.
    [84]牛明勤,吴介达.超细镍粉的制备进展.精细化工,2003,20(12):715-717.
    [85]Saji V. S., Choe H. C.. Electrochemical behavior of Co-Cr and Ni-Cr dental cast alloys. Transactions of Nonferrous Metals Society of China,2009,19(4):785~790.
    [86]Lin H. Y., Bowers B., Wolan J. T. et al.. Metallurgical, surface, and corrosion analysis of Ni-Cr dental casting alloys before and after porcelain firing. Dental Materials, 2008,24(3):378~385.
    [87]He Y.. Heat capacity, thermal conductivity, and thermal expansion of barium titanate-based ceramics. Thermochimica Acta,2004,419(1-2):135~141.
    [88]王日初,魏圣明,黄伯云等.Ni-Cr/BN在1250℃烧结时的碳化和粉化行为.腐蚀科学与防护技术,2005,17(06):402-404.
    [89]Hatano T., Yamaguchi T., Sakamoto W. et al.. Synthesis and characterization of BaTiO3-coated Ni particles. Journal of the European Ceramic Society,2004,24(02): 507~510.
    [90]苏义祥,门志慧,王维东.稀土对高Ni2Cr合金组织的影响.铸造,2003,52(7):519-520.
    [91]Shaw M. C.. The effects of strength probabilistics on the fracture mode of ceramic/metal multilayers. Engineering Fracture Mechanics,1998,61(01):49~74.
    [92]王智平,黄仲佳,苏义祥等.NiCrWRe合金粉末喷熔层的磨损机理.机械研究与应用,2005,18(01):34-35.
    [93]Pandey J. L., Banerjee M. K.. High-temperatureresistant(slurry-based) Coatings. Contributed papers,1997,44(6):368~375.
    [94]Anwar U. H.. A TEM study of the oxidescale development in Ni-Cr alloys. Anti-Corrosion Methods and Materials,2004,51(3):216~222.
    [95]Pint B. A., DiStefano J. R., Wright I. G.. Oxidation resistance:One barrier to moving beyond Ni-base superalloys. Materials Science and Engineering,2006,415 (1~2): 255~263.
    [96]Chu L. W., Prakash K. N., Tsai M. T. et al.. Dispersion of nano-sized BaTiO3 powders in nonaqueous suspension with phosphate ester and their applications for MLCC. Journal of the European Ceramic Society,2008,28(06):1205~1212.
    [97]Park K., Kim J. G., Lee K. J. et al.. Electrical properties and microstructure of Y-doped BaTiO3 ceramics prepared by high-energy ball-milling. Ceramics International,2008,34(07):1573~1577.
    [98]贺连星,温廷琏,吕之奕.流延法制膜技术.化学通报,1996,(11):19-22.
    [99]崔学民.乳胶体系水基流延工艺及其叠层制备陶瓷材料的研究:[博士学位论文].北京:中国材料科学研究院,2003.
    [100]Feller J.F., Chauvelon P., Linossier I. et al.. Characterization of electrical and thermal properties of extruded tapes of thermoplastic conductive polymer composites. Polymer Testing,2003,22(07):831~837.
    [101]黄勇,向军辉,谢志鹏等.陶瓷材料流延成型研究现状.硅酸盐通报,2001,20(05):22-27.
    [102]Lim K. Y., Kim D. H., Paik U. et al.. Effect of the molecular weight of poly(ethylene glycol) on the plasticization of green sheets composed of ultrafine BaTiO3 particles and poly(vinyl butyral). Materials Research Bulletin,2003,38(06):1021~1032.
    [103]Fu C. J., Chan S. H., Liu Q. L. et al.. Fabrication and evaluation of Ni-GDC composite anode prepared by aqueous-based tape casting method for low-temperature solid oxide fuel cell. International Journal of Hydrogen Energy,2010,35(1): 301~307.
    [104]Mark P. M., Jang S. J., Robert E. N.. The effect of grain and particle size on the microwave properties of Barium titanate (BaTiO3). Journal of Applied Physics,1998, 83(6):3288~3297.
    [105]崔学民,欧阳世翕,黄勇等.水基流延工艺制备陶瓷材料的研究.硅酸盐通报,2004,23(02):40-43.
    [106]Weng G J., Wong D. T.. Thermodynamic driving force in ferroelectric crystals with a rank-2 laminated domain pattern, and a study of enhanced electrostriction. Journal of the Mechanics and Physics of Solids,2009,57(03):571~579.
    [107]Hotza D., Greil P.. Review:aqueous tape casting of ceramic powders. Materials Science and Engineering,1995,202(01):206~217.
    [108]卢泉,罗凌虹,黄祖志等.水系流延BaTiO3陶瓷基片的研究.中国陶瓷,2008,44(05):50-52.
    [109]陈文仿.片式热敏元件流延成型及其共烧技术研究:[硕士学位论文].武汉:华中科技大学,2006.
    [110]Wang Z. R., Qian J. Q., Cao J. D. et al. A study of multilayer tape casting method for anode-supported planar type solid oxide fuel cells (SOFCs). Journal of Alloys and Compounds,2007,437(1~2):264~268.
    [111]Roosen A., Messing G. L., Fuller E. R.. Basic requirements for tape casting of ceramics powders. Ceramic Powder Science Ⅱ in Ceramic Transactions,1998,21(13): 675~692.
    [112]雒晓军.水基流延成型制备高热导率氮化铝基片的研究:[博士学位论文]上海:硅酸盐研究所,2004.
    [113]Rodrigo M.. The role of slip additive in tape-casting technology:part Ⅰ solvents and dispersants. Am Ceram Bull,1992,71(10):1521~1531.
    [114]Yoon D. H., Lee B.. Processing of barium titanate tapes with different binders for MLCC applications-Part Ⅱ:Comparison of the properties. Journal of the European Ceramic Society,2004,24(05):753~761.
    [115]Mikeska K., Canon W. R.. Dispersants for tape casting pure bariumtitanate. American Ceramic Society,1984,18(17):164~183.
    [116]Affleck L., Leach C.. Microstructures of BaTiO3 based PTC thermistors with Ca, Sr and Pb additions. Journal of the European Ceramic Society,2005,25(12): 3017~3020.
    [117]Stojanovic B. D., Foschini C. R., Pejovic V. Z. et al.. Electrical properties of screen printed BaTiO3 thick films. Journal of the European Ceramic Society,2004,24(06): 1467~1471.
    [118]Albertsen K.. Re-oxidation of Ni-MLCs. Journal of the European Ceramic Society, 2004,24(06):1883~1887.
    [119]Wang X. H., Chen R. Z., Zhou H. et al.. Dielectric properties of BaTiO3-based ceramics sintered in reducing atmospheres prepared from nano-powders. Ceramics International,2004,30(07):1895~1898.
    [120]Jain T. A., Chen C. C., Fung K. Z.. Effects of Bi4Ti3O12 addition on the microstructure and dielectric properties of modified BaTiO3 under a reducing atmosphere. Journal of the European Ceramic Society,2009,29(12):2595~2601.
    [121]Liu F., Qu Y.. Effect of sintering atmosphere on Ni/PTC composites ceramics. Journal of Physics and Chemistry of Solids,2007,68(1):41~44.
    [122]Chen Y, Gong S. P., Li H. et al.. Ni-BaTiO3 interface phenomenon of Co-fired PTCR by aqueous tape casting. Transactions of Nonferrous Metals Society of China,2007, 17(6):1391~1395.
    [123]郎兴友.纳米材料相变的尺寸和界面效应的研究:[博士学位论文].吉林:吉林大学,2007.
    [124]Gui Z. L., Wang Y. L., Li L. T.. Study on the interdiffusion in base-metal-electrode MLCCs. Ceramics International,2004,30(07):1275~1278.
    [125]Kang J., Joo D., Cha H. et al.. Shrinkage behavior and interfacial diffusion in Ni-based internal electrodes with BaTiO3 additive. Ceramics International,2008, 34(6):1487~1494.
    [126]Ahadian M. M., Iraji A., Nouri E. et al.. Diffusion and segregation of substrate copper in electrodeposited Ni-Fe thin films. Journal of Alloys and Compounds,2007, 443(1-2):81~86.
    [127]Cojocaru-Miredin O., Mangelinck D., Hoummada K. et al.. Snowplow effect and reactive diffusion in the Pt doped Ni-Si system. Scripta Materialia,2007,57(5): 373~376.
    [128]Labie R., Ruythooren W., Humbeeck J. V.. Solid state diffusion in Cu-Sn and Ni-Sn diffusion couples with flip-chip scale dimensions. Intermetallics,2007,15(3): 396~403.
    [129]Luo X., Yang Y, Li J. et al.. Effect of nickel on the interface and mechanical properties of SiCf/Cu composites. Journal of Alloys and Compounds,2009,469(1-2): 237~243.
    [130]Cojocaru-Miredin O., Perrin-Pellegrino C., Mangelinck D. et al.. Boron redistribution during reactive diffusion in Ni-Si contacts. Microelectronic Engineering,2010,87(3): 271~273.
    [131]Zhong Z., Hinoki T., Kohyama A.. Effect of holding time on the microstructure and strength of tungsten/ferritic steel joints diffusion bonded with a nickel interlayer. Materials Science and Engineering:A,2009,518(1-2):167~172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700