用户名: 密码: 验证码:
水稻水孔蛋白与钾通道协同调控及参与种子萌发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在植物响应干旱胁迫或其它胁迫的反应中,水孔蛋白和钾通道蛋白可能对维持胞内适当的渗透压至关重要。然而在植物中关于二者功能上的相互联系仍然需要研究。在我们的研究工作中我们就水稻(Oryza sativa)水孔蛋白和钾通道蛋白的协同调控关系进行了探讨。在响应于K~+缺乏及水分亏缺的反应中,质膜水孔蛋白(PIP)和钾通道蛋白在转录水平上表现相似的调控模式,即K+缺乏诱导了PIPs及几个编码钾通道蛋白的基因的表达,而PEG介导的水分短缺下调了上述二者的表达。在K~+缺乏时,与PIP的表达上调一致,水稻根系水导度(Lp)也被升高。而且缺钾处理影响了K~+的吸收,但是没有影响植物中K~+的含量。钾通道蛋白的抑制剂CsCl处理降低了水稻幼苗K~+的含量,同时像水孔蛋白的抑制剂HgCl2的作用一样能够降低水导度。综合以上结果,PIPs和钾通道蛋白在水稻的渗透调节过程中存在功能性的协同调控。
    以前的研究工作表明几个水孔蛋白可能参与了种子的萌发过程,但我们仍然需要进一步探讨更多的水孔蛋白在这个过程中的作用,尤其是研究整个水孔蛋白家族在此过程中可能起到的作用。在此项研究工作中我们分析了PIPs在种子萌发进行中以及萌发后的表达模式,其结果显示在水稻胚部位它们的表达受发育所调控。PIPs的表达模式表明这些水孔蛋白在种子萌发和幼苗生长发育过程中可能发挥不同的作用。OsPIP1;1和OsPIP1;3基因的部分沉默降低了种子的萌发能力,而OsPIP1;3基因的超表达则促进种子在干旱胁迫环境下的萌发。而且在种子萌发过程中OsPIP1;3主要在种子的胚部位表达。我们的结果还显示一氧化氮(NO)的释放剂SNP和GSNO能够促进种子的萌发,而NO的清除剂PTIO抑制了种子的萌发,并且PTIO能够消除NO释放剂对种子萌发的促进作用。外源NO的使用促进了在萌发进行中的种子内OsPIP1;1、OsPIP1;2、OsPIP1;3以及OsPIP2;8的表达。上述结果表明水孔蛋白在种子萌发过程中发挥着重要的作用,而且部分水孔蛋白可能是通过响应NO信号途径而发挥作用的。
Water channel proteins and potassium channel proteins are likely critical for a plant tomaintain proper cytosolic osmolarity in response to drought or other stresses. However,evidence linking water channel and potassium channel functions in plants remains to bedemonstrated. In our study we examined K~+ channel/transporters and water channels in rice(Oryza sativa L. spp indica cv. Guangluai 4) to reveal a potential functional correlation. ThemRNA expression levels of plasma membrane intrinsic proteins (PIPs) and K~+channel/transporters responded similarly to K+ starvation or water deprivation. Transcriptionof the PIP-and K~+ channel-encoding genes was induced by K~+ starvation, and could bedown-regulated by polyethylene glycol (PEG)-mediated water deficit. Consistent with theinduced PIP expression, root hydraulic conductivity (Lp) also increased during K~+ starvation.Furthermore, the K~+ uptake capacity, but not the K+ content, was likely influenced by K~+starvation. The K~+ channel inhibitor, Cesium chloride (CsCl) treatment decreased K~+ contentin the rice seedlings, and reduced root Lp as did the water channel inhibitor, mercuric chloride(HgCl2). These results are compatible with the conclusion that PIP and K~+channel/transporters are functionally co-regulated in rice osmoregulation.
    Previous studies have demonstrated the possible role of several aquaporins in seedgermination. But the investigation of the role of more aquaporins, especially with aquaporinfamily in this process, still remains required. In our research work, the developmentalregulation of plasma membrane intrinsic protein (PIP) expression was described by analyzingits expression throughout germination and post-germination processes in rice embryos. Theexpression patterns of the PIPs suggest these aquaporins play different roles in seedgermination and in seedling growth. Partial silencing of the water channel genes, OsPIP1;1and OsPIP1;3, reduced seed germination while over-expression OsPIP1;3 promoted seedgermination under water stress conditions. Moreover, spatial expression analysis indicatedthat OsPIP1;3 expressed predominantly in embryo during seed germination. Our data also
    revealed that the NO donors, sodium nitroprusside (SNP) and S-nitrosoglutathione (GSNO),promoted seed germination;furthermore, the NO scavenger,2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), inhibitedgermination and reduced the stimulatory effects of SNP and GSNO on germination of rice.Exogenous NO stimulated the transcription of OsPIP1;1, OsPIP1;2, OsPIP1;3 and OsPIP2;8in germinating seeds. These results suggest that water channels play an important role in seedgermination, acting, at least partly, in response to the NO signaling pathway.
引文
1. Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G. (2003) Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. The Plant Cell 15: 439?447.
    2. Alexandersson E, Fraysse L, Sjovall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U, Kjellbom P. (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Molecular Biology 59: 469– 484.
    3. Amodeo G, Sutka M, Dorr R, Parisi M. (2002) Protoplasmic pH modifies water and solute transfer in Beta vulgaris root vacuoles. Journal of Membrane Biology 187: 175–184.
    4. Azad AK, Sawa Y, Ishikawa T, Shibata H. (2004a) Characterization of protein phosphatase 2A acting on phosphorylated plasma membrane aquaporin of tulip petals. Bioscience, Biotechnology and Biochemistry 68: 1170–1174.
    5. Azad AK, Sawa Y, Ishikawa T, Shibata H. (2004b) Phosphorylation of plasma membrane aquaporin regulates temperaturedependent opening of tulip petals. Plant and Cell Physiology 45: 608–617.
    6. Azaizeh H, Gunse B, Steudle E. (1992) Effects of NaCl and CaCl2 on water transport across root cells of maize (Zea mays L.) seedlings. Plant Physiology 99: 886–894.
    7. Baiges I, Schaffner AR, Affenzeller MJ, Mas A. (2002) Plant aquaporins. Physiologia Plantarum 115: 175–182.
    8. Barrieu F, Chaumont F, Chrispeels MJ. (1998) High expression of the tonoplast aquaporin ZmTIP1 in epidermal and conducting tissues of maize. Plant Physiology 117: 1153–1163.
    9. Biela A, Grote K, Otto B, Hoth S, Hedrich R, Kaldenhoff R. (1999) The Nicotiana tabacum plasma membrane aquaporin NtAQP1 is mercury-insensitive and permeable for glycerol. Plant Journal 18: 565–570.
    10. Borstlap AC. (2002) Early diversification of plant aquaporins. Trends in Plant Science. 7: 529–530.
    11. Bot M, Vergeldt F, Wolters-Arts M, Weterings K, van As H, Mariani C. (2005) Aquaporins of the PIP2 class are required for efficient anther dehiscence in tobacco. Plant Physiology 137: 1049–1056.
    12. Bray EA. (2002) Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana: an analysis using microarray and differential expression data. Annals of Botany (London) 89 Spec No: 803–811.
    13. Bray EA. (2004) Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. Journal of Experimental Botany 55: 2331–2341.
    14. Carvajal M, Cerda A, Martinez V. (2000) Does calcium ameliorate the negative effect of NaCl on melon root water transport by regulating aquaporin activity? New Phytologist 145: 439–447.
    15. Chaumont F, Barrieu F, Herman EM, Chrispeels MJ. (1998 ) Characterization of a maize tonoplast aquaporin expressed in zones of cell division and elongation. Plant Physiology 117: 1143–1152.
    16. Chaumont F, Barrieu F, Jung R, Chrispeels MJ. (2000) Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Physiology 122: 1025–1034.
    17. Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R. (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiology 125: 1206–1215.
    18. Clarkson DT, Carvajal M, Henzler T, Waterhouse RN, Smyth AJ, Cooke DT, Steudle E. (2000) Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress. Journal of Experimental Botany 51: 61?70.
    19. Daniels MJ, Chrispeels MJ, Yeager M. (1999) Projection structure of a plant vacuole membrane aquaporin by electron cryo-crystallography. Journal of Molecular Biology 294: 1337–1349.
    20. Dean RM, Rivers RL, Zeidel ML, Roberts DM. (1999) Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties. Biochemistry 38: 347–353.
    21. de Groot BL, Grubmǚller H. (2001) Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294: 2353–2357.
    22. de Groot BL, Frigato T, Helms V, Grubmuller H. (2003) The mechanism of proton exclusion in the aquaporin-1 water channel. Journal of Molecular Biology 333: 279–293.
    23. Ding X, Iwasaki I, Kitagawa Y. (2004) Overexpression of a lily PIP1 gene in tobacco increased the osmotic water permeability of leaf cells. Plant Cell Envionment 27: 177–186.
    24. Doering-Saad C, Newbury HJ, Bale JS, Pritchard J. (2002) Use of aphid stylectomy and RT-PCR for the detection of transporter mRNAs in sieve elements. Journal of Experimental Botany 53: 631?637.
    25. Dordas C, Chrispeels MJ, Brown PH. (2000) Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiology 124: 1349–1362.
    26. Fetter K, Van Wilder V, Moshelion M, Chaumont F. (2004) Interactions between plasma membrane aquaporins modulate their water channel activity. The Plant Cell 16: 215–228.
    27. Fotiadis D, Jeno P, Mini T, Wirtz S, Mulle SA, Fraysse L, Kjellbom P, Engel A. (2001) Structural characterization of two aquaporins isolated from native spinach leaf plasma membranes. Journal of Biological Chemistry 276: 1707–1714.
    28. Fu DX, Libson A, Miercke LJW, Weitzman C, Nollert P, Krucinski J, Stroud RM. (2000) Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290: 481–486.
    29. Gerbeau P, Guclu J, Ripoche P, Maurel C. (1999) Aquaporin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes. Plant Journal 18: 577–587.
    30. Gerbeau P, Amodeo G, Henzler T, Santoni V, Ripoche P, Maurel C. (2002) The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH. Plant Journal 30: 71–81.
    31. Guenther JF, Roberts DM. (2000) Water-selective and multifunctional aquaporins from Lotus japonicus nodules. Planta 210: 741–748.
    32. Guenther JF, Chanmanivone N, Galetovic MP, Wallace IS, Cobb JA, Roberts DM. (2003) Phosphorylation of soybean Nodulin 26 on Serine 262 enhances water permeability and is regulated developmentally and by osmotic signals. The Plant Cell 15: 981–991.
    33. Harvengt P, Vlerick A, Fuks B, Wattiez R, Ruysschaert JM, Homble F. (2000) Lentil seed aquaporins form a hetero-oligomer which is phosphorylated by a Mg2+-dependent and Ca2+-regulated kinase. Journal of Biochemistry 352: 183–190.
    34. Hendriks G, Koudijs M, van Balkom BW, Oorschot V, Klumperman J, Deen PM, van der Sluijs P. (2004) Glycosylation is important for cell surface expression of the water channel aquaporin-2 but is not essential for tetramerization in the endoplasmic reticulum. Journal of Biological Chemistry 279: 2975–2983.
    35. Henzler T, Waterhouse RN, Smyth AJ, Carvajal M, Cooke DT, Schaffner AR, Steudle E, Clarkson DT. (1999) Diurnal variations in hydraulic conductivity and root pressure can be correlated with the expression of putative aquaporins in the roots of lotus japonicus. Planta 210: 50?60.
    36. Henzler T, Steudle E. (2000) Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. Journal of Experimental Botany 51: 2053–2066.
    37. Hertel A, Steudle E. (1997) The function of water channels in Chara: The temperature dependence of water and solute flows provides evidence for composite membrane transport and for a slippage of small organic solutes across water channels. Planta 202: 324–335.
    38. Higuchi T, Suga S, Tsuchiya T, Hisada H, Morishima S, Okada Y, Maeshima M. (1998) Molecular cloning, water channel activity and tissue specific expression of twoisoforms of radish vacuolar aquaporin. Plant Cell and Physiology 39: 905–913.
    39. Jahn TP, Moller AL, Zeuthen T, Holm LM, Klaerke DA, Mohsin B, Kühlbrandt W, Schjoerring JK. (2004) Aquaporin homologues in plants and mammals transport ammonia. FEBS Letter 574: 31–36.
    40. Jang JY, Kim DG, Kim YO, Kim JS, Kang H. (2004) An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Molecular Biology 54: 713–725.
    41. Javot H, Maurel C. (2002) The role of aquaporins in root water uptake. Annals of Botany (London) 90: 301–313.
    42. Javot H, Lauvergeat V, Santoni V, Martin-Laurent F, Guclu J, Vinh J, Heyes J, Franck K I, Schaffner A R, Bouchez D, Maurel C. (2003) Role of a single aquaporin isoform in root water uptake. The Plant Cell 15: 509?522.
    43. Johanson U, Karlsson M, Johansson I, Gustavsson S, Sj?vall S, Fraysse L, Weig AR, Kjellbom P. (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiology 126: 1358–1369.
    44. Johansson I, Larsson C, Ek B, Kjellbom P. (1996) The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca2+ and apoplastic water potential. The Plant Cell 8: 1181–1191.
    45. Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C, Kjellbom P. (1998) Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. The Plant Cell 10: 451–460.
    46. Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P. (2000) The role of aquaporins in cellular and whole plant water balance. Biochimica et Biophysica Acta 1465: 324–342.
    47. Johnson KD, Herman EM, Chrispeels MJ. (1989) An abundant, highly conserved tonoplast protein in seeds. Plant Physiology 91: 1006–1013.
    48. Johnson KD, Chrispeels MJ. (1992) Tonoplast-bound protein-kinase phosphorylates tonoplast intrinsic protein. Plant Physiology 100: 1787–1795.
    49. Jones JT, Mullet JE. (1995) Developmental expression of a turgor-responsive gene that encodes an intrinsic membrane protein. Plant Molecular Biology 28: 983–996.
    50. Jung JS, Preston GM, Smith BL, Guggino WB, Agre P. (1994) Molecular structure of the water channel through aquaporin CHIP. The hourglass model. Jouranl of Biological Chemistry 269: 14648–14654.
    51. Kaldenhoff R, Kolling A, Meyers J, Karmann U, Ruppel G, Richter G. (1995) The blue light-responsive AthH2 gene of Arabidopsis thaliana is primarily expressed in expanding as well as in differentiating cells and encodes a putative channel protein of the plasmalemma. Plant Journal 7: 87–95.
    52. Kaldenhoff R, Grote K, Zhu JJ, Zimmermann U. (1998) Significance of plasmalemma aquaporins for water-transport in Arabidopsis thaliana. Plant Journal14: 121?128.
    53. Karlsson M, Johansson I, Bush M, McCann M C, Maurel C, Larsson C, Kjellbom P. (2000) An abundant TIP expressed in mature highly vacuolated cells. Plant Journal 21: 83–90.
    54. Katsuhara M, Akiyama Y, Koshio K, Shibasaka M, Kasamo K. (2002) Functional analysis of water channels in barley roots. Plant Cell Physiology 43: 885?893.
    55. Katsuhara M, Koshio K, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K. (2003) Over-expression of a barley aquaporin increased the shoot/root ratio and raised salt sensitivity in transgenic rice plants. Plant Cell Physiology 44: 1378?1383.
    56. Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ. (2001) Gene expression profiles during the initial phase of salt stress in rice. The Plant Cell 13: 889–905.
    57. Kirch HH, Vera-Estrella R, Golldack D, Quigley F, Michalowski CB, Barkla BJ, Bohnert HJ. (2000) Expression of water channel proteins in Mesembryanthemum crystallinum. Plant Physiology 123: 111–124.
    58. Klok EJ, Wilson IW, Wilson D, Chapman SC, Ewing RM, Somerville SC, Peacock WJ, Dolferus R, Dennis ES. (2002) Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. The Plant Cell 14: 2481–2494.
    59. Kukulski W, Schenk AD, Johanson U, Braun T, de Groot BL, Fotiadis D, Kjellbom P, Engel A. (2005) The 5A structure of heterologously expressed plant aquaporin SoPIP2;1. Journal of Molecular Biology 350: 611–616.
    60. Li L, Li S, Tao Y, Kitagawa Y. (2000) Molecular cloning of a novel water channel from rice: its products expression in Xenopus oocytes and involvement in chilling tolerance. Plant Science 154: 43?51.
    61. Liu HY, Sun WN, Tang ZC, Su WA. (2006) Co-regulation of water channels and potassium channels in rice. Physiologia Plantarum doi: 10.1111/j.1399-3054.2006.00709.x.
    62. Liu LH, Ludewig U, Gassert B, Frommer WB, von Wiren N. (2003) Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiology 133: 1220–1228.
    63. Liu Q, Umeda M, Uchimiya H. (1994) Isolation and expression analysis of two rice genes encoding the major intrinsicprotein. Plant Molecular Biology 26: 2003?2007.
    64. Ma S, Quist TM, Ulanov A, Joly R, Bohnert HJ. (2004) Loss of TIP1;1 aquaporin in Arabidopsis leads to cell and plant death. Plant Journal 40: 845?859.
    65. Maathuis FJ, Filatov V, Herzyk P et al. (2003) Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant Journal 35: 675–692.
    66. Maeshima M. (2001) TONOPLAST TRANSPORTERS: Organization and function. Annual Review of Plant Physiology and Plant Molecular Biology 52: 469–497.
    67. Martinez-Ballesta MDC, Martinez V, Carvajal M. (2000) Regulation of water channel activity in whole roots and in protoplasts from roots of melon plants grown under saline conditions. Australian Journal of Plant Physiology 27: 685–691.
    68. Martre P, Morillon R, Barrieu F, North GB, Nobel PS, Chrispeels MJ. (2002) Plasma membrane aquaporins play a significant role during recovery from water deficit. Plant Physiology 130: 2101?2110.
    69. Maurel C, Kado RT, Guern J, Chrispeels MJ. (1995) Phosphorylation regulates the water channel activity of the seed specific aquaporin alpha-TIP. EMBO Journal 14: 3028–3035.
    70. Maurel C, Chrispeels MJ. (2001) Aquaporins: a molecular entry into plant water relations. Plant Physiology 125: 135–138.
    71. Maurel C, Javot H, Lauvergeat P, Tournaire C, Santoni V, Heyes J. (2002) Molecular physiology of aquaporins in plant. International Review of Cytology 215: 105–148.
    72. Morillon R, Lassalles JP. (2002) Water deficit during root development: effects on the growth of roots and osmotic water permeability of isolated root protoplasts. Planta 214: 392?399.
    73. Moshelion M, Becker D, Biela A, Uehlein N, Hedrich R, Otto B, Levi H, Moran N, Kaldenhoff R. (2002) Plasma membrane aquaporins in the motor cells of Samanea saman: diurnal and circadian regulation. The Plant Cell 14: 727–739.
    74. Moshelion M, Moran N, Chaumont F. (2004) Dynamic changes in the osmotic water permeability of protoplast plasma membrane. Plant Physiology 135: 2301–2317.
    75. Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y. (2000) Structural determinants of water permeation through aquaporin-1. Nature 407: 599–605.
    76. Nemeth-Cahalan KL, Kalman K, Hall JE. (2004) Molecular basis of pH and Ca2+ regulation of aquaporin water permeability. Journal of General Physiology 123: 573–580.
    77. Niemietz CM, Tyerman SD. (2000) Channel-mediated permeation of ammonia gas through the peribacteroid membrane of soybean nodules. FEBS Letter 465: 110–114.
    78. Oliviusson P, Salaj J, Hakman I. (2001) Expression pattern of transcripts encoding water channel-like proteins in Norway spruce (Picea abies). Plant Molecular Biology 46: 289?299.
    79. Otto B, Kaldenhoff R. (2000) Cell-specific expression of the mercury-insensitive plasma-membrane aquaporin NtAQP1 from Nicotiana tabacum. Planta 211: 167–172.
    80. Park JH, Saier MJ. (1996) Phylogenetic characterization of the MIP family of transmembranechannel proteins. Journal of Membrane Biology 153: 171–180.
    81. Preston GM, Carroll TP, Guggino WB, Agre P. (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256: 385–387.
    82. Reisen D, Loborgne-Castel N, Ozalp C, Chaumont F, Marty F. (2003) Expression of a cauliflower tonoplast aquaporin tagged with GFP in tobacco suspension cells correlates with an increase in cell size. Plant Molecular Biology 52: 387–400.
    83. Reizer J, Reizer A, Saier MH. (1993) The MIP family of integral membrane channel proteins: sequence comparisons, evolutionary relationships, reconstructed pathways of the evolution and proposed functional differentiation of the two repeated halves of proteins. Critical Reviews in Biochemistry and Molecular Biology 28: 235–257.
    84. Rivers RL, Dean RM, Chandy G, Hall JE, Roberts DM, Zeidel ML. (1997) Functional analysis of nodulin 26, an aquaporin in soybean root nodule symbiosomes. Journal of Biological Chemistry 272: 16256–16261.
    85. Robinson DG, Sieber H, Kammerloher W, Schaffner AR. (1996) PIP1 aquaporins are concentrated in plasmalemmasomes of Arabidopsis thaliana mesophyll. Plant Physiology 111: 645–649.
    86. Sarda X, Tousch D, Ferrare K, Legrand E, Dupuis JM, Casse-Delbart F, Lamaze T. (1997) Two TIP-like genes encoding aquaporins are expressed in sunflower guard cells. Plant Journal 12: 1103–1111.
    87. Sarda X, Tousch D, Ferrare K, Cellier F, Alcon C, Dupuis JM, Casse F, Lamaze T. (1999) Characterization of closely related delta-TIP genes encoding aquaporins which are differentially expressed in sunflower roots upon water deprivation through exposure to air. Plant Molecular Biology 40: 179–191.
    88. Sakr S, Alves G, Morillon R, Maurel K, Decourteix M, Guilliot A, Fleurat-Lessard P, Julien J-L, Chrispeels MJ. (2003) Plasma membrane aquaporins are involved in winter embolism recovery in walnut tree. Plant Physiology 133: 630–641.
    89. Schaffner AR. (1998) Aquaporin function, structure, and expression: are there more surprises to surface in water relations? Planta 204: 131–139.
    90. Schutz K, Tyerman SD. (1997) Water channels in Chara corallina. Journal of Experimental Botany 48: 1511–1518.
    91. Seki M, Narusaka M, Ishida J. (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant Journal 31: 279–292.
    92. Seki M, Kameiy A, Yamaguchi-Shinozakiz K, Shinozaki K. (2003) Molecular responses to drought, salinity and frost: common and different paths for plant protection. Current Opinion in Biotechnology 14: 194–199.
    93. Seki M, Satou M, Sakurai T et al. (2004) RIKEN Arabidopsis full-length (RAFL) cDNA and its applications for expression profiling under abiotic stress conditions. Journal of Experimental Botany 55: 213–223.
    94. Shinozaki K, Yamaguchi-Shinozaki K, Seki M. (2003) Regulatory network of gene expression in the drought and cold stress response. Current Opinion in Plant Biology 6: 410–417.
    95. Siefritz F, Tyree MT, Lovisolo C, Schubert A, Kaldenhoff R. (2002) PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants. The Plant Cell 14: 869?876.
    96. Siefritz F, Otto B, Bienert GP, van der Krol A, Kaldenhoff R. (2004) The plasma membrane aquaporin NtAQP1 is a key component of the leaf unfolding mechanism in tobacco. Plant Journal 37: 147?155.
    97. Steudle E. (2001) The conesion-tension mechanism and the acquisition of water by plant roots. Annual Review of Plant Physiology and Plant Molecular Biology 52: 847–875.
    98. Suga S, Murai M, Kuwagata T, Maeshima M. (2003) Differences in aquaporin levels among cell types of radish and measurement of osmotic water permeability of individual protoplasts. Plant and Cell Physiology 44: 277–286.
    99. Suga S, Maeshima M. (2004) Water channel activity of radish plasma membrane aquaporins heterologously expressed in yeast and their modification by site-directed mutagenesis. Plant and Cell Physiology 45: 823–830.
    100. Sui H, Han BG, Lee JK, Walian P, Jap BK. (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature (London) 414: 872–878.
    101. Sun MH, Xu W, Zhu YF, Su WA, Tang ZC. (2001) A simple method for in situ hybridization to RNA in guard cells of Vicia faba L.: the expression of aquaporins in guard cells. Plant Molecular Biology Reporter 19: 129?135.
    102. Sun MH, Zhang MH, Liu HY, Li LG, Yu X, Su WA, Tang ZC. (2004) Distribution of water channel protein RWC3 and its regulation by GA and sucrose in rice (Oryza sativa). Acta Botany Sinica 46: 1056–1064.
    103. Takahashi H, Rai M, Kitagawa T, Morita S, Masumura T, Tanaka K. (2004) Differential localization of tonoplast intrinsic proteins on the membrane of protein body Type II and aleurone grain in rice seeds. Bioscience, Biotechnology, and Biochemistry 68: 1728–1736.
    104. Tornroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P. (2006) Structure mechanism of plant aquaporin gating. Nature 439: 688–694.
    105. Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, Luu DT, Bligny R, Maurel C. (2003) Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425: 393–397.
    106. Tyerman SD, Niemietz CM, Bramley H. (2002) Plant aquporins: multifunctional water and solute channels with expanding roles. Plant Cell Environment 25: 173–194.
    107. Ueda A, Kathiresan A, Inada M, Narita Y, Nakamura T, Shi W, Takabe T, Bennett J. (2004) Osmotic stress in barley regulates expression of a different set of genes than salt stress does. Journal of Experimental Botany 55: 2213–2218.
    108. Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R. (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature (London) 425: 734–737.
    109. Vera-Estrella R, Barkla BJ, Bohnert HJ, Pantoja O. (2004) Novel regulation of aquaporins during osmotic stress. Plant Physiology 135: 2318–2329.
    110. Wallace IS, Roberts DM. (2004) Homology modeling of representative subfamilies of Arabidopsis major intrinsic proteins. Classification based on the aromatic/arginine selectivity filter. Plant Physiology 135: 1059–1068.
    111. Wan X, Steudle E, Hartung W. (2004) Gating of water channels (aquaporins) in cortical cells of young corn roots by mechanical stimuli (pressure pulses): effects of ABA and of HgCl2. Journal of Experimental Botany 55: 411–422.
    112. Wang YH, Garvin DF, Kochian LV. (2001) Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiology 127: 345?359.
    113. Weig A, Deswarte C, Chrispeels MJ. (1997) The major intrinsic protein family of Arabidopsis has 23 members that form three distinct groups with functional aquaporins in each group. Plant Physiology114: 1347–1357.
    114. Weig AR, Jakob C. (2000) Functional identification of the glycerol permease activity of Arabidopsis thaliana NLM1 and NLM2 proteins by heterologous expression in Saccharomyces cerevisiae. FEBS Letter 481: 293–298.
    115. Xiong L, Schumaker KS, Zhu JK. (2002) Cell signaling during cold, drought, and salt stress. The Plant Cell (Supplement). S165–S183.
    116. Yamada S, Katsuhara M, Kelly WB, Michalowski CB, Bohnert HJ. (1995) A family of transcripts encoding water channel proteins: tissue-specific expression in the common ice plant. The Plant Cell 7: 1129–1142.
    117. Yamamoto YT, Taylor CG, Acedo GH, Cheng CL, Conkling MA. (1991) Characterization of cis-acting sequences regulating root-specific gene expression in tobacco. The Plant Cell: 371–382.
    118. Ye Q, Wiera B, Steudle E. (2004) A cohesion/tension mechanism explains the gating of water channels (aquaporins) in Chara internodes by high concentration. Journal of Experimental Botany 55: 449–461.
    119. Zeidel ML, Ambudkar SV, Smith BL, Agre P. (1992) reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry 31: 7436–7440.
    120. Zhang JZ, Creelman RA, Zhu JK. (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold and drought tolerance in crops. Plant Physiology 135: 615–621.
    121. Zhu MJ, Wang XC, Chen J. (2000) Identification and role of plasma membrane aquaporin in maize root. Chinese Science Bulletin 45: 1493–1496.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700