上承式拉索组合拱桥索力优化与受力性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上承式拉索组合拱桥是在桁式组合拱桥的基础上发展和改进的新桥型,该桥型中采用柔性斜拉索代替桁式组合拱桥中刚性的预应力钢筋混凝土斜杆,该拉索成桥后作为永久性结构构件,施工过程中代替了临时扣索。本文以上承式拉索组合拱桥为研究对象,对上承式拉索组合拱桥的索力优化、施工过程、静力性能、动力特性和地震响应进行了系统研究,主要的研究工作和成果如下:
     1、介绍了该桥型的结构体系及特点,研究了索力变化对拱肋弯矩的影响
     以仙神河大桥的比较设计方案为工程背景,介绍了上承式拉索组合拱桥的结构体系,通过与其他上承式拱桥及索承网壳进行对比,得出该桥型的结构特点。其中最突出的特点是当主拱钢管拱肋合龙以后,仍可以通过调整斜拉索的索力来调整拱肋的内力,研究了索力变化对拱肋弯矩的影响。
     2、上承式拉索组合拱桥调索控制方法研究
     上承式拉索组合拱桥施工过程中,为了使拉索在各施工阶段达到最优索力,同一施工阶段需要对多根拉索进行索力调整,索力调整过程中必须考虑各拉索索力之间的相互影响。提出了批量调索时,拉索拔出量精确计算的施调索力法,推导了拉索拔出量及索力目标控制值的计算公式。批量调索时采用该方法计算各拉索的拔出量,在忽略拉索垂度情况下,不需要迭代计算,计算结果准确。以最大悬臂施工阶段为例,对比了上承式拉索组合拱桥调索的张拉控制方法。
     3、上承式拉索组合拱桥施工过程索力确定与受力性能研究
     上承式拉索组合拱桥采用悬臂桁架节段拼装的施工方法,在施工过程中通过调节索力大小控制拱肋的内力和线型,施工的核心问题就是确定各施工阶段拉索索力大小及拉索施调控制。把上承式拉索组合拱桥的施工过程分成30个施工阶段,对上承式拉索组合拱桥的悬臂节段拼装施工过程及拱肋混凝土的浇注过程进行了施工仿真分析,对施工过程的结构受力性能进行了深入研究。分别按“零弯矩法”和“零挠度法”计算了各施工阶段各拉索的最优索力,得出施工过程中索力的变化规律。
     4、上承式拉索组合拱桥成桥索力优化研究
     目前影响矩阵法和单位荷载法建立索力优化计算的数学模型时未考虑施调索力之间相互作用,针对这种不足,提出了成桥索力优化计算的双影响矩阵法,并进行了理论推导。分别以指定拱肋受力状态和拱肋弯曲应变能最小为索力优化目标,采用双影响矩阵法进行成桥索力优化计算,计算无迭代过程,可直接得到优化索力的精确值。分别采用了三种不同的方法对上承式拉索组合拱桥进行成桥索力优化计算。结果表明:双影响矩阵法具有计算速度快、计算精度高的优点。
     5、上承式拉索组合拱桥静力性能研究
     在成桥索力优化的基础上,研究了上承式拉索组合拱桥在恒载、车辆活载和温度变化作用下的受力性能。与普通上承式拱桥相比,上承式拉索组合拱桥经过索力优化以后,恒载作用下拱肋的受力状态得到明显改善。在相同等级的车辆活载作用下,上承式拉索组合拱桥的拱肋弯矩比普通上承式拱桥小得多,表明在普通上承式拱桥中增加拉索对减小车辆活载作用下的拱肋弯矩非常有效。在均匀温度变化作用下,上承式拉索组合拱桥的桥面纵梁受到两端地锚的约束不能自由伸缩,从而产生较大温度应力。
     6、上承式拉索组合拱桥的动力特性和地震响应研究
     采用子空间迭代法计算了上承式拉索组合拱桥的动力特性,采用振型分解反应谱法计算了上承式拉索组合拱桥的地震响应,并与结构参数相同的普通上承式拱桥的动力特性和地震响应进行对比。上承式拉索组合拱桥和普通上承式拱桥的基频相同,上承式拉索组合拱桥的第一阶竖向振动频率比普通上承式拱桥的第一阶竖向振动频率提高了将近一倍。表明在拱肋平面内增加拉索,对上承式拱桥横桥向的水平刚度没有影响,但使得上承式拱桥的竖向刚度得到明显提高。由竖向地震分量作用引起的某些地震效应比水平地震动分量引起的地震效应要大,抗震计算时竖向地震动响应不能忽略。
The deck type arch bridge with diagonal cables is a new kind of bridge typewhich is the development and improvement of trussed combination arch bridge.Flexible diagonal stayed-cables are introduced into the deck type arch bridge withdiagonal cables, just as rigid prestressed concrete diagonals are adopted to trussedcombination arch bridge. Flexible diagonal stayed-cables act as both temporarysupporting cables during construction process, but permanent structural members ofthe completed status of the deck type arch bridge with diagonal cables. Taking thedeck type arch bridge with diagonal cables as the research object, this thesis studies itscable tensions optimization, construction process, static performance, dynamiccharacteristics and seismic responses systematically. The main research contents andachievements cover the following aspects:
     1、 Introduction of the structural system and features of this birdge type andresearch on impact of cable force variation on moment of arch ribs
     Taking the comparison design layout of Xianshenhe bridge as engineeringbackground, the structural system of the deck type arch bridge with diagonal cablesare introduced firstly. The structural features of the bridge type was obtained bycontrast with other deck type bridges and cable-supported lattice shells. The mostprominent feature of those is that the internal force may be adjusted by adjusting thecable force after closure of arch ribs. The impact of cable force variation on momentof arch ribs is studied.
     2、 Research on control method of cable tensions adjustment on the constructionprocess of the deck type arch bridge with diagonal cables
     Several cable forces should be adjusted on the same construction stage in order tomake cable forces meet the optimal values during construction.“Adjusted cableforces method” is put forward to calculate pull-out length of every stayed-cable incase of batch adjustment of cable, taking into consideration the interaction betweenthe cable forces. The formula of pull-out length and adjusted value of cable forces isdeduced out in this thesis. Without iterative calculation,the exact pull-out length ofevery stayed-cable could be obtained by using this method immediately, on theassumption that sag effect of stayed-cable can be neglected. So the formula isconvenient to use. Taking the longest cantilever construction stage as example, thecomparison study of control method of cable tensions adjustment is carried out.
     3、 Research on determination of the cable forces and mechanical behaviorduring construction of the deck type arch bridge with diagonal cables
     The construction method of cantilevered segment assembling is adopted to build the deck type arch bridge with diagonal cables. Cable forces must be made adjustmentto control the internal force and lineshape of arch rib during construction, so the keycontruction technologies are determination of the cable forces and control of cabletensions adjustment. Construction process of the deck type arch bridge with diagonalcables is divided into thirty stages in this thesis. Construction simulation is carried outfor cantilevered segment assembling process of steel structure and pouring process ofarch rib concrete. The extensive studies have been conducted on mechanical behaviorduring construction of the deck type arch bridge with diagonal cables. Optimal cableforces are sought out by both “zero moment method” and “zero deflection method” atevery construction stage. Variation law of cable forces is gained on the constructionprocess.
     4、 Research on optimization of cable tensions of the finished deck type archbridge with diagonal cables
     Mathematical model is usually established for optimization of cable tension by“influence matrix method” or “unit load method” now, without regard to mutual effectbetween adjusted cable forces. Aimed at their shortcomings,“double influencematrixes method” for optimization of cable tensions is put forward and theoreticalderivation is made in this thesis. The optimization calculation of cable forces isperformed by means of two influence matrixes method, taking minimum bendingstrain energy and appointed stress states of arch ribs as optimum object separately.Without iterative calculation, exact cable forces could be obtained using this methodimmediately. Taking the deck type arch bridge with diagonal cables as an example,optimization calculation of cable tension is conducted using three different kinds ofmethod in this thesis separately. The research result shows that “double influencematrixes method” has the characteristic of fast operating speed and high precision.
     5、 Research on static performance of the deck type arch bridge with diagonalcables subjected to dead load
     On the base of optimization of cable tensions of finished deck type arch bridgeswith diagonal cables, its mechanical behavior is studied subjected to dead load,vehicle live load and uniform change in temperature。Since the cable forces actuallyare just optimal cable forces of the deck type arch bridge with diagonal cables, themechanical behavior of arch ribs of the deck type arch bridge with diagonal cables isbetter than ordinary deck type arch bridge. Applied the same grade of vehicle live load,bending moments in arch ribs of the deck type arch bridge with diagonal cables is lessthan the ordinary deck type arch bridge. The results show that it is effective to reducebending moment of arch rib subjected to vehicle live load that the stayed-cable isadopted to the ordinary deck type arch bridge When the deck type arch bridges withdiagonal cables is subjected to uniform change in temperature., the deformation of girder is restrained by ground anchors, so the girders have great temperature stresses.
     6、 Research on dynamic characteristics and seismic response of the deck typearch bridge with diagonal cables
     The natural vibration frequencies and modes of the bridge are calculated by thesubspace iteration method, and then its seismic response is also analyzed by means ofmode-shape decomposition response spectrum method. The comparative analysis ofdynamic performance and earthquake response is also carried out between the decktype arch bridge with diagonal cables and the ordinary deck type arch bridge with thesame structural parameters. This two kinds of deck type arch bridge have the samebasic frequency, whereas the first vertical vibration frequency of the deck type archbridge with diagonal cables is about twice as much as that of the ordinary deck typearch bridge. The results of the studies indicate that stayed cables have little influenceon horizontal stiffness of the deck type arch bridge with diagonal cables, but increasevertical rigidity obviously. Some seismic responses to vertical ground motioncomponent are greater than to horizontal ground motion component, so it is concludedthat vertical ground motion component play an important role in the composition ofseismic responses, and can not be ignored.
引文
[1]顾安邦.桥梁工程(下册)[M].北京:人民交通出版社,2002.15-16
    [2]罗福午.历史上的拱桥[J].建筑技术,2002,33(3):216-218
    [3]罗英,唐寰澄.中国石拱桥研究[M].北京:人民交通出版社,1993,6:6-7
    [4]田云跃.湖南现代石拱桥的发展与成就[J].东北公路,1992,2:41-47
    [5] Sukhen Chatterjee. The design of modern steel bridges(Second Edition)[M]. UK:Blackwell Science Ltd,2003:2-3
    [6]陈宝春,黄卿维编译.葡萄牙亨里克拱桥的设计与施工[J].世界桥梁,2006,3:1-4
    [7] Pierre Xercavins, Daniel Demarthe, and Ken Shushkewich. Eugene Freyssinet–HisIncredible Journey To Invent And Revolutionize Prestressed Concrete Construction[C].Maryland, USA:3rd fib International Congress,2010:1-28
    [8] S.N.Mander. A Critical Analysis Of The Krk (Krcki) Bridge[C]. Proceedings of BridgeEngineering Conference2010, April2010, Bath, UK
    [9]陈少锋,茅兵海等.千岛湖1号特大桥的设计与施工[J].森林工程,2007,23(1):61-63
    [10]马庭林,徐勇等.水柏铁路北盘江大桥设计[J].预应力技术,2006,6:10-14
    [11]孙军,俞宏等.上承式单肋钢管混凝土拱桥试验研究[J].中外公路,2007,27(6):81-84
    [12]陈宝春.拱桥技术的回顾与展望[J].福州大学学报,2009,37(1):94-106
    [13]陈宝春,杨亚林.钢管混凝土上承式拱桥桥型分析[J].公路,2006,2:1-4
    [14]严允中.桁式组合拱桥的近况及发展[J].桥梁建设,1989,2:50-56
    [15]宋雷,周志祥,周锐.大跨度桁式组合拱桥结构损伤对其动力特性的影响[J].重庆交通学院学报,2005,24(4):1-5
    [16]俞同华,林长川,郑信光.钢筋混凝土桁架拱桥(第二版)[M].北京:人民交通出版社.1984:1-20
    [17]滕德会.桁式组合拱桥关键施工工艺[J].湖南交通科技.2009,29(1):65-66
    [18]潘成杰,陈天本,陆宗林.贵州江界河桁式组合拱桥设计[J].土木工程学报,1989,22(4):48-56
    [19]郑皆连.我国公路桥梁安全状况及对策[J].桥梁,2007(5):20-23
    [20]许长城,钟宁,张鑫.预应力混凝土桁式组合拱桥病害成因分析[J].公路交通技术.2009,1:70-72
    [21]上官兴,彭德清等.钢管砼桁式索拱桥专利[P].中华人民共和国知识产权局:ZL200710068527.8,2007.5
    [22]严云,徐海燕等.钢管混凝土拉索组合拱桥桥型结构特性分析[J].桥梁建设,2007(3):42-44
    [23]肖国强.新型钢管混凝土桁式组合拱桥主拱施工实践[J].中外公路,2004,24(4):75-77
    [24] Manabu Ito. Cable-supported Steel Bridges: Design Problems and Solutions[J]. Journal ofConstructional Steel Research,1996,39(1):69-84
    [25] Minger Wua, Mutsuro Sasakib. Structural behaviors of an arch stiffened by cables[J].Engineering Structures,2007,29(4):529-541
    [26] Osamu Hosozawa, Kouhei Shimamura, Taro Mizutani. The role of cables in large spanspatial structures: introduction of recent space structures with cables in Japan [J].Engineering Structures,1999,21:795-804
    [27]薛素铎,刘迎春译.张拉整体结构-未来的结构体系[M].北京:中国建筑工业出版社,2007.11:17-18
    [28] P Krishna. Tension roofs and bridges[J]. Journal of Constructional Steel Research,2001,57(11):1123-1140
    [29] Yueyu Zhao, Houjun Kang. In-plane free vibration analysis of cable–arch structure [J].Journal of Sound and Vibration,2008,312(3):363-379
    [30]张其林,王洪军.吉林省速滑馆悬索-拱屋盖结构设计[J].建筑结构,2007,37(2):50-53
    [31]黄利锋,冯健等.内凹式索拱结构极限承载力研究[J].建筑结构学报,2010,31(2):41-47
    [32]张毅刚.张弦结构的十年(一)——张弦结构的概念及平面张弦结构的发展[J].工业建筑,2009,39(10):105-113
    [33]陈昀明,杨亚林等.钢管混凝土拱梁组合桥桥型分析[J].公路,2006,12:38-41
    [34]林元培,马骉,周良.上海市黄浦江卢浦大桥方案设计[J].特种结构,2000,17(4):27-31
    [35]易壮鹏,王连华等.斜拉拱桥的构造特点及静力分析[J].中外公路,2006,26(4):99-103
    [36]钱令希,钟万勰等.关于斜拉桥结构形式的探讨——斜拉拱桥[J].计算结构力学及其应用,1988,5(3):117-119
    [37]王莲香,周水兴.马来西亚吉隆坡特拉贾亚城的斜拉拱组合桥[J].世界桥梁,2004,4:9-12
    [38] Pascal Klein, Michael Yamout. Cable-Stayed Arch Bridge, Putrajaya, kuala Lumpur,Malaysia[J]. Structural Engineering International.2003,3:196-199
    [39]吕建根,王荣辉.斜拉拱组合桥与普通拱桥受力性能对比[J].公路,2008,(8):5-9
    [40]杨克鉴,李凤芹,张亚丽.大跨度上承式钢管混凝土拱桥设计研究[J].铁道工程学报,2008,(12):66-71
    [41]郝成新,沈世钊.平面预应力索_拱体系[J].哈尔滨建筑工程学院学报,1986,19(3):1-14
    [42]郝成新.平面预应力索-拱体系在局部荷载(包括集中荷载)下的计算[J].哈尔滨建筑工程学院学报,1989,22(2):56-67
    [43]赵跃宇,吕建根等.斜拉拱桥的力学性能及经济性能的研究[J].世界桥梁,2005,(1):29-33
    [44]严云,徐海燕,任亮等.钢管混凝土拉索拱桥桥型结构特性分析[J].世界桥梁,2007,(3):42-44
    [45] B.W. Smith. Developing an erection scheme for a large bridge[J]. Computer-AidedDesign,1978,10(4):263-268
    [46] Zhong Liu, Fang Li, W. M. Kim Roddis. Analytic Model of Long-Span Self-Shored ArchBridge[J]. Journal of Bridge Engineering,2002,7(1):14-20
    [47]刘斌.混凝土灌注顺序对哑铃型钢管混凝土拱的影响[J].现代交通技术,2008,5(2):39-42
    [48]胡庆安,丁鹏程,刘健新.工序变化对钢管混凝土拱桥应力的影响[J].长安大学学报,2006,26(5):54-57
    [49]宋洪岩,杨宝山,张元凯.钢管混凝土拉索组合拱桥自振特性分析[J].公路交通科技(应用技术版).2008(3):103-106
    [50]赵跃宇,杨相展,康厚军.斜拉拱桥动力特性分析[J].公路.2005,11:36-39
    [51]易建国,陈忠延.钢筋混凝土单跨析架拱桥抗震性能分析[J].重庆交通学院学报,1986,(1):58-71
    [52]彭勇均,朱东生,臧博.竖向地震作用对上承式拱桥的影响[J].重庆交通学院学报,2009,28(3):475-479
    [53]许金华,王向坚.大跨度拱桥在地震行波作用下的响应[J].重庆交通学院学报,1998,17(2):1-5
    [54]张波,李术才,杨学英等.上承式大跨度钢管混凝土拱桥地震反应分析[J].公路交通科技,2009,26(3):64-67
    [55]陈冠桦,盛兴旺.斜拉拱桥空间稳定性分析[J].世界桥梁,2007,3:51-54
    [56]曾勇,马如进,陈艾荣.大跨度上承式钢管混凝土拱桥的非线性稳定分析[J].上海公路,2008,(2):50-53
    [57]师伟,孙虎平.330m上承式钢管混凝土拱桥几何非线性与稳定性分析[J].城市道桥与防洪,2009,(8):52-54
    [58]许凯明,张明中,王佶.大跨度钢管混凝土拱桥施工阶段非线性稳定分析[J].西安建筑科技大学学报(自然科学版).2008,40(4):556-560
    [59]肖汝诚,项海帆.斜拉桥索力优化及其工程应用[J].计算力学学报,1998,15(1):118-125
    [60]梁鹏,肖汝诚等.斜拉桥索力优化实用方法[J].同济大学学报,2003,31(11):1270-1274
    [61]任亮,方志,上官兴.钢管混凝土拉索组合拱桥索力优化研究[J].工程力学.2010,27(5):153-158
    [62]任亮,徐海燕,严云.钢管混凝土拉索拱桥成桥索力优化研究[J].世界桥梁,2007,1:47-49
    [63] D. Janjic, M. Pircher, H. Pircher. E015Optimization of Cable Tensioning in Cable-StayedBridges [J]. Journal of Bridge Engineering,2003,8(3):131-137
    [64]童林,李传习等.钢管混凝土拱梁组合体系桥吊杆成桥索力的确定[J].长沙交通学院学报,2004,20(3):11-15
    [65]陈天本.天子山大桥的设计[J].中南公路工程.2005,30(2):68-77
    [66]陈天本.桁式组合拱桥[M].北京:人民交通出版社,2001:1-20;100-101
    [67]吴清明.复合钢管混凝土桥梁研究与实践[M].北京:人民交通出版社,2007.8:73-78
    [68] Jacques Brozzetti. Design development of steel-concrete composite bridges in France[J].Journal of Constructional Steel Research,2000,55(1):229-243
    [69] T.Kitada, T.Yamaguchi, M.Matsumura. New technologies of steel bridges in Japan[J].Journal of Constructional Steel Research,2002,58(1):21-70
    [70]刘迎春,朱明智,薛素铎.基于0-1整数规划的高强螺栓连接优化设计[J].建筑结构,2008,38(10):24-26
    [71]王应良,高宗余.欧美桥梁设计思想[M].北京:中国铁道出版社,2008.5:74
    [72]郭莉,付功义.索在杂交结构体系中的应用[J].四川建筑科学研究,2008,32(4):33-36
    [73] Changyoon Kim, Hyoungkwan Kim, Taekwun Park. Applicability of4D CAD in CivilEngineering Construction: Case Study of a Cable-Stayed Bridge Project[J]. Journal ofComputing in Civil Engineering,2011,25(1):98-107
    [74] Yong-Lin Pi, Mark A. Bradford. In-plane strength and design of fixed steel I-sectionarches[J]. Engineering Structures.2004(26):291–301
    [75]刘志.钢管混凝土拱桥结构静动力分析[J].中外公路,2011,31(4):184-187
    [76] Raid Karoumi. Some modeling aspects in the nonlinear finite element analysis of cablesupported bridges[J], Computers&Structures,1999,71(4):397-412
    [77] Bentley Systems, Incorporated. RM Bridge ANALYSIS USER GUIDE.2011.5.
    [78]郑皆连.三里江桥往事——我国第一座无支架施工的拱桥[J].桥梁,2011,(1):64-65
    [79] Y. Liu, X. ShangGuan, J. Liu. Long-span deck-type CFST arch bridge combinated withdiagonal cable[C]. Proceedings of the Sixth International Conference on Arch Bridge(Arch’10), October11-13,2010, Fuzhou, China:163-166
    [80] Pao-Hsii Wang, Tzu-Yang Tang, Hou-Nong Zheng.012Analysis of cable-stayed bridgesduring construction by cantilever methods[J]. Computers and Structures,2004,(82):329-346
    [81] D. W. Chen;F. T. K. Au;L. G. Thamb and P. K. K. Leeb. Determination of initial cableforces in prestressed concrete cable-stayed bridges for given design deck profiles usingthe force equilibrium method[J]. Computers and Structures,2000,74(1):1-9
    [82]薛成凤,白延芳,赵雷.大跨度混凝土斜拉桥施工控制正装和倒拆仿真分析[J].铁道建筑,2009,(8):1-4
    [83]王玉银,惠中华.钢管混凝土拱桥施工全过程与关键技术[M].北京:机械工业出版社,2010
    [84]白延芳,武芳文.斜拉桥正装与倒拆施工分析过程对照分析[J].四川建筑,2009,29(4):206-207
    [85]葛耀君.分段施工桥梁分析与控制[M].北京:人民交通出版社,2003.6:101-44
    [86] Troitsky, M. S. Prestressed Steel Bridges Theory and Design[M]. New York: VonNorstrand Reinhold Co,1990:13-14
    [87] WEI Jianjun, CHEN Nianhe. A Study on Cable-removing Scheme of the Cable-staySystem of the Zhijing River Bridge[C]. The9th International Conference of ChineseTransportation Professionals (ICCTP2009), August5-9,2009, Harbin, China:413-418
    [88] Tetsuya Yabuki; Sriramulu Vinnakota; Shigeru Kuranishi. Fixed-End Restraint Effect onSteel Arch Strength[J]. Journal of Structural Engineering,1986,112(4):653-664
    [89]梁立农,韩大建.索的非线性有限元与调索方法研究[J].工程力学.2007,24(11):146-152
    [90]秦顺全.桥梁施工控制——无应力状态法理论与实践[M].北京:人民交通出版社,2007.2:41-44
    [91] Podolny W, Scalzi J. B. Construction and design of cable-stayed bridges[J]. Computers&Structures,2001:16(23):268-292
    [92] Sung, Yu-Chi; Chang, Dyi-Wei; Teo, Eng-Huat. Optimum post-tensioning cable forces ofMau-Lo Hsi cable-stayed bridge[J]. Engineering Structures,2006,28(10):1407-1417
    [93]刘迎春,薛素铎,李雄彦.上承式拉索拱桥成桥索力优化研究[J].北京工业大学学报,2011,37(9):1343-1347
    [94] Yu-Chi Sunga, Dyi-Wei Changb, Eng-Huat Teob. Optimum post-tensioning cable forcesof Mau-Lo Hsi cable-stayed bridge[J]. Engineering Structures,2006,28:1407-1417
    [95] F. T. K. Au, J. J. Wang, G. D. Liu. Construction Control of Reinforced Concrete ArchBridges[J]. Journal of Bridge Engineering,2003,8(1):39-45
    [96]谢功元,刘军,袁长春等.支井河钢管混凝土拱桥施工关键技术[J].桥梁建设,2009,(5):57-59
    [97]童林,周兴国,上官兴.拱轴线的新型式——悬索线[J].城市道桥与防洪,2004,(1):27-31
    [98] A.S. Nazmy. Stability and load-carrying capacity of three-dimensional long-span steelarch bridges[J]. Computers&Structures,1997,65(6):857-868
    [99] Shun-ichi Nakamura, Hiroyasu Tanaka, Kazutoshi Kato. Static analysis of cable-stayedbridge with CFT arch ribs[J]. Journal of Constructional Steel Research,2009,65(4):776-783
    [100]A.D. Belegundu. The adjoint method for determining influence lines[J]. Computers&Structures,1988,29(2):345-350
    [101]刘迎春,薛素铎,上官兴.上承式拉索组合拱桥静力性能研究[J].公路,2010,11:52-55
    [102]G.D. Stefanou. Dynamic response of tension cable structures due to wind loads[J].Computers&Structures,1992,43(2):365-372
    [103]P. Galvin, J. Dominguez. Dynamic analysis of a cable-stayed deck steel arch bridge[J].Journal of Constructional Steel Research,2007,63(8):1024-1035
    [104]赵灿晖,高艳梅.大跨度拱桥地震反应分析研究现状及进展[J].重庆交通学院学报,2002,21(1):1-5
    [105]Clough Ray W, Penzien Joseph. Dynamics of Structures[M]. New York: Computers andStructures Inc.2003:650-655
    [106]C. Walker, P. J. Stafford. The use of modal-combination rules with cable-stayed bridges[J].Proceedings of the Institution of Civil Engineers: Bridge Engineering,2010,163(4):225–240
    [107]曹资,薛素铎.空间结构抗震理论与设计[M].北京:科学出版社,2005.3:13-20
    [108]Yan Xu, George C. Lee, Lichu Fan and Shide Hu. A comparative study between Chinaand U.S. on seismic design philosophy and practice of a long span arch bridge[J].Earthquake Engineering and Engineering Vibration,2006,5(1):61-69
    [109]叶爱君,管仲国.桥梁抗震(第四版)[M].北京:人民交通出版社,2011,9:59-61
    [110]Laurent Ney, Vincent de Ville de GoyetRené. Optimum bracing of the arches of tied-archbridges[J]. Journal of Constructional Steel Research,1991,18(3):239-249

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700