水孔蛋白与植物对干旱和低温胁迫响应关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水孔蛋白(Aquaporin)属于跨膜通道MIP(Membrane Intrinsic Protein)大家族,是一种能介导水分跨膜运输的功能性的膜通道蛋白,它广泛地存在于从微生物到高等动物和植物的各种生物体中。水孔蛋白在转录、翻译、翻译后修饰等各个水平上受到调控。水孔蛋白的发现对植物生理学是一个概念性的发展。
    在本研究中,我们就稻(Oryza sativa)水孔蛋白对干旱和低温的响应关系展开探讨,实验主要取得如下结果:
    (1)通过对一个水稻品种(秀水63)和一个陆稻品种(中旱3号)在12%PEG(聚乙二醇) 2000(?0.45 MPa)渗透胁迫处理7?8天后的水分生理比较,来研究稻的抗旱生理机制。渗透胁迫处理后,两个品种均表现生长缓慢,植株矮小,新叶叶尖卷曲甚至干枯,但中旱3号要比秀水63表现得更为严重。相对秀水63,相同强度的渗透胁迫处理对中旱3号根系和地上部的生长均有较强的抑制作用。在渗透胁迫处理后,两个品种的叶子的相对含水量和水势都有所下降,但下降程度中旱3号强于秀水63。渗透胁迫处理使秀水63叶的渗透势显著下降,但中旱3号没有明显变化,同时秀水63的叶膨压高于中旱3号,说明秀水63可能具有更强的渗透调节能力。中旱3号在渗透胁迫7?8天后的气孔导度和蒸腾速率下降显著,但秀水63却变化不大。中旱3号和秀水63在渗透胁迫后的根水导度都显著下降。通过对不定根的徒手切片的荧光显微镜检测,两个品种的不定根均未表现出在渗透胁迫后内皮层和外皮层的木栓化增加。胁迫处理能使中旱3号和秀水63的根水导降显著下降。汞离子是许多水孔蛋白的抑制剂,通过汞离子抑制实验可以初步研究水孔蛋白的功能。在未受胁迫时,汞处理能使中旱3号和秀水63的根水导度显著下降;在胁迫处理后,中旱3号根水导度对汞离子的敏感性更高,而秀水63的根水导度对汞离子的敏感性却几乎消失。综合以上结果,水稻和陆稻可能采取不同的机制抵御干旱,水稻以耐旱为主(如渗透调节),陆稻以避旱为主(如增加根系吸水能力、减少水分散失),水孔蛋白则可能参与了陆稻的避旱过程。
    (2)为了进一步确证水孔蛋白在植物避旱中的作用,我们将稻水孔蛋白RWC3基因遗传转化一个我们认为避旱机制较弱的水稻品种(中花11号)中,然后观测转基因植株在PEG诱导的干旱条件下的生理表型。在本研究中,首先构建SWPA2::RWC3结构,将其构入双元载体pCAMBIA 1301中,SWPA2是来自于红薯(Ipomoea batatas)的逆境
Aquaporins, which show the ability to facilitate passive exchange of water acrossmembranes, belong to a high conserved membrane protein family MIP (Major IntrinsicProtein). In plants, the activities of aquaporins can be controlled at transcription, translationand post-translation modification levels. The discovery of aquaporins in plants has resulted ina paradigm shift in plant physiology.
    In this study, we focused on the role of rice aquaporins when respond to drought andchilling stress. The main results are as follows:
    (1) The mechanism of drought tolerance was studied by comparing water relationsbetween an upland rice cultivar (Zhonghan 3) and a lowland rice cultivar (Xiushui 63) duringthe water deficit mediated by PEG. After 7?8 days with osmotic stress treatment, bothcultivars showed retardation of plant growth, dwarf plants and young leaf rolling or evendrying. These symptoms were more serious in Zhonghan 3 than Xiushui 63. The osmoticstress greatly retarded the growth of roots and aerial parts in Zhonghan 3 than Xiushui 63.After initiation of the osmotic stress, relative water content (RWC) and water potential ofleaves decreased significantly in both cultivars, and Xiushiu 63 had higher leaf RWC andwater potential than Zhonghan 3. Xiushui 63 probably showed higher osmotic adjustmentbecause Xiushui 63 had greater drop of leaf osmotic potential and higher turgor compared toZhonghan 3 when subjected to the osmotic stress. After initiation of the osmotic stress,Zhonghan 3 showed decreased transpiration rate and stomata conductivity, while they wereunchanged in Xiushiu 63. Root hydraulic conductivity (Lp) decreased significantly in bothcultivars after initiation of the osmotic stress. Moreover, by view of the freehandcross-sections of adventitious roots under a fluorescent microscope, no any differentlignifications at exodermis or endodermis in the roots of both cultivars was observed.Mercurial compounds are widely used to study the function of aquaporins because they are
    inhibitors for aquaporins. Mercury treatment greatly decreased root hydraulic conductivity ofnon-stressed plants in both cultivars. However, during the osmotic stress, mercury showedmore serious inhibition effects in Zhonghan 3, while showed alleviating inhibition effects inXiushiu 63. To summarize, all these results suggested that upland rice and lowland mobilizeddistinct mechanism to resist drought, i.e. upland rice was drought avoidance (e.g. increasingroot water uptake and decreasing water evaporation) while lowland rice was drought tolerance(e.g. osmotic adjustment). Aquaporins might play role in drought avoidance of upland rice.(2) To demonstrate the role of aquporins in plant drought avoidance in fine detail,aquaporin RWC3 from rice (Oryza sativa L.) was transferred into a lowland rice cultivars(Zhonghua 11), which was thought to be weak in drought avoidance, and consequently somephysiological parameters were measured during the water deficit mediated by PEG.SWPA2::RWC3 was constructed into a binary plasmid pCAMBIA 1301, and was transferred tolowland rice mediated by Agrobacterium tumefaciens. SWPA2 promoter, which was isolatedin sweetpotato, was a stress inducible promoter. By the assays of GUS histochemical staining,PCR and PCR-Dig-ELISA, the presence of SWPA2::RWC3 was confirmed in the lowland rice.By RT-PCR and Western blot analysis, it was found that SWPA2 promoter-RWC3 transgenicplant and WT (wild type) had similar RWC3 expression levels under normal condition,nevertheless, under water deficit mediated by 20% PEG, the transgenic plant had higherRWC3 expression levels than WT, suggesting that RWC3 expression in transgenic plants couldbe induced by drought. However, no visible phenotypic difference was found between thetransgenic plants and the WT plants, either under normal condition or during water deficit.After the water deficit, SWPA2 promoter-RWC3 transgenic plant showed higher root hydraulicconductivity and leaf water potential than WT, and the decrease of relative accumulativetranspiration rate during the water deficit was alleviated in the transgenic plant. These resultswere summarized that compared to WT, SWPA2 promoter-RWC3 transgenic plant wasendowed with higher water transport of roots and improved water status under water deficit,suggesting aquaporin RWC3 probably play a role during drought avoidance of rice(3) Plant chilling injury was partially caused by water imbalance between water uptakein root and transpiration in leaf. In this study, two rice cultivars (Somewake and Wasetoitsue)were exposed to 7 ± 1°C for up to 24 h and following temperature recovery (28 ± 1°C) for 3
    h. Throughout the chilling stress, Wasetoitsu showed more serious injury symptoms thanSomewake. By measuring the relative electrical conductivity of rice leaves, Wasetoitsu hadhigher membrane electrolyte leakage than Somewake at the low temperature. These resultsindicated that Wasetoitsue was a less chilling tolerant cultivar compared to Somewake. Thetwo cultivars were in different water status, i.e. Wasetoitsu had lower leaf RWC thanSomewake in the duration of chilling, although both cultivars had decreasing RWC at thesame time RWC. In both cultivars, accumulative transpiration rate and root Lp decreasedobviously during the chilling treatment, but the decrease of Lp was more rapid and acute thanthat of accumulative transpiration rate, suggesting that the water imbalance occurred betweenthe water uptake of root and the water evaporation of aerial parts. These physiologicalobservations prompted us to investigate the expression of water channel proteins. At mRNAlevel, three rice aquaporin genes, RWC1、OsPIP2a and RWC3 showed the similar response tothe chilling treatment in both cultivars, i.e. remained approximate constant within the 9 h withchilling treatment while were decreased after 24 h with chilling treatment. The analysis ofWestern blot with antibody against PIP1 was consistent with the mRNA expression. In bothcultivars, PIP1 protein decreased when the plants were subjected to the chilling treatment for24 h. As we know, this is the first report on aquaporin responses to chilling stress in plantroots. Surprisingly, the temperature recovery for 3 h following chilling treatment resulted incontinued decreases of root PIPs mRNA expression. Aquaporins might be related to ricechilling adaptation but not a key factor of chilling resistance at the early stage of the chillingstress.
引文
1. Agre P, Mathai JC, Smith BL, Preston GM. 1999. Functional analyses of aquaporin water channel proteins. Methods Enzymol, 294: 550?572
    2. Agre P, Sasaki S, Chrispeels M J. 1993. Aquaporins: a family of water channel proteins. Am J Physiol, 265: F461
    3. Amodeo G, Dorr R, Vallejo A, Sutka M, and Parisi M. 1999. Radial and axial water transport in the sugar beet storage root. J Exp Bot, 50: 509?516
    4. Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G. 2003. Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell, 15: 439?447
    5. Arocaa R, Tognonib F, Irigoyena JJ, Sánchez-Díaz M, Pardossic A. 2001. Different root low temperature response of two maize genotypes differing in chilling sensitivity. Plant Physiol Biochem, 39: 1067?1073
    6. Assmann SM, Wang XQ. 2001. From milliseconds to millions of years: guard cells and environmental responses. Curr Opin Plant Biol, 4: 421?428
    7. Azaizeh H, Steudle E. 1991. Effects of salinity on water transport of excised maize (Zea mays L.) roots. Plant Physiol, 97: 1136?1145
    8. Baiges I, Schaffner A R, Mas A. 2001. Eight cDNA encoding putative aquaporins in Vitis hybrid Richter-110 and their differential expression. J Exp Bot, 52: 1949?1951
    9. Baiges I, Schaffner AR, Affenzeller MJ, Mas A. 2002. Plant aquaporins. Physiol Plant, 115: 175?182
    10. Balk PA, Boer AD. 1999. Rapid stalk elongation in tulip (Tulipa gesneriana L. cv. Apeldoorn) and the combined action of cold-induced invertase and the water-channel protein gammaTIP. Planta, 209: 346?354
    11. Balling A, Zimmermann U. 1990. comparative measurements of the xylem pressure of Nicotiana plants by means of the pressure bomb and pressure probe. Planta, 182: 325?338
    12. Barrieu F, Chaumont F, Chrispeels M J. 1998. High expression of the tonoplast aquaporin ZmTIP1 in epidermal and conducting tissues of maize. Plant Physiol, 117: 1153?1163
    13. Barrieu F, Marty-Mazars D, Thomas D, Chaumont F, Charbonnier M, Marty F. 1999. Dessication and osmotic stress increase the abumdance of mRNA of the tonoplast aquaporin BobTIP26-1 in cauliflower cells. Planta, 209: 77?86
    14. Barrowclough D E, Peterson C A, Steudle E, 2000. Radial hydraulic conductivity along developing onion roots. J Exp Bot, 51: 547?557
    15. Bernards MA, Lewis NG. 1998.The macromolecular aromatic domain in suberized tissue: a changing paradigm. Phytochemistry, 47: 915?933
    16. Biela A, Grote K, Otto B, Hoth S, Hedrich R, Kaldenhoff R. 1999. The Nicotiana tabacum plasma membrane aquaporin NtAQP1 is mercury-insensitive and permeable for glycerol. Plant J, 18: 565?570
    17. Birner TP, Steudle E. 1993. Effects of anaerobic conditions on water and solute relations, and on active transport in roots of maize (Zea mays L.). Planta, 190: 474?483
    18. Borgnia MJ, Agre P. 2001. Reconstitution and functional comparison of purified GlpF and AqpZ, the glycerol and water channels from Escherichia coli. Proc Natl Acad Sci U S A, 98: 2888?2893
    19. Borgnia M, Nielsen S, Engel A, Agre P. 1999. Cellular and molecular biology of the aquaporin water channels. Annu Rev Biochem, 68: 425?458
    20. Boyer JS. 1985. Water transport. Ann Rev Plant Physiol, 36: 473?516
    21. Bradford MM. 1976. A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72: 248?254
    22. Bray EA. 1997. Plant responses to water deficit. Trends Plant Sci, 2: 48?54
    23. Brugidou C, Ghesquiere A. 2001. Rice genomics: present and future. Plant Physiol Biochem, 39: 323?334
    24. Cabuslay GS, Ito O, Alejar AA. 2002. Physiological evaluation of responses of rice (Oryza sativa L.) to water deficit. Plant Sci, 163: 815?827
    25. Carvajal M, Cooke D T, Clarkson D T. 1996. Responses of wheat plants to nutrient deprivation may involve the regulation of water-channel function. Planta, 199: 372?381
    26. Carvajal M, Martinez V, Alcaraz V F. 1999. Physiological function of water channels as affected by salinity in roots of paprika pepper. Physiol Plant, 105: 95?101
    27. Chaumont F, Barrieu F, Herman E M, Chrispeels M J. 1998. Characterization of a maize tonoplast aquaporin expressed in zones of cell division and elongation. Plant Physiol, 117: 1143?1152
    28. Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R. 2001. Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol, 125: 1206?1215
    29. Chen GP, Wilson ID, Kim SH, Grierson D. 2001. Inhibiting expression of a tomato ripening-associated membrane protein increases organic acids and reduces sugar levels of fruit. Planta, 212: 799?807
    30. Chu CC. 1978. The N6 medium and its applications to anther culture of cereal crops. In Proc. Symp Plant Tissue Culture. Peking: Science Press, pp. 43?50
    31. Clarkson DT, Carvajal M, Henzler T, Waterhouse R N, Smyth A J, Cooke D T, Steudle E. 2000. Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress. J Exp Bot, 51: 61?70
    32. Cooper GJ, Boron WF. 1998. Effect of PCMBS on CO2 permeability of Xenopus oocytes expressing aquaporin 1 or its C189S mutant. Am J Physiol, 275: C1481?C1486
    33. Cosgrove DJ. 1996. Plant cell enlargement and the action of expansins. Bioessays, 18: 533?540
    34. Cruz RT, Jordan WR, Drew MC. 1992. Structural changes and associated reduction of hydraulic conductance in roots of Sorghum bicolor L. following exposure to water deficit. Plant Physiol, 99: 203?212
    35. Daniels MJ, Chaumont F, Mirkov TE, Chrispeels MJ. 1996. Characterization of a new vacuolar membrane aquaporin sensitive to mercury at a unique site. Plant Cell, 8: 587?599
    36. Daniels MJ, Mirkov TE, Chrispeels MJ. 1994. The plasma membrane of Arabidopsis thaliana contains a mercury-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP. Plant Physiol, 106: 1325?1333
    37. Dainty J. 1963. Water relations of plant cells. Adv Bot Res, 1: 279?326
    38. Dean RM, Rivers RL, Zeidel ML, Roberts DM. 1999. Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties. Biochemistry, 38: 347?353
    39. Delseny M, Salses J, Cooke R, Sallaud C, Regad F, Lagoda P, Guiderdoni E, Ventelon M, Fukai S, Cooper M. 1995. Development of drought-resistant cultivars using physio-morphological traits in rice. Field Crops Res, 40: 67?86
    40. Dickinson H G. 1995. Dry stigmas, water and self-incompatibility in Brassica. Sex Plant Reprod, 8: 1?10
    41. Dixit R, Rizzo C, Nasrallah M, Nasrallah J. 2001. The brassica MIP-MOD gene encodes a functional water channel that is expressed in the stigma epidermis. Plant Mol Biol, 45: 51?62
    42. Doering-Saad C, Newbury H J, Bale JS, Pritchard J. 2002. Use of aphid stylectomy and RT-PCR for the detection of transporter mRNAs in sieve elements. J Exp Bot, 53: 631?637
    43. Day DA, Poole PS, Tyerman SD, Rosendahl L. 2001. Ammonia and amino acid transport across symbiotic membranes in nitrogen-fixing legume nodules. Cell Mol Life Sci, 58: 61?71
    44. Fennell A, Markhar AH. 1998. Rapid acclimation of root hydraulic conductivity to low temperature. J Exp Bot, 49: 879?884
    45. Fetter K, Van Wilder V, Moshelion M, Chaumont F. 2004. Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell,16: 215?228
    46. Fleurat-Lessard P, Frangne N, Maeshima M, Ratajczak R, Bonnemain J L, Martinoia E. 1997. Increased expression of vacuolar aquaporin and H+ATPase related to motor cell function in Mimosa pudica L. Plant Physiol, 114: 827?834
    47. Fray R G, Wallace A, Grierson D, Lycett G W. 1994. Nucleotide sequence and expression of a ripening and water stress-related cDNA from tomato with homology to the MIP class of membrane channel proteins. Plant Mol Biol, 24: 539?543
    48. Fushimi K, Uchida S, Hara Y, Hirata Y, Marumo F, Sasaki S. 1993. Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature Lond, 361: 549?552
    49. Gerbeau P, Amodeo G, Henzler T, Santoni V, Ripoche P, Maurel C. 2002. The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH. Plant J, 30: 71?81
    50. Gorin MB, Yancey SB, Cline J, Revel JP, Horwitz J. 1984. The major intrinsic protein (MIP) of the bovine lens fiber membrane: Characterization and structure based on cDNA cloning. Cell, 39: 49?59
    51. Guenther JF, Chanmanivone N, Galetovic MP, Wallace IS, Cobb JA, Roberts DM. 2003. Phosphorylation of soybean nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals. Plant Cell, 15: 981?991
    52. Guenther J F, Roberts D M. 2000. Water-selective and multifunctional aquaporins from Lotus japonicus nodules. Planta, 210: 741?748
    53. Guerrero FD, Crossland L. 1993. Tissue-specific expression of a plant turgor-responsive gene with amino acid sequence homology to transport-facilitating proteins. Plant Mol Biol, 21: 929?935
    54. Guerrero FD, Jones JT, Mullet JT. 1990. Turgor responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted. Sequence and expression of three inducible genes. Plant Mol Biol, 15: 11?26
    55. Gutknecht J. 1967. Membranes of Valonia ventricosa: apparent absence of water-filled pores. Science, 158: 787?788
    56. Haines TH. 1994. Water transport across biological membranes. FEBS Letters, 364: 115?122
    57. Hanba YT, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K, Terashima I, Katsuhara M. 2004. Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2 conductance and CO2 assimilation in the leaves of transgenic rice plants. Plant Cell Physiol, 45: 521?529
    58. Henzler T, Steudle E. 1995. Reversible closing of water channels in Chara internodes provides evidence for a composite transport model of the plasma membrane. J Exp Bot, 46: 199?209
    59. Henzler T, Waterhouse R N, Smyth A J, Carvajal M, Cooke D T, Schaffner A R, Steudle E, Clarkson D T. 1999. Diurnal variations in hydraulic conductivity and root pressure can be correlated with the expression of putative aquaporins in the roots of Lotus japonicus. Planta, 210: 50?60
    60. Higuchi T, Suga S, Tsuchiya T, Hisada H, Morishima S, Okada Y, Maeshima M. 1998. Molecular cloning, water channel activity and tissue specific expression of two isoforms of radish vacuolar aquaporin. Plant Cell Physiol, 39: 905?913
    61. Hill AE, Shachar-Hill B, Shachar-Hill Y. 2004. What are aquaporins for? J Membr Biol, 197: 1?32
    62. Huang RF, Zhu MJ, Kang Y Chen J, Wang XC. 2002. Identification of plasma membrane aquaporin in guard cells of Vicia faba and its role in stomatal movement. Acta Bot Sin, 44: 42?48
    63. Husken D, Steudle E, Zimmermann U. 1978. Pressure probe technique for measuring water relations of cells in higher plants. Plant Physiol, 61: 158?163
    64. Ikeda S, Nasrallah J B, Dixit R, Preiss S, Nasrallah M E. 1997. An aquaporin-like gene required for the Brassica self-incompatibility response. Science, 276: 1564?1566
    65. Jauh GY, Phillips TE, Rogers JC. 1999. Tonoplast intrinsic protein isoforms as markers for vacuolar functions Plant Cell, 11: 1867?1882
    66. Javot H, Lauvergeat V, Santoni V, Martin-Laurent F, Guclu J, Vinh J, Heyes J, Franck K I, Schaffner A R, Bouchez D, Maurel C. 2003. Role of a single aquaporin isoform in root water uptake. Plant Cell, 15: 509?522
    67. Javot H, Maurel C. 2002. The role of aquaporins in root water uptake. Annals of Botany, 90: 301?313
    68. Johansson I, Larsson C, Ek B, Kjellbom P. 1996. The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca2+ and apoplastic water potential. Plant Cell, 8: 1181?1191
    69. Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C, Kjellbom P. 1998. Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell, 10: 451?459
    70. Johnson KD, Chrispeels MJ. 1992. Tonoplast-bound protein kinase phosphorylates tonoplast intrinsic protein. Plant Physiol, 91: 1006?1013
    71. Johnson KD, Herman EM, Chrispeels MJ. 1989. An abundant, highly conserved tonoplast protein in seeds. Plant Physiol, 91: 1006?1013
    72. Jones HG. 1998. Stomatal control of photosynthesis and transpiration. J Exp Bot, 49: 387?398
    73. Jones J T, Mullet J E. 1995. Developmental expression of a turgor-responsive gene that encodes an intrinsic membrane protein. Plant Mol Biol, 28: 983?996
    74. Jongdee B, Fukai S, Cooper M. 2002. Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Res, 76: 153?163
    75. Jung JS, Preston GM, Smith BL, Guggino WB, Agre P. 1994. Molecular structure of the water channel through aquaporin CHIP. The hourglass model. J Biol Chem,269: 14648? 14654
    76. Kaldenhoff R, Grote K, Zhu JJ, Zimmermann U. 1998. Significance of plasmalemma aquaporins for water-transport in Arabidopsis thaliana. Plant J, 14: 121?128
    77. Kaldenhoff R, Kolling A, Richter AK. 1993. A novel blue light-and abscisic acid-inducible gene of Arabidopsis thaliana endoding an intrinsic membrane protein. Plant Mol Biol, 23: 1187?1198
    78. Kaldenhoff R, Kolling A, Richter AK. 1996. Regulation of the Arabidopsis thaliana aquaporin gene AthH2(PIP1b). J Photochem Photobiol, 36: 351?354
    79. Kaldenhoff R, Kolling A, Meyers J, Karmann U, Ruppel G, Richter G. 1995. The blue light-responsive AthH2 gene of Arabidopsis thaliana is primarily expressed in expanding as well as in differentiating cells and encodes a putative channel protein of the plasmalemma. Plant J, 7: 87?95
    80. Kammerloher W, Fischer U, Piechottka GP, Schaffner AR. 1994. Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system. Plant J, 6: 187?199
    81. Karlsson M, Johansson I, Bush M, McCann M C, Maurel C, Larsson C, Kjellbom P. 2000. An abundant TIP expressed in mature highly vacuolated cells. Plant J, 21: 83?90
    82. Karmoker JL, Clarkson DT, Saker LR, Rooney JM, Purves JV. 1991. Sulphate deprivation depresses the transport of nitrogen to the xylem and hydraulic conductivity of barley (Hordeum vulgare L.) roots. Planta, 185: 269?278
    83. Katsuhara M, Akiyama Y, Koshio K, Shibasaka M, Kasamo K. 2002. Functional analysis of water channels in barley roots. Plant Cell Physiol, 43: 885?893
    84. Katsuhara M, Koshio K, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K. 2003. Over-expression of a barley aquaporin increased the shoot/root ratio and raised salt sensitivity in transgenic rice plants. Plant Cell Physiol, 44: 1378?1383
    85. Kim KY, Huh GH, Lee HS, Kwon SY, Hur Y, Kwak SS. 1999. Molecular characterization of cDNAs for two anionic peroxidases from suspension cultures of sweet potato. Mol Gen Genet, 261: 941?947
    86. Kim KY, Kwon SY, Lee HS, Hur Y, Bang JW, Kwak SS. 2003. A novel oxidative stress-inducible peroxidase promoter from sweetpotato: molecular cloning and characterization in transgenic tobacco plants and cultured cells. Plant Mol Biol, 51: 831?838
    87. Kirch H H, Vera-Estrella R, Golldack D, Quigley F, Michalowski C B, Barkla BJ, Bohnert H J. 2000. Expression of water channel proteins in Mesembryanthemum crystallinum. Plant Physiol, 123: 111?124
    88. Lambrechts H, Rook F, Kolloffel C. 1994. Carbohydrate Status of Tulip Bulbs during Cold-Induced Flower Stalk Elongation and Flowering. Plant Physiol, 104: 515?520
    89. Lanceras JC, Pantuwan G, Jongdee B, Toojinda T. 2004. Quantitative trait Loci associated with drought tolerance at reproductive stage in rice. Plant Physiol, 135: 384?399
    90. Lee TM, Lur HS, Chu C. 1993. Role of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings I Endogenous abscisic acid levels. Plant, Cell and Environ, 16: 481?490
    91. Li L, Li S, Tao Y, Kitagawa Y. 2000. Molecular cloning of a novel water channel from rice: its products expression in Xenopus oocytes and involvement in chilling tolerance. Plant Sci, 154: 43?51
    92. Lian HL, Yu X, Ye Q, Ding XS, Kitagawa Y, Kwak SS, Su WA, Tang ZC. 2004. The role of aquaporin RWC3 in drought avoidance in rice. Plant Cell Physiol, 45: 481?489
    93. Liu Q, Umeda M, Uchimiya H. 1994. Isolation and expression analysis of two rice genes encoding the major intrinsicprotein. Plant Mol Biol, 26: 2003?2007
    94. Loffler C. Czygan F C. Proksch P. 1999. Role of indole-3-acetic acid in the interaction of the phanerogamic parasit Cuscuta and host plants. Plant Biol, 1: 613?617
    95. Lu Z, Neumann PM. 1999. Water stress inhibits hydraulic conductance and leaf growth in rice seedlings but not the transport of water via mercury-sensitive water channels in the root. Plant Physiol, 120: 143?151
    96. Ludevid D. Hofte H. Himelblau E. Chrispeels M J. 1992. The expression pattern of the tonoplast intrinsic protein γ-TIP in Arabidopsis thaliana is correlated with cell enlargement. Plant physiol, 100: 1633?1639
    97. Maeshima M. TONOPLAST TRANSPORTERS: 2001. Organization and Function. Annu Rev Plant Physiol Plant Mol Biol, 52: 469?497.
    98. Maeshima M, Mimura T, Sato T. 1994. Distribution of vacuolar H+-pyrophosphosphatase and the membrane integral protein in a variety of green plants. Plant Cell Physiol, 35: 323?328
    99. Maggio A, Joly R J. 1995. Effects of Mercuric Chloride on the Hydraulic Conductivity of Tomato RootSystems (Evidence for a Channel-Mediated Water Pathway). Plant Physiol, 109: 331?335
    100. Malz S, Sauter M. 1999. Expression of two PIP genes in rapidly growing internodes of rice is not primarily controlled by meristem activity or cell expansion. Plant Mol Biol, 40: 985?995
    101. Mariaux JB, Bockel C, Salamini F, Bartels D. 1998. Desiccation-and abscisic acid-responsive genes encoding major intrinsic proteins (MIPs) from the resurrection plant Craterostigma plantagineum. Plant Mol Biol, 38: 1089?1099
    102. Matsuzaki T, Tajika Y, Tserentsoodol N, Suzuki T, Aoki T, Hagiwara H, Takata K. 2002. Aquaporins: a water channel family. Anat Sci Int, 77: 85?93
    103. Martinez-Ballesta MC, Martinez V, Carvajal M. 2000. Regulation of water channel activity in whole roots and in protoplasts from roots of melon plants grown under saline conditions. Aust J Plant Physiol, 27: 685?691
    104. Martinez-Ballesta MC, Martinez V, Carvajal M. 2003. Aquaporin functionality in relation to H+ATPase activity in root cells of`Capsicum annuum grown under salinity. Physiol Plant, 117: 413?420
    105. Martre P, Morillon R, Barrieu F, North GB, Nobel PS, Chrispeels MJ. 2002. Plasma membrane aquaporins play a significant role during recovery from water deficit. Plant Physiol, 130: 2101?2110
    106. Martre P, North G B, Nobel P S. 2001. Hydraulic conductance and mercury-sensitive water transport for roots of Opuntia acanthocarpa in relation to soil drying and rewetting. Plant Physiol, 126: 352?362
    107. Maurel C. 1997. Aquaporins and water permeability of plant membranes. Annu. Rev. Plant. Physiol. Plant Mol. Biol, 48: 399?429
    108. Maurel C,Chrispeels MJ. 2001. Aquaporins. A Molecular Entry into Plant Water Relations. Plant Phyiol, 125: 135?138
    109. Maurel C, Kado RT, Guern J, Chrispeels MJ. 1995. Phosphorylation regulates the water channel activity of the seed-specific aquaporin α-TIP. EMBO J, 14: 3028?3035
    110. Maurel C, Reizer J, Schroeder JI, Chrispeels MJ. 1993. The vacuolar membrane protein γ-TIP creates water specific channels in Xenopus oocytes. EMBO J, 12: 2241?2247
    111. Maurel C, Reizer J, Schroeder J I, Chrispeels M J. 1993. The vacuolar membrane protein gamma-TIP creates water specific channels in Xenopus oocytes. EMBO J, 12: 2241?2247
    112. Maurel C, Reizer J, Schroeder J I, Chrispeels M J,Saier MH Jr. 1994. Functional characterization of the Escherichia coli glycerol facilitator, GlpF, in: Xenopus oocytes. J Biol chem, 269: 11869?11872
    113. Maurel C, Tacnet F, Guclu J, Guern J, Ripoche P. 1997. Purified vesicles of tobacco cell vacuolar and plasma membranes exhibit dramatically different water permeability and water channel activity. Proc Natl Acad Sci U S A, 94: 7103?7108
    114. Miyamoto N, Steudle E, Hirasawa T, Lafitte R. 2001. Hydraulic conductivity of rice roots. J Exp Bot, 52: 1835?1846
    115. Morillon R, Catterou M, Sangwan RS, Sangwan BS Lassalles JP. 2001. Brassinolide may control aquaporin activities in Arabidopsis thaliana. Planta, 212: 199?204
    116. Morillon R, Lassalles JP. 2002. Water deficit during root development: effects on the growth of roots and osmotic water permeability of isolated root protoplasts. Planta, 214: 392?399
    117. Morillon R, Lienard D, Chrispeels M J, Lassalles J P. 2001, Rapid movements of plants organs require solute-water cotransporters or contractile proteins. Plant Physiol, 127: 720?723
    118. Moshelion M, Becker D, Biela A, Uehlein N, Hedrich R, Otto B, Levi H, Moran N, Kaldenhoff R. 2002. Plasma membrane aquaporins in the motor cells of Samanea saman: diurnal and circadian regulation. Plant Cell, 14: 727?739
    119. Murashige T and Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant, 15: 473?497
    120. Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y. 2000. Structural determinants of water permeation through aquaporin-1. Nature, 407: 599?605
    121. Murray MG, Thompson WF. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 8: 4321?4325
    122. Mylona P, Pawlowski K, Bisseling T. 1995. Symbiotic Nitrogen Fixation. Plant Cell, 7: 869?885
    123. Nakhoul NL, Davis BA, Romero MF, Boron WF. 1998 Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes. Am J Physiol, 274: C543?C548
    124. Nemeth-Cahalan KL, Hall Je. 2000. pH and calcium regulate the water permeability of Aquaporin 0. J Biol Chem, 275: 6777?6782
    125. Niemietz CM, Tyerman SD. 2000. Channel-mediated permeation of ammonia gas through the peribacteroid membrane of soybean nodules. FEBS Lett, 465: 110?114
    126. Niemietz CM, Tyerman SD. 2002. New potent inhibitors of aquaporins: silver and gold compounds inhibit aquaporins of plant and human origin. FEBS Lett, 531: 443?447
    127. Nishi R, Hashimoto H, Kidou S, Uchimiya H, Kato A. 1993. Isolation and characterization of a rice cDNA which encodes a ubiquitin protein and a 52 amino acid extension protein. Plant Mol Biol, 22: 159?161
    128. North GB, Nobel PS. 1996. Radial conductivity of individual root tissues of Opuntia fiscus-indica (L.) Miller as soil moisture varies. Ann Bot, 77: 133?142
    129. Nobel PS, Cui M. 1992. Hydraulic conductances of the soil, the root-soil air gap, and the root: changes for desert succulents in drying soil. J Exp Bot, 43: 319?326
    130. Ohshima Y, Iwasaki I, Suga S, Murakami M, Inoue K, Maeshima M. 2001. Low aquaporin content and low osmotic water permeability of the plasma and vacuolar membranes of a CAM plant Graptopetalum paraguayense: comparison with radish. Plant Cell Physiol, 42: 1119?1129
    131. Oliviusson P, Salaj J, Hakman I. 2001. Expression pattern of transcripts encoding water channel-like proteins in Norway spruce (Picea abies). Plant Mol Biol, 46: 289?299
    132. Otto B, Kaldenhoff R. 2000. Cell-specific expression of the mercury-insensitive plasma-membrane aquaporin NtAQP1 from Nicotiana tabacum. Planta, 211: 167?172
    133. Park JH, Saier MH Jr. 1996. Phylogenetic characterization of the MIP family of transmembrane channel proteins. J Membr Biol, 153: 171?180
    134. Perez de Juan J, Irigoyen JJ, Sanchez-Diaz M. 1997. Chilling of drought-hardened and non-hardened plants of different chilling-sensitive maize lines: changes in water relations and ABA contents. Plant Sci, 122: 71?79
    135. Phillips AL, Huttly AK. 1994.Cloning of two gibberellin-regulated cDNAs from Arabidopsis thaliana by subtractive hybridization: expression of tonoplast water channel, γ-TIP, is increased by GA3. Plant Mol Biol, 24: 603?615
    136. Preston GM, Carroll TP, Guggino WB, Agre P. 1992. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science, 256: 385?387
    137. Preston GM, Jung JS, Guggino WB, Agre P. 1993. The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel. J Biol Chem, 268: 17?20
    138. Preston GM, Jung JS, Guggino WB, Agre P. 1994. Membrane topology of aquaporin CHIP28. Analysis of functional epitope-scanning mutants by vectorial proteolysis. J Biol Chem, 269 :1668?1673
    139. Price AH, Cairns JE, Horton P, Jones HG, Griffiths H. 2002. Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses. J Exp Bot, 53: 989?1004
    140. Quigley F, Rosenberg J M, Shachar-Hill Y, Bohnert H J. 2001. From genome to function: the Arabidopsis aquaporins. Genome Biology, 3: 1?17
    141. Radin JW, Eidenbock MP. 1984. Hydraulic conductance as a factor limiting leaf expansion in phosphorus-deficient cotton plants. Plant Physiol, 75: 372?377
    142. Radin JW, Matthews MA. 1989. Water transport properties of cortical cells in roots of nitrogen-and phosphorus-deficient cotton seddlings. Plant Physiol, 89: 264?268
    143. Ramahaleo T, Morillon R, Alexandre J, Lassalles JP. 1999. Osmotic water permeability of isolated protoplasts medications during development. Plant Physiology, 119: 885?896
    144. Ray PM, 1960. On the theory of osmotic water movement. Plant Physiol, 35: 783?795
    145. Reizer J, Reizer A, Saier MH. 1993. The MIP family of integral membrane channel proteins: sequence comparisons, evolutionary relationships, reconstructed pathways of the evolution and proposed functional differentiation of the two repeated halves of proteins. Crit Rev Biochem Mol Biol, 28: 235?257
    146. Rivers RL, Dean RM, Chandy G, Hall JE, Roberts DM, Zeidel ML. 1997. Functional analysis of nodulin 26, an aquaporin in soybean root nodule symbiosomes. J Biol Chem, 272: 16256?16261
    147. Robinson DG, Sieber H, Kammerloher W, Schaffner AR. 1996. PIP1 aquaporins are concentrated in plasmalemmasomes of Arabidopsis thaliana mesophyll. Plant Physiol, 111: 645?649
    148. Ruiter RK, Vaneldik GJ, Vanherpen MMA, Schrauwen JAM, Wullems GJ. 1997. Expression in anthers of two gnes encoding Brassica oleracea transmembrane channel proteins. Plant Mol Biol, 34: 163?168
    149. Sambrook, F, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor, New York. pp. 1860?1865
    150. Santoni V, Vinh J, Pflieger D, Sommerer N, Maurel C. 2003. A proteomic study reveals novel insights into the diversity of aquaporin forms expressed in the plasma membrane of plant roots. Biochem J, 373: 289?296
    151. Sarda X, Tousch D, Ferrare K, Cellier F, Alcon C, Dupuis JM, Casse F, Lamaze T. 1999. Characterization of closely related delta-TIP genes encoding aquaporins which are differentially expressed in sunflower roots upon water deprivation through exposure to air. Plant Mol Biol, 40: 179?191
    152. Sarda X, Tousch D, Ferrare K, Legrand E, Dupuis J M, Casse-Delbart F, Lamaze T. 1997. Two TIP-like genes encoding aquaporins are expressed in sunflower guard cells. Plant J, 12: 1103?1111
    153. Schaffner AR. 1998. Aquaporin function, structure, and expression: are there more surprises to surface in water relations? Planta, 204: 131?139
    154. Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA. 1965. Sap pressure in vascular plants. Science, 148: 339?346
    155. Schuler I, Milon A, Nakatani Y, Ourisson G, Albrecht AM, Benveniste P, Hartman MA. 1991 Differential effects of plant sterols on water permeability and on acyl chain ordering of soybean phosphatidylcholine bilayers. Proc Natl Acad Sci U S A, 88: 6926?6930
    156. Shultz HR, Matthews MA. 1988. Resistance to water transport in shoots of Vitis vinifera L. relation to growth at low water potential. Plant Physiol, 88: 718?724
    157. Siefritz F, Otto B, Bienert GP, van der Krol A, Kaldenhoff R. 2004. The plasma membrane aquaporin NtAQP1 is a key component of the leaf unfolding mechanism in tobacco. Plant J, 37:147?155
    158. Siefritz F, Tyree MT, Lovisolo C, Schubert A, Kaldenhoff R. 2002. PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants. Plant Cell, 14: 869?876
    159. Sigel E. 1990. Use of Xenopus oocytes for the functional expression of plasma membrane proteins. J Membr Biol, 117: 201?221
    160. Smart L B, Moskal W A, Cameron K D, Bennett A B. 2001. MIP genes are down-regulated under drought stress in Nicotiana glauca. Plant Cell Physiol, 42:686?693
    161. Steudle E. 1989. Water flow in plants and its coupling to other processes: an overview. Methods Enzymol, 174: 183?225
    162. Steudle E. 1994. Water transport across roots. Plant Soil, 167: 79?90
    163. Steudle E. 2000. Water uptake by roots: effects of water deficit. J Exp Bot, 51:1531?1542
    164. Steudle E. 2001. The conesion-tension mechanism and the acquisition of water by plant roots. Annu Rev Plant Physiol Plant Mol Biol, 52: 847?875
    165. Steudle E, Brinckmann E. 1989. The osmometer model of the root: water and solute relations of Phaseolus coccineus. Botanica Acta, 102: 85?95
    166. Steudle E. Oren R, Schulze ED 1987. Water transport in maize roots. Plant Physiology, 84: 1220?1232
    167. Steudle E, Peterson CA. 1998. How does water get through roots. J. Exp Bot, 49: 775?788
    168. Suga S, Imagawa S, Maeshima M. 2001. Specificity of the accumulation of mRNAs and proteins of the plasma and tonoplast aquaporins in radish organs. Plant Physiol, 125: 1591?1602
    169. Suga S, Komatsu S, Maeshima M. 2002. Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlings. Plant Cell Physiol, 43: 1229?1237
    170. Sun MH, Xu W, Zhu YF, Su WA and Tang ZC. 2001. A simple method for in situ hybridization to RNA in guard cells of Vicia Faba L.: the expression of aquaporins in guard cells. Plant Molecular Biology Reporter, 19: 129?135
    171. Tazawa M, Ohkuma E, Shibasaka M, Nakashima S. 1997. Mercurial-sensitive water transport in barley roots. J Plant research, 110: 435?442
    172. Toriyama K, Hinata K. 1985. Cell suspension and protoplasts culture in rice. Plant Sci, 41: 179?183
    173. Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, Luu DT, Bligny R, Maurel C. 2003. Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature, 425: 393?397
    174. Turner NC, O'Toole JC, Cruz R.T, Yambao EB, Ahmad S, Namuco OS, Dingkuhn, M. 1986. Responses of seven diverse rice cultivars to water deficits. 2. Osmotic adjustment, leaf elasticity, leaf extension, leaf death, stomatal conductance and photosynthesis. Field Crop Res, 13: 273?286
    175. Tyerman SD, Bohnert, HJ, Maurel C, Steudle E, Smith JAC. 1999. Plant aquaporins: their molecular biology, biophysics and significance for plant water relations. J Exp Bot, 50: 1055?1071
    176. Tyerman SD, Niemietz CM, Bramley H. 2002. Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ, 25: 173?194
    177. Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R. 2003. The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature, 425: 734?737
    178. Vernieri P, Lenzi A, Figaro M, Tognoni F, Pardossi A. 2001. How the roots contribute to the ability of Phaseolus vulgaris L. to cope with chilling-induced water stress. J Exp Bot, 52: 2199?2206
    179. Wan X, Zwiazek JJ. 1999. Mercuric chloride effects on root water transport in aspen seedlings. Plant Physiol, 121: 939?946
    180. Wang YH, Garvin DF, Kochian LV. 2001. Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol, 127:345?359
    181. Wayne R, Tazawa M. 1990. Nature of the water channels in the internodal cells of Nitellopsis. J Membr Biol, 116: 31?39
    182. Weaver CD, Roberts DM. 1992. Determination of the site of phosphorylation of nodulin 26 by the calcium-dependent protein kinase from soybean nodules. Biochemistry, 31: 8954?8959
    183. Wei CF Steudle E, Tyree MT. 1999. Water ascent in plants: do ongoing controversies have a sound basis? Trends Plant Sci, 4: 372?275
    184. Wei CF Steudle E, Tyree MT. 2000. Reply: Water ascent in plants. Trends Plant Sci, 5: 146?147
    185. Weig A, Deswarte C, Chrispeels MJ. 1997. The major intrinsic protein family of Arabidopsis has 23 members that form three distinct groups with functional aquaporins in each group. Plant Physiol, 114: 1347?1357
    186. Werner M, Uehlein N, Proksch P, Kaldenhoff R. 2001. Characterization of two tomato aquaporins and expression during the incompatible interaction of tomato with the plant parasite Cuscuta reflexa. Planta, 213:550?555
    187. Yamada S, Bohnert HJ. 2000. Expression of the PIP aquaporin promoter-MipA from the common ice plant in tobacco. Plant Cell Physiol, 41: 719?725
    188. Yamada S, Katsuhara M, Kelly W B, Michalowski C B, Bohnert H J. 1995. A family of transcripts encoding water channel proteins: tissue-specific expression in the common ice plant. Plant Cell, 7:1129?1142
    189. Yamada S, Komori T, Myers PN, Kuwata S, Kubo T, Imaseki H. 1997a. Expression of plasma membrane water channel genes under water stress in Nicotiana excelsior. Plant Cell Physiol, 38: 1226?1231
    190. Yamada S, Nelson DE, Ley E, Marquez S, Bohnert HJ. 1997b. The expression of an aquaporin promoter from Mesembryanthemum crystallinum in tobacco. Plant Cell Physiol, 38: 1326?1332
    191. Yamaguchi-Shinozaki M, Koizumi M, Urao S, Shinozaki K. 1992. Molecular cloning of 9 cDNA that are responsive to dessication in Arabidopsis thaliana. Sequence analysis of one cDNA that encodes a putative transmembrane channel protein. Plant Cell Physiol, 33: 217?224
    192. Yamamoto YT, Taylor CG, Acedo GH, Cheng CL, Conkling MA. 1991. Characterization of cis-acting sequences regulating root-specific gene expression in tobacco. Plant Cell, 3: 371?382
    193. Yasui M, Hazama A, Kwon TH, Nielsen S, Guggina WB, Agre P. 1999. Rapid gating and anion permeability of an intracellular aquaporin. Nature, 402: 184?187
    194. Zeidel ML, Ambudkar SV, Smith BL, Agre P. 1992. Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry, 31: 7436? 7440
    195. Zeuthen T, Kaerke DA. 1999. Transport of water and glycerol in Aquaporin 3 is gated by H+. J Biol Chem, 274: 21631?21636
    196. Zhang R, Logee KA, Verkman AS. 1990. Expression of mRNA coding for kidney and red cell water channels in Xenopus oocytes. J Biol Chem, 265: 15375?15378
    197. Zhang R, van Hoek AN, Biwersi J, Verkman AS. 1993. A point mutation at cysteine 189 blocks the water permeability of rat kidney water channel CHIP28. Biochemistry, 32: 2938?2941
    198. Zhang R, Verkman AS. 1991. Water and urea permeability properties of Xenopus oocytes: expression of mRNA form toad urinary bladder. Am J Physiol, 260: 26?34
    199. Zhang WH, Tyerman SD. 1999. Inhibition of water channels by HgCl2 in intact wheat root cells Plant Physiol, 120: 849?858
    200. Zhu MJ, Wang XC, Chen J. 2000. Identification and role of plasma membrane aquaporin in maize root. Chinese Science Bulletin, 45: 1493?1496
    201. Zimmermann U, Wagner HJ, Schneider H, Rokitta M, Haase A, Bentrup FW. 2000. Water ascent in plants: the ongoing debate. Trends Plant Sci, 5: 145?146
    202. Zhang WH, Tyerman SD. 1991. Effect of low O2 concentration and azide on hydraulic conductivity and osmotic volume of the cortical cells of wheat roots. Austr J Plant Physiol, 18: 603?613
    203. 黄昊,苏维埃,汤章城。1999。水渗透透性检测法。现代植物生理学实验指南,科学出版社,北京。P78-81
    204. 刘巧泉、张景六。1998。根癌农杆菌介导的水稻高效转化系统的建立。植物生理学报,24:259?271
    205. 倪晋山。1985。植物生理学实验手册(薛应龙主编)上海科学技术出版社,上海。P63?64
    206. 孙梅好,苏维埃。1999。水扩散透性检测法。现代植物生理学实验指南(汤章城主编),科学出版社,北京。P80-82
    207. 于秋菊,杜丽,胡鸢雷,林忠平。2002。油菜质膜水孔蛋白BnPIP1基因启动子区的克隆及初步的功能分析。中国科学(C辑),32:519-526

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700