用户名: 密码: 验证码:
大厚度材料磨料水射流切割工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有“冷、软”加工特性的磨料水射流切割技术以其独特的工艺优势在现代切割工业中占有越来越重要的地位。由于固液两相射流自身的“柔性”特点,加工质量和效率受工艺实现过程相关因素波动的影响较为明显,特别是在切割厚度增大时,切口锥度、断面波纹等工艺缺陷趋于严重。
     目前,磨料水射流切割工艺应用研究集中于提高精度和效率两个方向,本课题正是在此背景下提出,探索在现有加工条件下实施大厚度材料高效切割并保证一定表面质量的有效途径。课题研究主要手段和过程包括:
     (1)以行业发展现状为依据,在工艺理论上分析研究大厚度材料磨料水射流切割中存在的缺陷及其生成原因,在切割机理、射流结构特性、磨粒受力及运动规律、关键技术等方面寻求解决方法;
     (2)制订合理工艺参数组合,设计切割正交试验,对45号钢和大理石作为塑性、脆性两种材料的典型代表进行切割试验。采集实际参数,对射流压力、切割速度、靶距和磨料体积浓度等主要参数进行四因素四水平极差正交直观分析,获得影响因素的主次顺序以及最优化参数组合。对所采集的实验数据进行回归分析,确定切割深度、切割质量方程;
     (3)基于FLUENT工程流体分析软件,对磨料水射流的内外流场进行数值模拟仿真分析,为喷嘴结构参数改进、工艺参数优化提供理论依据;
     (4)在前面研究的基础上,提出适合大厚度材料加工的磨料水射流切割改进设备的总体设计方案。对目前影响加工效率和质量的关键部件如喷嘴组件、磨料供给装置等进行改进设计,为仿真结果的试验验证创造条件;
     (5)综合工艺参数、设备、环境等影响因素,提出适合大厚度材料加工的前混合磨料水射流切割工艺参数优化组合并进行相关试验验证。
     本文从理论分析、实验研究、数值模拟、结构改进设计和工艺参数优化多角度对大厚度材料磨料水射流切割工艺进行了深入研究。结果表明,对现役加工设备进行适应性局部改进和参数组合优化,切割效率可提高50%左右,且加工质量明显改善。我国面临针对性新型设备开发,本研究拓展了磨料水射流切割技术的应用领域,并为其市场推广提供了有效的技术支持。
The abrasive water jet cutting technology with“cold, soft”processing char-acteristics occupies an increasingly important position for its unique technical pre-dominance in the modern cutting industry .As the solid-liquid two-phase jet own“?exible”characteristics, related-factors ?uctuations in technology implementationprocedure more obviously in?uence the machining quality and e?ciency. Especiallywith increases of cutting thickness, defective workmanship such as cut taper and cross-section corrugation become badly serious.
     At present, applied research on abrasive water jet cutting technology fastens onimproving cutting precision and e?ciency in both directions.The subject matter israised in this foregoing context, exploring an e?ective way in the existing processingconditions to ensure high-e?ciency cutting and certain processing quality aiming atheavy-section materials. The main measure and process of this research subjects areas follows:
     (1)Based on the status quo of the industrial development, cutting defects in pro-cess of abrasive water-jet machining heavy-section materials and the generated reasonsare theoretically analyzed. A solution is quested in aspects of cutting mechanism, jetstructure and its speciality, the regularity of abrasive stress and movement , the keytechnology and etc.
     (2)A rational combination of technological parameters is implemented, orthog-onal cutting experiment is designed, and cutting marble and 45 steel plate on behalfof both plastic materials and hard brittle materials are experimentized.Then, the mainactual parameters such as jet ?uid pressure,cutting velocity , target-distance and abra-sive volumetrical concentration ,are collected and orthogonally analyzed with regardto four factors and levels,to acquire primary and secondary sequence about in?uencingfactors and to optimize the combination of parameters.In turn, regression analysis onthe experimental datum are proceeded, which to consequently ensure cutting depthand quality equations.
     (3)Based on FLUENT-engineering ?uid analyzing software, numerical simulationis analyzed on abrasive water jet in internal-external ?ow field, which to provide atheoretical basis to improve the structural parameters of the nozzle and to optimizeprocessing parameters.
     (4)Based on the previous study, the overall design scheme to improve abrasivewater jet cutting equipment suitable for processing heavy-section materials. Thenimproved design of existing key parts such as the nozzle unit and the abrasive feedwayimpacting on machining e?ciency and quality is made, which to create conditions in order to test and verify the simulation results.
     (5)Comprehensively considered technology parameters, equipment, and envi-ronmental factors,the optimized process-parameters combination is provided suitablefor pre-mixed abrasive jet cutting heavy-section materials,and coherent experimentalverification is carried out.
     This article profoundly researches on abrasive water-jet cutting technology in sev-eral points of view, such as theoretical analysis, experimental study, numerical simula-tion, structural design and technological parameters optimization. The results showedthat adaptively improving local active-service process equipment and optimizing thecombination of process parameters may advance the abrasive water jet cutting e?-ciency by 50﹪, and also improve the processing quality. China is faced on a newtype of targeted-devices exploitation. So this study extends the application field of thetechnology and marketing to provide a e?ective technical support.
引文
[1]张运祺.高压水射流切割原理及其应用[J].武汉工业大学学报,16(4),1994(12):13-18.
    [2]薛胜雄等.美国的高压水射流切割技术[J].流体机械,1996(5):13-15.
    [3] Matt Kalina.水喷射切割技术[J].Welding Journal,1999(7):57-59.
    [4] D. S. Miller. Strategies For Introducing New Abrasive Waterjet Technologies. 2005WJTA American Waterjet Conference, August 21-23, 2005, Houston, Texas, Paper2A-1.
    [5]杨波.几种新型特种切割方法及其特性对比[J].煤矿机械,2005(10):80-82.
    [6]侯健,韩育礼.超高压磨料水射流切割系统试验研究[J].兵工学报,2000(8):253-256.
    [7] H. Liu , J. Wang, N. Kelson , R.J. Brown. A study of abrasive waterjet characteristicsby CFD simulation[J]. Journal of Materials Processing Technology 153-154 (2004) 488-493.
    [8] M. Knaupp, A. Meyer, G. Erichsen, M. Sahney, C. Burnham, Dynamic compensation ofabrasive water jet properties through 3-dimensional jet control, 2002, in: Proceedingsof the 16th International Conference on Water Jetting, BHR Group, Aix-en-Provence,France, 2002, pp. 75-89.
    [9] J. Zeng, J. Olsen, C. Olsen, B. Guglielmetti, Taper-free abrasive waterjet cutting with atilting head, 2005, in: Proceedings of the 2005 WJTA American Water Jet Conference,WJTA, Houston, Texas, 2005, pp. 2A-7A.
    [10] A.W.Momber, R. Kovacevic, Principles of AbrasiveWater Jet Machining, Springer-Verlag, London, 1998.
    [11]俞涛,贾明峰,方明伦.基于厚度的磨料水射流切割参数模型[J].机电一体化,2002(3):29-30.
    [12]张凤莲.磨料水射流加工工程陶瓷工艺参数对加工质量的影响[J].机械制造,2003(4):10-11.
    [13]冯衍霞,黄传真等.磨料水射流切割陶瓷材料的加工表面质量研究[J].工具技术,2007(1):43-45.
    [14]胡俊伟.磨料水射流切割方程和切口质量研究[D].中国矿业大学,2001.
    [15]杨林等.磨料水射流切割质量的参数化模型[J].机械科学与技术,2005(7):869-871.
    [16]周锦进,朱派龙,等.先进的冷加工–高压水射流切割技术原理和应用前景[C].第八届全国电加工学术年会论文集:395~403.
    [17]宋拥政,温效康,梁志强.磨料水射流的切割机制[J].机械工程学报,1997(6):102-107.
    [18]朱派龙等.制造业的一枝奇葩-高压水射流加工技术[J].机械设计与制造工程,1999(5).
    [19]薛胜雄.2001年国际水射流技术纵览[J].流体机械,2002(1):32-36.
    [20] Siores E,Chen L, etal.Improving surface finish generated By the abrasive wa-ter jet process[A].International Symposiom On Advances in abrasive Technol-ogy[C].Sydney,Australia,1997: 187-191.
    [21] J. Wang,Abrasive Water jet Machining of Polymer Matrix Composites Cutting Perfor-mance,Erosive Process and Predictive Models Int J Ady Manuf Technol (1999)15:757-768.
    [22] D.S.Miller.New Abrasive Waterjet Systems to Compete With Lasers.2005 WJTA Amer-ican Waterjet Conference, August 21-23, 2005,Houston, Texas, Paper 1A-1.
    [23]赵欣.异形喷嘴射流特性的实验研究[D].天津科技大学,2005(3).
    [24]陆国胜,龚烈航,王强,等.前混合磨料水射流磨料颗粒加速机理分析[J].解放军理工大学学报(自然科学版),2006(6):276-280.
    [25]尤明庆.前混合磨料射流喷嘴内流动状态的理论研究[J].流体机械,1996(12):17-20.
    [26]铁占绪.磨料射流中磨料粒子的加速机理和运动规律[J].焦作矿业学院学报,1995(4):39-42.
    [27] H. Orbanic, M. Junkar. Analysis of striation formation mechanism in abrasive waterjet cutting [J].Wear 265 (2008): 821-830.
    [28] C. Ma, R.T. Deam. A correlation for predicting the kerf profile from abrasive water jetcutting [J]. Experimental Thermal and Fluid Science 30 (2006) :337-343.
    [29]赵永赞,赵民.磨料参数对石材切割能力的影响[J].石材,2006(8):33-35,40.
    [30]卢新郁,黄传真,冯衍霞,等.磨料水射流在大理石切割中的应用[J].山东大学学报(工学版),2007(4):21-24,33.
    [31]任露泉.试验优化设计与分析.北京:高等教育出版社,2003.
    [32]白新桂.数据分析与试验优化设计[M].清华大学出版社,1986(10).
    [33] Hashish, M. A model study of abrasive-waterjet Machining,ASME Transac-tions[J].Journal of Engineering Material and Technology.vol.111.P154-162.
    [34]陈义强等.磨料水射流切割方程的研究[J].煤矿机械,2003(9):23-25.
    [35]杨林,张凤华,唐川林.磨料水射流切割断面质量的研究[J].机械设计与研究,2003(5):44-46.
    [36] F.L. Chen, J. Wang, E. Lemma, E. Siores. Striation formation mechanisms on the jetcutting surface [J]. Journal of Materials Processing Technology 141(2003):213-218.
    [37] Maboruki.T.Numerical simulation and experimental study of the interaction betweena pure high-velocity water jet and targets:contribution to investigate the decoctingprocess.Wear.2000,239:260-273.
    [38]李峥.前混合磨料射流数控切割系统设计及切割参数的研究[D].安徽理工大学,2005(4).
    [39]陈春,聂松林,等.高压水射流的CFD仿真及分析[J].机床与液压,2006(2):103-105.
    [40] John D. Anderson,JR. Computational Fluid Dynamics the Basics with Applications[M].北京:清华大学出版社.2004.
    [41] A.I.hassna,J.Kosmol. Dynamic elastic-plastic analysis of 3-D deformation in abrasivewater jet machining,Journal of Materials Process technology.2001,113:337-341.
    [42]贾明峰.前混合磨料水射流技术应用及机理的研究[D].上海大学,2002.
    [43]郭烈锦.两相与多相流体动力学[M].西安:西安交通大学出版社,2002(12).
    [44]丁圣银.高压磨料水射流切割喷嘴流场分析及结构参数优化研究[D].江苏大学,2006(12).
    [45]王东,吴雨川,等.高压水射流切割流场的数值模拟研究.武汉科技学院学报.2005,18(3).
    [46]汪庆华,李福援,梁彦安.磨料水射流喷头的研究.西安工业学院学报.vol.2,N0.2,2004.
    [47] M.K.Jackson,T.W.Davie. Nozzle design for coherentcwatercjet Produc-tion,Department Chemical Engineering,Exeter University,Exeter Devon,U.K.
    [48]熊佳,雷玉勇,等.基于FLUENT的磨料水射流喷嘴内流场的可视化研究[J].润滑与密封,2008,33(6):52-53,62.
    [49]侯国荣.磨料水射流切割性能和喷嘴内外流场的仿真研究[D].山东大学,2006(5):11-19.
    [50]胡贵华,俞涛,刘小健.前混合磨料水射流喷嘴内液固两相流的数值模拟[J].机电一体化,2005(6):20-23.
    [51]王明波,王瑞和.喷嘴内液固两相射流流场的数值模拟[J].石油大学学报(自然科学版),2005,29(5):46-49.
    [52] J.Wang. Abrasive water jet machining of Engineering Materials,Trans Tech Publica-tions, Switzerland,2003.
    [53]王洪伦,龚烈航,姚笛.高压水切割喷嘴的研究[J].机床与液压,2005(4):42-43,55.
    [54]梁春光.ZCSD万能数控高压水射流切割机床控制软件系统设计与应用[D].重庆大学,2005(12).
    [55] F.L.Chen,E.Siores. The e?ect of cutting jet variation on striation formation in abrasivewater jet cutting [J]. International Journal of Machine Tools and Manufacture, 2001,41: 1479-1486.
    [56]雷玉勇,宋清俊,杨桂林,等.基于SIMULINK的水射流动态特性仿真[J].机床与液压,2007,35(4):125-128.
    [57]赵中敏.数控机床爬行与振动分析[J].重型机械科技,2006(3):65-69.
    [58]陈雪峰,陈桦.超高压水射流切割装置的设计[J].机械工程师,2000(7):40-41.
    [59]贾北华.前混合磨料射流连续工作磨料装供系统研究[J].新技术新工艺,1996(5):15-17.
    [60]宋清俊.磨料水射流精确供砂装置的研究[D].西华大学,2007(5).
    [61]张怀亮.前混合磨料水射流切割机的设计与研究[J].流体机械,2001(8):27-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700