不规则钢筋混凝土框架结构基于性能的抗震设计理论和方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着基于性能抗震设计理论逐步被地震工程界所认同,对其研究已成为当前地震工程界的热点。该理论以结构抗震性能分析为基础进行设计,可充分发挥工程师的主动性,是设计理念上的一次变革,开展这方面的研究对工程结构的抗震设计具有重大的意义。本文围绕不规则钢筋混凝土结构基于性能的抗震设计与方法进行了以下几个方面的研究工作。
     针对我国现行抗震规范中,地震作用水平从多遇地震到罕遇地震的超越概率相差较大的现状,提出一中小震的概念,从而形成“四水准”的设防目标。在统计分析大量国内外钢筋混凝土柱试验数据的基础上,建立了结构在地震作用下处于暂时使用和修复后使用性能水平的量化指标。通过计算分析,表明按现行规范“小震不坏”进行设计的结构,不一定能保证“中震可修”,而按照本文提出的“中小震”进行结构抗震设计,可以保证“中震可修”。
     通过单自由度的动力方程,以屈服承载力系数ζ_y为参量,建立了基于延性系数的弹塑性需求曲线方程,通过单自由度体系的计算分析,得到等ζ_y延性需求谱和等延性ζ_y谱,提出了基于等ζ_y延性需求谱的结构抗震性能评估方法。通过计算分析,结果表明该方法可以有效的对工程结构的抗震性能进行评估。
     在分析总结几种常见的非线性静力分析侧向力分布形式的基础上,提出两个基于多自由度体系振型的侧向力分布计算方法:30%方法和部分SRSS方法。针对竖向不规则结构的特点,考虑框架结构层间侧向刚度的影响,对传统的水平侧向力分布进行了修正,提出了改进的水平侧向力分布形式。通过计算分析,结果表明本文所提出的侧向力分布模式可以较好的用于刚度发生突变时竖向不规则框架结构的非线性静力分析。
     考虑结构在地震作用下不同反应阶段的动力特性,根据结构的振型分析,按照结构在不同地震作用水平时的性能要求,采用振型反应谱法,建立起结构在不同地震作用水平下的弹塑性需求曲线族,即结构的层间剪力—层间位移需求曲线,提出了以各楼层为研究对象的层间能力谱法。通过计算分析,结果表明层间能力谱法可以有效的用于对竖向不规则结构进行基于性能的抗震设计和评估,并能控制结构在不同地震作用下的变形性能、塑性铰出现顺序及部位,与时程分析方法相比偏于保守,且比直接基于位移的设计方法具有明显的优势。
     针对平面不规则结构地震作用的分布特点,提出了4种非线性静力分析的水平侧向力分布计算方法:二次分配法、分层法、动力偏心法和动力分层法,从而实现平面不规则结构的非线性静力分析。通过计算分析,结果表明本文所提出的水平侧向力分布模式可较好地用于平面不规则框架结构的非线性静力分析,所得到的塑性铰分布、层间侧移角等与时程分析结果符合较好。
     从现行规范对平面不规则结构的限制条件出发,推导出了结构层间扭转角与扭转位移比的关系式,结合框架结构在不同性能水平下的层间侧移角限值,建立了平面不规则框架结构在不同地震作用水平下的扭转角需求曲线,提出了扭转角能力谱法。计算分析表明,按照本文所提出的扭转角能力谱法可方便有效的对平面不规则框架结构进行基于性能的抗震评估和设计。
     地震易损性分析与基于性能的抗震设计理论相结合,可以更为全面和系统地对结构的抗震性能进行评估。考虑不同的单元模型和恢复力模型,选取40条实际地震加速度记录,形成了120个结构体系—地震动系统样本。分别选取竖向不规则框架薄弱层的层间侧移角和平面不规则结构的最大层间扭转角为易损性变量,通过对系统样本进行非线性动力分析和回归分析,提出了不规则框架结构易损性曲线的建立方法。计算分析表明,利用本文建立的易损性曲线可方便有效的对不规则钢筋混凝土框架结构的抗震性能进行评估。
Performance based seismic design (PBSD) theory is recognized step by step in earthquake engineering field, and the research about it is becoming a principal topic. PBSD is a seismic design innovation, which is on the basis of seismic performance analysis of structures and can exert the subjective ability of the engineer adequately. Therefore research on PBSD has important value for seismic design of practical structures. Centering round theory and methods of performance based seismic design for irregular reinforced concrete frame structures, this dissertation involves the following work.
     The gap in probability of exceedance between frequent earthquake and extremely rare earthquake is very large in china seismic design code, therefore, a new definition of occasional earthquake is bring forward to form a four level seismic fortification criterion. Based on the statistical data of seismic performance test of RC columns, two index of temporarily operational and reparably operational performance levels are put forward. Examples are presented to demonstrate that buildings satisfied the fully operational level under frequent earthquake is not ensure to be in temporarily operational level or reparably operational level under rare earthquake. If the frequent earthquake is substituted by the occasional earthquake, the problem above can be solved well.
     Based on the dynamical equation of single degree of freedom, a parameter of yield strength coefficientζ_y is introduced to deduce the dynamical equation of ductility coefficient. Then the ductility demand spectrum, which comprises a group of ductility coefficients or yield strength coefficient versus natural period curves for different yield strength coefficient or ductility coefficients are obtained. Based on the pushover analysis, a new performance-based seismic evaluation method, constantζ_y ductility spectrum method is established. Examples are presented to demonstrate the applicability and utility of the proposed methodology.
     Based on the summarization and research of conventional lateral load patterns for nonlinear static analysis, two methods based on the modes of MDOF, which are called 30% rule method, partial SRSS rule method, are established to calculate the lateral load for pushover analysis. Considering the story stiffness, a new improved lateral load distribution is established for vertically irregular building structures. Examples are presented to demonstrate the applicability and utility of the proposed methodology.
     The deformation of vertically irregular frame structures under earthquake is vary different to that of regular frame, thereby, a new method named Inter-Story Capacity Spectrum is put forward for the PBSD of vertically irregular frame structures. The new method can be used to design a vertically irregular frame considering different performance level under different earthquake hazard level, at the same time the modal of structures, the spectrum of seismic design code are taken into account. Also the Inter-Story Capacity Spectrum method can be used to evaluate the seismic performance of vertically irregular frame structures. Examples are presented to demonstrate the applicability and utility of the proposed methodology.
     Based on the research of the torsion effects caused by the earthquake load, four methods calculated the lateral load distribution for asymmetric structures are established. They are two-times distribution method, storied distribution method, dynamic eccentricity method and dynamic storied distribution method. Examples are presented to demonstrate that the pushover results including the distribution of hinges, inter-story drift ratio and inter-story torsion angle, used the four methods are coincidence well with that of nonlinear time history analysis.
     The relationship between inter-story torsion angle and torsion deformation ratio is deduced base on the rule of irregular plan structures in China tall building technical specification. Considering the inter-story ratio limitation of different performance levels under different earthquake hazard levels, a series of torsion angle demand curves are established and a new method named as Torsion Angle Capacity Spectrum is put forward for the PBSD of irregular plan frame structures. The method also can be used for the performance based seismic evaluation of irregular plan structures. Examples are presented to explain the method principle and to demonstrate the applicability and utility of the proposed methodology.
     Considering different unit model and different hysteretic model, selecting forty earthquake records, one hundred and twenty structure-earthquake system samples are obtained for RC irregular frame. Selecting the weakness story inter-story drift ratio and the maximum torsion angle respectively, through the nonlinear dynamic analysis and linear regress, a new fragility analysis method is put forward for vertically irregular frame and irregular plan structures. Examples are also presented to demonstrate the applicability and utility of the proposed methodology. It is concluded that fragility analysis can be used together with the performance based seismic evaluation method, which is conduced to realize the seismic performance of buildings accurately and systemically.
引文
[1] GBJ11-89,建筑抗震设计规范.北京:中国建筑工业出版社,1989.
    [2] GB50011-2001,建筑抗震设计规范.北京:中国建筑工业出版社,2001.
    [3] 吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用.上海:同济大学出版社,1997.
    [4] 江见鲸.钢筋混凝土结构非线性有限元分析.西安:陕西科学技术出版社,1994.
    [5] 胡聿贤.地震工程学.北京:地震出版社,1988.
    [6] 包世华.新编高层建筑结构.北京:清华大学出版社,1990.
    [7] 王松涛,曹资.现代抗震设计方法.北京:中国建筑工业出版社,1997.
    [8] 吕西林,周德源,李思明.房屋结构抗震理论与实例.上海:同济大学出版社,1995.
    [9] 李国强,沈祖炎.钢框架弹塑性静动力反应的非线性分析模型,建筑结构学报,1990,11(2):51-59.
    [10] 汪梦甫,沈蒲生.钢筋混凝土空间杆元非线性分析模型及其应用.地震工程与工程振动,1998,18(1):162-170.
    [11] 汪梦甫,王海波,尹华伟,杨景.钢筋混凝土平面杆件非线性分析模型及其应用.上海力学,1999,20(1):82-88.
    [12] 陈滔,黄宗明.钢筋混凝土框架非弹性地震反应分析模型研究进展.世界地震工程,2002,18(1):91-97.
    [13] 程民宪.结构动力分析中几种逐步积分法在负刚度条件下的收敛性和稳定性.工程力学,1989,6(2):35-47.
    [14] 朱镜清.结构动力学问题中积分格式的稳定性.地震工程与工程振动,1983,3(3):1-10.
    [15] 王亚勇,程民宪,刘小第.结构抗震时程分析方法输入地震记录的选择方法及其应用.建筑结构,1992,22(5):3-7.
    [16] 王亚勇,刘小第,程民宪.建筑结构时程分析法输入地震波的研究.建筑结构学报,1991,12(2):51-60.
    [17] 杨溥,李英民,赖明.时程分析法输入地震波的选择控制指标.土木工程学报,2000,33(6):33-37.
    [18] 王亚勇,我国2000年抗震设计模式展望.建筑结构,1999,29(6):32-36.
    [19] Raul D. Bertero, Vitelmo V. Bertero. Performance-based seismic engineering: the need for a reliable conceptual comprehensive approach. Earthquake Engineering and Structural Dynamics, 2002, 31 (2): 627-652.
    [20] 李刚,程耿东.基于性能的结构抗震设计—理论、方法与应用.北京:科学出版社,2004.
    [21] Sigmund A. Freeman. Performance-based seismic engineering: past, current, and future. Journal of Structural Division, ASCE, 2000, 1-8.
    [22] Structural Engineers Association of California. Recommended lateral force requirements, Seismology Committee, 1960.
    [23] Army. Seismic Design Guidelines for Essential Buildings. Departments of the Army (TM 5-809-10-1), et.al. Washington, D.C. 1986.
    [24] California Office of Emergency Services. Vision 2000: Performance Based Seismic Engineering of Buildings. Structural Engineering Association of California, Vision 2000 Committee, California, 1995.
    [25] ATC-34. A Critical Review of Current Approaches to Earthquake-Resistant Design.Applied Technology Council, Redwood City, 1995.
    [26] ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings. Applied Technology Council. Red Wood City, California, 1996.
    [27] FEMA 273. NEHRP Commentary on the Guidelines for the Rehabilitation of Buildings. Federal Emergency management Agency, Washington, D.C. September, 1996.
    [28] FEMA 274. NEHRP Guidelines for the Rehabilitation of Buildings. Federal Emergency Management Agency, Washington, D.C. September, 1996.
    [29] Bertero V V. Performance-based seismic engineering: a critical review of proposed guideline. Seismic Design Methodologies for the Next Generation of Codes, Fajfar & Krawinkler(eds), Balkema, 1997.
    [30] FEMA 356. Pre-Standard and Commentary for The Seismic Rehabilitation of Buildings. Report FEMA 356, Federal Emergency Management Agency, Washington DC, 2000.
    [31] EC8. Euro code 8: Design of Structures for Earthquake Resistance. General rules, Seismic Actions and Rules for Buildings. EN1998-1:2003, British Standards Institution,London.EC8, 2003.
    [32] 小谷俊介.日本基于性能结构抗震设计方法的发展.建筑结构,2000,30(6):3-9.
    [33] Proceedings of U.S.-Japan Workshop on Performance-Based Earthquake Engineering Methodology for R/C Building Structures. 1999-2003.
    [34] R. Riddell and J.C Dela Lora. Seismic analysis and design-current practice and future trends, 11th World Conference on Earthquake Engineering, Paper No.2010, Mexico, 1996.
    [35] Yousef Bozorgnia, Vitelmo V. Bertero. Damage spectrum and its applications to performance-based earthquake engineering. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August 1-6, 2004, Paper No. 1497.
    [36] Jack Moehle, Gregory G. Deierlein. A framework methodology for performance-based earthquake engineering. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August 1-6, 2004, Paper No. 679.
    [37] Mauro Nino, A. Gustavo Ayalal, Rafael Torres. Uniform hazard spectra for the performance based design of structures. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August 1-6, 2004, Paper No. 2196.
    [38] Chin-Hsiung Lob, Shu-Hsien Chao. The use of damage function in performance-based seismic design of structures. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August 1-6, 2004, Paper No. 3257.
    [39] Dimitrios Vamvatsikos, C. Allin Cornell. Incremental dynamic analysis. Earthquake Engineering and Structural Dynamics, 2002, 31 (2):491-514.
    [40] Rafael Riddell, Jarme E. Garcia, Eugenio Graces. Inelastic deformation response of SDOF systems subjected to earthquake. Earthquake Engineering and Structural Dynamics, 2002, 31 (2):515-538.
    [41] Eduardo Miranda, Jordge Ruiz-Garcia. Evaluation of approximate methods to estimate maximum inelastic displace demands. Earthquake Engineering and Structural Dynamics, 2002, 31 (2):539-560.
    [42] 史庆轩.钢筋混凝土结构基于性能的抗震研究及破坏评估.西安:西安建筑科技大学,2002.
    [43] 吕西林,周定松,蒋欢军.钢筋混凝土框架柱的变形能力及基于性能的抗震设计方法.地震工程与工程振动,2005,25(6):53-61.
    [44] 马宏旺,吕西林.建筑结构基于性能的抗震设计的几个问题.同济大学学报,2002,30(12):1429-1434.
    [45] CECS 160:2004,建筑工程抗震性态设计通则(试用).北京:中国计划出版社,2004.
    [46] 叶献国.多层建筑结构抗震性能的近似评估—改进的能力谱方法.工程抗震,1998(4):10-14.
    [47] 汪梦甫,周锡元.基于性能的建筑结构抗震设计.建筑结构,2003,33(3):59-61.
    [48] J.Maffei. Suggested improvements to performance based seismic guidelines. Proceedings of 12th World Conference on Earthquake Engineering, Auckland, New Zealand, Jan.30 to Feb. 4, 2000, Paper No.1087.
    [49] J.J. Bommer, A.S. Inashai. Displacement spectra for seismic design. Journal of Earthquake Engineering, 1999, 3(1): 1-32.
    [50] J.R Moehle. Displacement based design of RC structure. Proceedings of 10th World Conference on Earthquake Engineering, Madrid, Spain, 1992:1576-1574.
    [51] Whittaker, Displacement estimates for performance based seismic design. Journal of Structural Engineering, ASCE, 1998, 124(8):905-912.
    [52] 钱稼茹,罗文斌.建筑结构基于位移的抗震设计.建筑结构,2001,31(4):3-6.
    [53] 罗文斌,钱稼茹.钢筋混凝土框架结构基于位移的抗震设计.土木工程学报,2003,36(5):22-29.
    [54] 梁兴文,黄雅捷,杨其伟.钢筋混凝土框架结构基于位移的抗震设计方法研究.土木工程学报,2005,38(9):53-60.
    [55] 田颖,钱家茹,刘凤阁.用RC框架结构基于位移的抗震性能评估.建筑结构,2001,31(7):53-59.
    [56] T. J. Sullivan, G. M. Calvi, M. J. N. Priestley. The limitations and performances of different displacement based design methods. Journal of Earthquake Engineering, 2003, Special Issue 1:201-241.
    [57] Panagiotakos T. B., Fardis M. N. Deformation-controlled earthquake-resistant design of RC buildings, Journal of Earthquake Engineering, 1999, 3(4): 498-518.
    [58] Browning J. P. Proportioning of earthquake-resistant RC building structures. Journal of Structure Divison, ASCE, 2001, 127(2): 145-151.
    [59] Aschheim, M., E. Black. Yield point spectra for seismic design and rehabilitation. Earthquake Spectra, 2000, 16(2):317-335.
    [60] Aschheim, M.A. Seismic design based on the yield displacement. Earthquake Spectra, 2002, 18(4):581-600.
    [61] Aschheim, M., E. Hernandez Montes. The representation of P-△ affects using yield point spectra, Engineering Structures, 2003, 25:1387-1396.
    [62] Mark Aschheim. A pragmatic approach for performance-based seismic design. Performance-based seismic design concepts and implementation, proceedings of an international workshop, bled, Slovenia, June 28-July 1, 2004.
    [63] Chopra, A. K., Goel, R. K. Direct displacement-based design: use of inelastic vs. elastic design spectra. Earthquake Spectra, 2001, 17(1): 47-65.
    [64] S. A. Freeman. Development and use of capacity spectrum method. Proceedings of 6th US Conference on Earthquake Engineering, Seattle, Washington, 1998.
    [65] SEAOC. Recommended Lateral Force Requirements and Commentary, 7th Ed. 1999.
    [66] Priestley M. J. N. and Kowalsky, M. J. Direct displacement-based design of concrete buildings. Bull. New Zealand Nat. Soc. Earthquake Engineering, 2000.
    [67] Kappos, A. J. and Manafpour, A. Seismic design of R/C buildings with the aid of advanced analytical techniques. Engineering Structure. 2001.
    [68] P. Fajfar. Capacity spectrum method based on inelastic demand spectra. Earthquake Engineering and Structural Dynamics, 1999, 28(1): 979-993.
    [69] Chopra A.K., Goel R.K. Capacity-demand-diagram method for estimating seismic deformation of inelastic structures: SDF Systems. University of California, Berkeley, Report No. PEER-1999/02.
    [70] Bozorgnia, Y, Bertero, VV. Damage spectra: Characteristics and applications to seismic risk reduction. ASCE Journal of Structural Engineering, October 2003, 129 (10): 1330-1340.
    [71] Nino M. Application of uniform hazard spectra in the seismic design of buildings. Master of Engineering Thesis, Graduate Program in Engineering. UNAM, Mexico, 2003.
    [72] Qiang Xue. A direct displacement-based seismic design procedure of inelastic structures. Engineering structures, 2001, 23:1453-1460.
    [73] M. Williams. Suggested improvements to performance based seismic damage indices for concrete structures: state-of-art review. Earthquake Spectra, 1995, 28(1):319-349.
    [74] Gupta B. and Kunnath, S.K. Adaptive spectra-based pushover procedure for seismic evaluation of structures. Earthquake Spectra, 2000, 16(2): 367-392.
    [75] 叶燎原,潘文.结构静力弹塑性分析(push-over)的原理和计算实例.建筑结构学报,2000,21(1):37-51.
    [76] 侯爽,欧进萍.结构Pushover分析的侧向力分布及高阶振型影响.地震工程与工程振动,2004,24(3):89-97.
    [77] Kalkan, E., and Kunnath, S. K. Method of modal combinations for pushover analysis of buildings. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August 1-6, 2004, Paper No. 2713.
    [78] Chopra, A.K. and Goel, R.K. A modal pushover analysis procedure for estimating seismic demands for buildings. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 561-582.
    [1] GBJ11-89,建筑抗震设计规范.北京:中国建筑工业出版社,1989.
    [2] 吕西林,周德源,李思明.房屋结构抗震理论与实例,同济大学出版社,1994.
    [3] GB50011-2001,建筑抗震设计规范.北京:中国建筑工业出版社,2001.
    [4] 龚思礼.建筑抗震设计手册.北京:中国建筑工业出版社,2002.
    [5] California Office of Emergency Services, Vision 2000: Performance based seismic engineering of buildings, Structural Engineering Association of California, Vision 2000 Committee, California 1995.
    [6] GB50223—2004,建筑工程抗震设防分类标准.北京:中国建筑工业出版社,2004.
    [7] 徐云扉,胡庆昌,陈玉峰,等.低周反复荷载下两跨三层钢筋混凝土框架受力性能的试验研究.建筑结构学报,1986,7(2):1-16.
    [8] 钟益村,任富栋,田家骅.二层双跨钢筋混凝土框架弹塑性性能试验研究.建筑结构学报,1981,2(3):34-41.
    [9] 薛伟辰,程斌,李杰.双层双跨高性能混凝土框架抗震性能研究.土木工程学报,2004,37(3):58-65.
    [10] 童岳生,钱国芳.砖填充墙钢筋混凝土框架的变形性能及承载能力.西安冶金建筑学院学报,1985,17(2):1-20.
    [11] 刘伯权,徐云中,白绍良.钢筋混凝土柱在等幅对称位移循环加载下的低周疲劳性能.重庆建筑大学学报,1996,18(2):34-42.
    [12] 刘伯权,黄宗明,张友为,白绍良.非对称位移循环下钢筋混凝土柱的低周疲劳性能.重庆建筑大学学报,1996,18(2):92-99.
    [13] 康洪震,江见鲸.不同加载路径下钢筋混凝土框架柱抗震性能的试验研究.土木工程学报,2003,36(5):71-75.
    [14] 张国军,刘伯权,白国良.钢筋混凝土框架柱在高轴压比下的抗震性能试验.长安大学学报(自然科学版),2002,22(6):53-57.
    [15] 刘伯权,白国良,张国军.高轴压比高强混凝土框架柱抗震性能试验研究.土木工程学报,2005,38(1):45-50.
    [16] 张国军,白国良,刘伯权,陈秋艳.高轴压比高强砼短柱抗震性能试验研究.西安建筑科技大学学学报(自然科学版),2003,35(2):116-119.
    [17] 郭子雄,吕西林.高轴压比框架柱恢复力模型试验研究.土木工程学报,2004,37(5):32-38.
    [18] 郭子雄.基于变形的抗震设计理论及应用研究.上海,同济大学,2000.
    [19] 刘志刚,刘志强,刘威.中等地震区钢筋混凝土柱抗震性能研究.低温建筑技术,2005,(1):32-34.
    [20] 郭忠贤,刘志鸿,车晓.低周反复水平荷载作用下柱配有方形螺旋箍筋的钢筋混凝土单元框架抗震性能试验研究.建筑结构学报,2001,22(1):8-13.
    [21] 杜宏彪.双向压弯钢筋混凝土柱的抗震性能.哈尔滨建筑大学学报,1999,32(4):47-52.
    [22] 白绍良,张友为,黄宗明.不同轴压比下钢筋混凝土柱的低周疲劳性能.重庆建筑大学学报,1997,19(3):1-6.
    [23] 刘安琪.双向周期反复荷载下钢筋混凝土框架柱的抗震性能.北京:清华大学,1986.
    [24] 王震宇,吴波,林少书,李惠,黄玉龙.香港地区钢筋混凝土框架柱的抗震性能试验研究.哈尔滨建筑大学学报,2001,34(2):6-11.
    [25] 黄行松.钢筋混凝土框架柱在低周反复荷载下的受力性能研究.福建建筑,2000,(S1):2-5.
    [26] 卞琳.高强混凝土短柱抗震性能试验及非线性有限元分析.西安:西安建筑科技大学,2004.
    [27] 李瑞锋,孙长洲,王挺叶,姚会欣.高强混凝土框架柱受力变形的试验研究.中州煤炭,2001,(1):4-5.
    [28] 熊朝晖,潘德恩.钢筋混凝土框架柱侧向变形能力的研究.地震工程与工程振动,2001,21(2):103-108.
    [29] Ang Beng Ghee, Priestley, M.J.N., Park, R. Ductility of reinforced bridge piers under seismic loading. Report 81-3, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, February 1981.
    [30] Soesianawati, M.T., Park R., Priestley M.J.N. Limited ductility design of reinforced concrete columns. Report 86-10, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, March 1986.
    [31] Zahn F. A., Park R., Priestley M.J.N. Design of reinforced bridge columns for strength and ductility. Report 86-7, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, March 1986.
    [32] Tanaka H., Park R. Effect of lateral confining reinforcement on the ductile behavior of reinforced concrete columns. Report 90-2, Department of Civil Engineering, University of Canterbury, June 1990.
    [33] Wehbe N., SaiidiM.S. Sanders D. Confinement of rectangular bridge columns for modrate seismic areas. National Center for Earthquake Engineering Research (NCEER) Bulletin, Spring, 12, 1998.
    [34] Atalay, M.B., Penzien, J. The Seismic behavior of critical regions of reinforced concrete components as influenced by moment, shear and axial force. Report No. EERC 75-19, University of California, Berkeley, December 1975.
    [35] Xiao Yan, Martirossyan Armen. Seismic performance of high-strength concrete columns. Journal of Structural Engineering, 1998, 124(3): 241-251.
    [36] Bayrak Oguzhan, Sheikh Shamim. Confinement steel requirements for high strength concrete columns. Eleventh World Conference on Earthquake Engineering, 1996, Paper No. 463.
    [37] Saatcioglu Murat, Grira Mongi. Confinement of reinforced concrete columns with welded reinforcement grids. American Concrete Institute, ACI Structural Journal, January-February, 1999, 96(1): 29-39.
    [38] Thomsen John, Wallace John. Lateral load behavior of reinforced concrete columns constructed using high-strength materials. American Concrete Institute, ACI Structural Journal, 1994, 91 (5): 605-615.
    [39] Sezen H., Moehle J.P. Seismic behavior of shear-critical reinforced concrete building columns. Seventh U.S. National Conference on Earthquake Engineering, Boston, Massachusetts, July 21-25, 2002.
    [40] Lynn Abraham. Seismic evaluation of existing reinforced concrete building columns. Ph.D. Thesis, University of California at Berkeley, Berkley, California, 1999.
    [41] Michael Berry, Marc Eberhard. Performance models for flexural damage in reinforced concrete columns. Pacific Earthquake Engineering Research Center. 18, 2003.
    [42] Xiao, Y., Yun H. W. Experimental studies on full-scale high-strength concrete columns. ACI Structural Journal, 2002, 99(2): 199-207.
    [43] FEMA 273. NEHRP Commentary on the Guidelines for the Rehabilitation of Buildings. Federal Emergency management Agency, Washington, D.C. September, 1996.
    [44] FEMA 356. Pre-Standard and Commentary for the Seismic Rehabilitation of Buildings. Report FEMA 356, Federal Emergency Management Agency, Washington DC, 2000.
    [45] 山口育雄,燕端泰夫.铁筋短柱崩壞防止関総和研究(48).日本建築学会大会学术讲演梗概集,昭和52年.
    [46] 钟益村,王文基,田家骅.钢筋混凝土结构房屋变形性能及容许变形指标.建筑结构,1984,14(2):38-45.
    [1] Gupta B., Kunnath, S.K. Adaptive spectra-based pushover procedure for seismic evaluation of structures. Earthquake Spectra, 2000, 16(2):367-392.
    [2] Peter Fajfar. Simple pushover analysis of building structures. 11th World Conference on Earthquake Engineering, Acapulco, Mexico, June 24-28, 1996.
    [3] Chopra, A.K., Goel, R.K. A modal pushover analysis procedure for estimating seismic demands for buildings. Earthquake Engineering and Structural Dynamics, 2002, 31(3):561-582.
    [4] Kalkan, E., Kunnath, S. K. Method of modal combinations for pushover analysis of buildings. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August 1-6, 2004, Paper No. 2713.
    [5] 叶燎原,潘文.结构静力弹塑性分析(push-over)的原理和计算实例.建筑结构学报,2000,21(1):37-51.
    [6] 侯爽,欧进萍.结构Pushover分析的侧向力分布及高阶振型影响.地震工程与工程振动,2004,24(3):89-97.
    [7] S. A. Freeman. Development and use of capacity spectrum method. Proceedings of 6th US Conference on Earthquake Engineering, Seattle, Washington, 1998
    [8] P. Fajfar. Capacity spectrum method based on inelastic demand spectra. Earthquake Engineering and Structural Dynamics, 1999, 28(1): 979-993
    [9] Chopra A.K., Goel R.K. Capacity-demand-diagram method for estimating seismic deformation of inelastic structures: SDF Systems. University of California, Berkeley, Report No. PEER-1999/02.
    [10] Veletsos A.S., Newmark N.M. Effect of inelastic behavior on the response of simple systems: to earthquake motions. Proceeding of the second WCEE, Tokyo and Kyoto, 1960, 895-912.
    [11] New Mark, N.M., Hall, W.J. Earthquake Spectra and Design. Earthquake Engineering Research Institute, Berkeley, Calif. 1982.
    [12] Fajfar.P, Fischinger.M. Earthquake design spectra considering duration of ground motion. Proc.4th U. S. NCEE. Palm, California, 1990, 1(2):15-24.
    [13] Krawinkler, H., Nassar, A. A. Seismic design based on ductility and cumulative damage demands and capacities. Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings, eds P. Fajfar and H. Krawinkler. New York: Elsevier Applied Science, 1992
    [14] Vidic, T., Fajfar, P., Fischinger, M. Consistent inelastic design spectra: strength and displacement. Earthquake Engineering and Structural Dynamics 1994, 23(5):507-521.
    [15] Chen Dan. Ductility Spectra and collapse spectra for earthquake resistant structures, Proc.7th European Conference on Earthquake Engineering, 1982.
    [16] 韦承基.弹塑性结构的位移比谱.建筑结构学报,1983,4(2):40-48.
    [17] 范立础,卓卫东.桥梁延性抗震设计.北京:人民交通出版社,2001.
    [18] GB50011-2001,建筑抗震设计规范.北京:中国建筑工业出版社,2001.
    [19] Iwan, W. D., Gates, N. C. The effective period and damping of a class of hysteretic structures. Earthquake Engineering and Structural Dynamics. 1979, 7(3): 199-212.
    [20] Iwan, W. D. Estimating inelastic spectra from elastic spectra. Earthquake Engineering and Structural Dynamics, 1980, 8(4):375-388.
    [21] Kowalsky, M. J.. Displacement-based design-a methodology for seismic design applied to RC bridge columns. Master's Thesis, University of California at San Diego, La Jolla, Calif. 1994.
    [22] Iwan, W. D., Guyader, A. C. A study of the accuracy of the capacity spectrum method in engineering analysis. Proc. of 3rd U.S.-Japan Workshop on Performance-Based Earthquake Engineering Methodology for Reinforced Concrete Building Structures, Washington, August 16-18, 2001, 86-102.
    [23] Miranda, E., Ruiz-Garcia, J. Evaluation of approximate methods to estimate maximum inelastic displacement demands. Earthquake Engineering and Structural Dynamics, 2002,31 (3): 539-560.
    [24] Sinan D. Akkarl, Eduardo Miranda. Statistical evaluation of approximate methods for estimating maximum deformation demands on existing structures. Journal of Structural Engineering, 2005, 131(1): 160-172.
    [25] 门进杰,史庆轩.钢筋混凝土框架结构基于性能的抗震评估.第四届全国土木工程研究生学术论坛,西安,陕两科学技术出版社,2006年9月:161-165.
    [26] 史庆轩,门进杰.建筑结构基于性能的抗震评估的等ζ_y延性谱法.地震工程与工程振动,2007,27(1):54-58.
    [27] Miranda E. Evaluation of site-dependent inelastic design spectra. Journal of Structural Engineering, ASCE, 1993, 119(5): 1319-1339.
    [28] GB50009-2001,建筑结构荷载规范.北京:中国建筑工业出版社,2001.
    [1] GB50011-2001,建筑抗震设计规范.北京:中国建筑工业出版社,2001.
    [2] 建筑抗震设计规范(GB50011-2001)统一培训教材.北京:中国建筑工业出版社,2002.
    [3] 叶燎原,潘文.结构静力弹塑性分析(push-over)的原理和计算实例.建筑结构学报,2000,21(1):37-51.
    [4] 钱稼茹,罗文斌.静力弹塑性分析—基于性能/位移抗震设计的分析工具.建筑结构,2002,30(6):23-26.
    [5] 汪梦甫,周锡元.关于结构静力弹塑性分析(Pushover)方法中的几个问题.结构工程师,2002,(4):17-22.
    [6] Peter Fajfar. Simple Pushover analysis of building structures. 11th World Conference on Earthquake Engineering, Acapulco, Mexico, June 24-28, 1996.
    [7] 种迅,孟少平.钢筋混凝土框架结构全过程Pushover分析.地震工程与工程振动,2005,25(1):38-42.
    [8] 史庆轩.钢筋混凝土结构基于性能的抗震研究及破坏评估.西安:西安建筑科技大学,2002.
    [9] 汪大绥,贺军利,张凤新.静力弹塑性分析(Pushover Analysis)的基本原理和计算实例.世界地震工程,2004,20(1):45-53.
    [10] A.S. Moghadam. Pushover analysis for asymmetric and set-bace multi-story buildings. Proceedings of 12th World Conference on Earthquake Engineering, Auckland, New Zealand, Jan.30 to Feb. 4, 2000.
    [11] Rahul Rana, Limin Jin, Atila Zekioglu. Pushover analysis of a 19 story concrete shear wall building. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August 1-6, 2004, Paper No. 133.
    [12] 侯爽,欧进萍.结构Pushover分析的侧向力分布及高阶振型影响.地震工程与工程振动,2004,24(3):89-97.
    [13] 杨溥,李英明,王亚勇,赖明.结构静力弹塑性分析(Pushover)方法的改进.建筑结构学报,2000,21(1):44-51.
    [14] 尹华伟,易伟建.结构地震反应Pushover位移形状向量的选取.湖南大学学报(自然科学版),2004,31(5):88-93.
    [15] Hiroshi Kuramoto, Kazuyuki Matsumoto. Mode-adaptive pushover analysis for multi-story RC buildings. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August 1-6, 2004, Paper No. 2500.
    [16] Qi-Song Kent Yu, Raymond Pugliesi, Michael Allen. Assessment of modal pushover analysis procedure and its application to seismic evaluation of existing buildings. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August 1-6, 2004, Paper No. 1104.
    [17] Chopra, A.K. and Goel, R.K. A modal Pushover analysis procedure for estimating seismic demands for buildings. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 561-582..
    [18] Chatpan Chintanapakdee, Anil K. Chopra. Evaluation of modal pushover analysis using vertically irregular frames. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August 1-6, 2004, Paper No. 2139.
    [19] Kalkan, E., Kunnath, S. K.. Method of modal combinations for pushover analysis of buildings. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August 1-6, 2004, Paper No. 2713.
    [20] E.kalkan, S.K.Kunnath. Lateral load distribution in nonlinear static procedures for seismic design. Proceedings of the 2004 Structures Congress, Nashville, Tennessee, May 22-26,2004.
    [21] 叶献国,种迅,李康宁,周锡元.Pushover方法与循环往复加载分析的研究.合肥工业大学学报(自然科学版),2001,24(6):1019-1024.
    [22] 汪梦甫,周锡元.高层建筑结构抗震弹塑性分析方法及抗震性能评估的研究.土木工程学报,2003,36(11):44-49.
    [23] 李刚,刘永.不同加载模式下不对称结构静力弹塑性分析.大连理工大学学报,2004,44(3):350-355.
    [24] 欧进萍,侯钢领,吴斌.概率Pushover分析方法及其在结构体系抗震可靠度评估中的应用.建筑结构学报,2001,22(6):81-86.
    [25] FEMA 356. Pre-Standard and Commentary for The Seismic Rehabilitation of Buildings. Report FEMA 356, Federal Emergency Management Agency, Washington DC, 2000.
    [26] Ray W.Clough, Joseph Penzien (陈嘉炜译).结构动力学.台北:科技图书股份有限公司,1981.
    [27] Rosenblueth E, Contreras H.. Approximate design for multi-component earthquake. Journal of Structural Engineering, ASCE, 1977, 103 (5):881-894.
    [28] ASCE. Working group on seismic analysis of safety related nuclear structures. Seismic analysis of safety related nuclear structures and commentary. ASCE, NY, 1986.
    [29] Julio J. Hernandez, Oscar A. Lopez. Evaluation of combination rules for peak response calculation in three-component seismic analysis. Earthquake Engineering and Structural Dynamics, 2003, 32(2): 1585-1602.
    [30] 门进杰,史庆轩,周琦.建筑结构考虑刚度变化的Pushover水平侧向力分布研究.哈尔滨工业大学学报.(已录用)
    [31] 史庆轩,门进杰,李家富.竖向不规则结构非线性静力推覆分析的水平侧向力研究.建筑结构.(已录用)
    [1] 吕西林,龚治国.某复杂高层建筑结构弹塑性时程分析及抗震性能评估.西安建筑科技大学学报(自然科学版),2006,38(5):593-602.
    [2] 钱稼茹,康钊,赵作周,罗琳,刘庆任,张宏远.在用市政桥梁基于位移的抗震安全评估.工程力学,2006,23(sup Ⅰ):194-202.
    [3] 汪梦甫,周锡元.高层建筑结构抗震弹塑性分析方法及抗震性能评估的研究.土木工程学报,2003,36(11):44-49.
    [4] S. A. Freeman. Development and use of capacity spectrum method. Proceedings of 6th US Conference on Earthquake Engineering, Seattle, Washington, 1998.
    [5] 曹一山,朱晞.简化的能力谱方法在桥梁结构中的应用.中国铁道科学,2004,25(2):20-24.
    [6] Chopra A.K., Goel R.K. Capacity-demand-diagram method for estimating seismic deformation of inelastic structures: SDF Systems. University of California, Berkeley, Report No. PEER-1999/02.
    [7] P. Fajfar. Capacity spectrum method based on inelastic demand spectra. Earthquake Engineering and Structural Dynamics, 1999, 28(1): 979-993.
    [8] 叶献国.多层建筑结构抗震性能的近似评估—改进的能力谱方法.工程抗震.1998(4):10-14.
    [9] 王克峰,周云.考虑高振型影响的结构层间位移能力谱分析方法.地震工程与工程振动,2005,25(3):33-40.
    [10] 王威,孙景江.基于改进能力谱方法的位移反应估计.地震工程与工程振动,2003,23(6):37-43.
    [11] 史庆轩.钢筋混凝土结构基于性能的抗震研究及破坏评估.西安:西安建筑科技大学,2002
    [12] M. Selim Gunay, Haluk Sucuoglu. A comparative evaluation of performance-based seismic assessment procedures. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August 1-6, 2004, Paper No. 453.
    [13] Authors A.C. Guyader, W.D. Iwan. An improved capacity spectrum method employing statistically optimized linearization parameters. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August 1-6, 2004, Paper No. 3020.
    [14] 何政,欧进萍.钢筋混凝土结构基于改进能力谱法的地震损伤性能设计.地震工程与工程振动,2000,20(2):31-38.
    [15] 李宏男,何浩祥.利用能力谱法对结构地震损伤评估简化方法.大连理工大学学报,2004, 44(2):267-270.
    [16] 侯纲领,何政,吴斌,欧进萍.钢筋混凝土结构的屈服位移Chopra能力谱损伤分析与性能设计.地震工程与工程振动,2001,21(3):29-35.
    [17] GB50011-2001,建筑抗震设计规范.北京:中国建筑工业出版社,2001.
    [18] CECS 160:2004,建筑工程抗震性态设计通则(试用).北京:中国计划出版社,2004.
    [1] California Office of Emergency Services. Vision 2000: Performance Based Seismic Engineering of Buildings. Structural Engineering Association of California, Vision 2000 Committee, California, 1995.
    [2] Qiang Xue, Chen Chengchung. Performance-based seismic design of structures: A direct displacement-based approach. Engineering Structures, 2003, 25 (14): 1803-1813.
    [3] 小谷俊介.日本基于性能结构抗震设计方法的发展.建筑结构.2000,30(6):3-9.
    [4] Sigmund A. Freeman. Performance-based seismic engineering: past, current, and future. Journal of Structural Division, ASCE, 2000, 1-8.
    [5] Priestley M J N. Performance based seismic design. Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand, Jan.30 to Feb. 4, 2000, Paper No. 2831.
    [6] Ahmed Ghobarah. Performance-based design in earthquake engineering: state of development. Engineering Structures, 2001, 23 (8): 878-884.
    [7] Raul D. Bertero, Vitelmo V. Bertero. Performance-based seismic engineering: the need for a reliable conceptual comprehensive approach. Earthquake Engineering and Structural Dynamics, 2002,31(2): 627-652.
    [8] 史庆轩.钢筋混凝土结构基于性能的抗震研究及破坏评估.西安:西安建筑科技大学,2002.
    [9] 吕西林,周定松,蒋欢军.钢筋混凝土框架柱的变形能力及基于性能的抗震设计方法.地震工程与工程振动,2005,25(6):53-61.
    [10] 汪梦甫,周锡元.基于性能的建筑结构抗震设计.建筑结构,2003,33(3):59-61.
    [11] 徐培福,戴国莹.超限高层建筑结构基于性能抗震设计的研究.土木工程学报,2005,38(1):1-10.
    [12] 叶献国.多层建筑结构抗震性能的近似评估—改进的能力谱方法.工程抗震.1998,20(4):10-14.
    [13] Medhekar M., Kennedy D. Displacement based seismic design of buildings: theory. Engineering Structures, 2000, 22(3):201-209.
    [14] Moehle, J.P.. Displacement-based design of RC structures subjected to earthquakes. Earthquake Spectra, 1992, 8(3):403-428.
    [15] Qiang Xue, Chia-Wei Wu. Displacement-based seismic design of RC bridge columns. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August 1-6, 2004, Paper No. 679.
    [16] S. A. Freeman. Development and use of capacity spectrum method. Proceedings of 6th US Conference on Earthquake Engineering, Seattle, Washington, 1998.
    [17] Chopra A.K., Goel R.K. Capacity-demand-diagram method for estimating seismic deformation of inelastic structures: SDF Systems. University of California, Berkeley, Report No. PEER-1999/02.
    [18] 李晓莉,吴敏哲,郭棣.基于性能的结构抗震设计研究.世界地震工程,2004,20(6):153-156.
    [19] 东南大学,清华大学.建筑结构抗震设计.北京:中国建筑工业出版社,1999.
    [20] Miranda E., Garcia J.G. Evaluation of approximate methods to estimate maximum inelastic displacement demands. Earthquake Engineering and Structural Dynamics, 2002, (31):539-560.
    [21] GB50011-2001,建筑抗震设计规范.北京:中国建筑工业出版社,2001.
    [22] Aschheim, M., E. Black. Yield point spectra for seismic design and rehabilitation. Earthquake Spectra, 2000, 16(2):317-335.
    [23] Aschheim, M.A. Seismic design based on the yield displacement. Earthquake Spectra, 2002, 18(4):581-600.
    [24] Aschheim, M., E. Hernandez Montes. The representation of P-△ affects using yield point spectra. Engineering Structures, 2003, 25:1387-1396.
    [25] Mark Aschheim. A pragmatic approach for performance-based seismic design. Performance-based seismic design concepts and implementation, proceedings of an international workshop, bled, Slovenia, June 28-July 1, 2004.
    [26] Pinho, R.. Performance and displacement-based earthquake loss estimation of urban areas. Performance-based seismic design concepts and implementation, proceedings of an international workshop, bled, Slovenia, June 28-July 1, 2004.
    [27] Nassar, A. A., H. Krawinkler. Seismic demands for SDOF and MDOF systems. John A. Blume Earthquake Engineering Center, Stanford University, 1991.
    [28] 梁兴文,黄雅捷,杨其伟.钢筋混凝土框架结构基于位移的抗震设计方法研究.土木工程学报,2005,38(9):53-60.
    [1] Semih S. Tezcan and Cenk Alhan. Parametric analysis of irregular structures under seismic loading according to the new Turkish Earthquake Code. Engineering Structures, 2001, 23(6):600-609.
    [2] GB50011-2001,建筑抗震设计规范.北京:中国建筑工业出版社,2001.
    [3] 姜堃,王翠坤,肖从真,钱稼茹,刘军进,林祥.一幢特别不规则高层建筑结构模型的振动台试验研究.建筑科学,2005,25(1):19-25.
    [4] 孟建芝,施卫星,许强,刘俊,陈小果.平面不规则高层建筑模拟地震试验研究.广州建筑,2004,1:9-13.
    [5] 张誉,王卫.双向地震作用下不规则框架的扭转分析.土木工程学报,1994,27(5):37-51.
    [6] Elena Mola, Paolo Negro, Artur V. Pinto. Evaluation of current approaches for the analysis and design of multi-storey torsionally unbalanced frames. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August 1-6, 2004, Paper No. 3304.
    [7] Negro, P., Mola, E., Molina, F.J., Magonette, G.. Full-scale psd testing of a torsionally unbalanced three-storey non-seismic RC frame. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August 1-6, 2004, Paper No. 968.
    [8] Seong-Hoon Jeong, Amr S. Elnashai. Analytical and experimental seismic assessment of irregular RC buildings. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August 1-6, 2004, Paper No. 113.
    [9] 刘大海,钟锡根,杨翠如.房屋抗震设计.陕西:陕西科学技术出版社,1985.
    [10] 刘大海,杨翠如,钟锡根.高层建筑抗震设计.北京:中国建筑工业出版社,1993.
    [11] 苏慧,梁书亭,龚维明.错层结构扭转及地震反应分析.特种结构,2005,22(1):25-27.
    [12] 徐培福,黄吉锋,韦承基.高层建筑结构在地震作用下的扭转振动效应.建筑科学,2000, 16(1):1-6.
    [13] 戴君武,张敏政,郭迅,黄玉龙.多层偏心结构非线性地震反应分析.地震工程与工程振动,2003,23(5):75-81.
    [14] 周晓松,裴星洙,廖述清.实际偏心结构平扭耦合地震反应分析.工业建筑,2005,35(12):32-37.
    [15] 蔡贤辉,邬瑞锋.偏心结构的弹塑性地震反应时程分析.工程抗震,1999,21(4):14-17.
    [16] 周广春,孟繁中,刘悦信.质量和刚度非对称结构在水平双向地震作用下的随机反应分析.哈尔滨建筑大学学报,1993,26(3):50-56.
    [17] Moehle JP, Alarcon LF. Seismic analysis methods for irregular buildings. Journal of Structural Engineering, 1986, 112(2):35-52.
    [18] Wong CM, Tso WK. Evaluation of seismic torsional provisions in uniform building. Journal of Structural Engineering, ASCE, 1995, 121 (10): 1436-1442.
    [19] 方鄂华,程懋堃.关于规程中对扭转不规则控制方法的讨论.建筑结构,2005,35(11):12-15.
    [20] 魏琏,王森,韦承基.水平地震作用下不对称不规则结构抗扭设计方法研究.建筑结构,2005,35(8):12-17.
    [21] 魏琏,王森.水平地震作用下大底盘多塔楼结构抗扭设计方法.建筑结构,2005,35(8):3-7.
    [22] 孙昱斌,吕方宏.某平面不规则高层建筑的结构设计.建筑科学,2003,19(6):7-10.
    [23] 沈晓锋,季征宇,储诒.阶梯形高层建筑的扭转效应分析及对策.结构工程师,2002,(3):1-8.
    [24] 许国平.高层建筑结构设计中扭转效应的控制方法.建筑结构,2005,35(10):21-22.
    [25] JGJ3-2002,高层建筑混凝土结构技术规程.北京:中国建筑工业出版社,2002.
    [26] Associate Committee on the National Braiding Code. National Building Code ot Canada. Ottawa: National Research Council of Canada, 1995.
    [27] International Conference of Building Officials. Uniform Building Code. California: Whittier, 1997.
    [28] Standards Association of New Zealand. Code of Practice for General Structural Design and Design Loadings for Buildings: NZS4203. New Zealand: Wellington, 1992.
    [29] 《工业与民用建筑抗震设计手册》编写组.工业与民用建筑抗震设计手册.北京:中国建筑科学研究院工程抗震研究所,1982.
    [30] 龚思礼.建筑抗震设计手册.北京:中国建筑工业出版社,2002.
    [31] 门进杰,史庆轩,周琦.平面不规则混凝土框架结构非线性静力分析侧向力计算方法的研究,世界地震工程.2007,23(1):125-129.
    [1] FEMA 273. NEHRP Commentary on the Guidelines for the Rehabilitation of Buildings. Federal Emergency management Agency, Washington, D.C. September, 1996.
    [2] S. A. Freeman. Development and use of capacity spectrum method. Proceedings of 6th US Conference on Earthquake Engineering, Seattle, Washington, 1998.
    [3] P. Fajfar. Capacity spectrum method based on inelastic demand spectra. Earthquake Engineering and Structural Dynamics, 1999, 28(1): 979-993.
    [4] Aschheim, M., E. Black. Yield point spectra for seismic design and rehabilitation. Earthquake Spectra, 2000, 16(2):317-335.
    [5] T. J. Sullivan, G. M. Calvi, M. J. N. Priestley. The limitations and performances of different displacement based design methods. Journal of Earthquake Engineering, 2003, Special Issue 1:201-241.
    [6] M.Nuray Aydinoglu. An incremental response spectrum analysis procedure based on inelastic spectral displacements for multi-mode seismic performance evaluation. Bulletin of Earthquake Engineering, 2003, 1:3-36.
    [7] 黄宗明,王耀伟.影响偏心结构非弹性地震反应的主要因素分析.重庆建筑大学学报,2001,23(6):114-120.
    [8] 黄宗明,王耀伟.影响单层偏心结构地震反应的参数分析.工程建设与设计,2004,(9):7-10.
    [9] 戴君武,张敏政,黄玉龙.偏心结构扭转振动研究中几个基本参量的讨论.地震工程与工程振动,2002,22(6):38-43.
    [10] R. K.Goel, A.K.Chopra. Inelastic seismic response of one-story, asymmetric-plan systems: effects of system parameters and yielding. Earthquake Engineering and Structural Dynamics, 1991, 20(1): 201-222.
    [11] 徐培福,黄吉锋,韦承基.高层建筑结构在地震作用下的扭转振动效应.建筑科学,2000,16(1):1-6.
    [12] Adrian M. Chandler, Joseph C., Correnza Graham L. Hutchinson. Period-dependent effects in seismic torsional response of code systems. Journal of Structural Engineering, 1994, 120(12):3418-3434.
    [13] W. K. T so, K. M. Dempsey. Seismic torsional provisions for dynamic eccentricity. Earthquake Engineering and Structural Dynamics, 1980, 9(1): 275-289.
    [14] 周晓松,裴星洙,廖述清.单层偏心结构平扭耦合地震反应分析.工程建设与设计,2005,(3):56-60.
    [15] 周晓松,裴星洙,廖述清.实际偏心结构平扭耦合地震反应分析.工业建筑,2005,35(12):32-37.
    [16] 蔡贤辉,邬瑞锋.偏心结构的弹塑性地震反应时程分析.工程抗震,1999,21(4):14-17.
    [17] 裴星洙,张立,廖述清,张小玲.单层偏心结构平扭耦合地震反应分析.建筑结构,2005,35(11):46-50.
    [18] 戴君武,张敏政,郭迅,黄玉龙.偏心结构非线性地震反应分析的一种简化方法.地震工程与工程振动,2003,23(3):60-65.
    [19] 戴君武,张敏政,郭迅,黄玉龙.多层偏心结构非线性地震反应分析.地震工程与工程振动,2003,23(5):75-81.
    [20] 黄宗明,王耀伟.强度偏心对偏心结构非弹性反应的影响分析.建筑结构,2005,35(3):48-50.
    [21] A. W. Sadek and W.K.Tso. Strength eccentricity concept for inelastic analysis of asymmetrical structures. Engineering Structures, 1990, 11(1): 189-194.
    [22] W. K. T so, Hongshan Ying. Additional seismic inelastic deformation caused by structural asymmetry. Earthquake Engineering and Structural Dynamics, 1990, 19(1): 243-258.
    [23] 魏琏,王森.水平地震作用下大底盘多塔楼结构抗扭设计方法.建筑结构,2005,35(8):3-7.
    [24] 魏琏,王森,韦承基.水平地震作用下不对称不规则结构抗扭设计方法研究.建筑结构,2005,35(8):12-17.
    [25] W.K.Tso, T. J. Zhu. Design of torsionally unbalanced structural systems based on code provisions Ⅰ: ductility demand. Earthquake Engineering and Structural Dynamics, 1992, 21(1): 609-627.
    [26] 黄世敏,魏琏,程绍革,衣洪建,赵斌.不对称高层建筑平移-扭转耦连振动的多振型控制研究.工程抗震,2004,26(1):4-8.
    [27] 扶长生.抗震设计中的平扭耦联问题.建筑结构学报,2006,27(2):40-46.
    [28] 郭仕群.控制高层建筑扭转效应的工程方法.工程建设与设计,2004,(6):24-25.
    [29] 刘畅,邹银生,陈敏.偏心结构考虑扭转的三维Pushover分析.建筑科学与工程学报,2005,22(2):47-50.
    [30] 李刚,刘永.三维偏心结构的Pushover分析.计算力学学报,2005,(5):529-533.
    [31] GB50011-2001,建筑抗震设计规范.北京:中国建筑工业出版社,2001.
    [32] JGJ3-2002,高层建筑混凝土结构技术规程.北京:中国建筑工业出版社,2002.
    [33] 刘大海,钟锡根,杨翠如.房屋抗震设计.陕西:陕西科学技术出版社,1985.
    [34] 刘大海,杨翠如,钟锡根.高层建筑抗震设计.北京:中国建筑工业出版社,1993。
    [35] 魏琏,王森.扭转不规则建筑竖向构件考虑扭矩影响的抗震验算方法.建筑结构,2006,36(7):8-10.
    [36] GB50010-2002,混凝土结构设计规范.北京:中国建筑工业出版社,2002.
    [1] ATC13. Earthquake damage evaluation data for California. Applied Technology Council, Redwood City, Calif, 1985.
    [2] Steinrugge, K. V. Earthquake, Volcanoes and Tusnamis. An Anatomy of Hazards. Skandia America Group, N.Y., 1982.
    [3] Singhal, A., Kiremidjian, A. Bayesian updating of fragilities with application to RC frames. Journal of the Engineering Mechanics Division, 1998, 124(8):922-929.
    [4] Shinozuka, M., Feng, M. Q., Kim, H., Kim, S. Nonlinear static procedure for fragility curve development. Journal of Structural Mechanics Division, 2000, 126(12): 1287-1295.
    [5] Shinozuka, M., Feng, M. Q., Lee, J., Naganuma, T.. Statistical analysis of fragility curves. Engineering, 2000, 126(12):1224-1231.
    [6] Gardoni, P., Mosalam, K. M., Der Kiureghian, A.. Probabilistic seismic demand models and fragility estimates for RC bridges. Journal of Earthquake Engineering, 2003, 7(special Issue 1):79-106.
    [7] Schotanus, M. I. J., Franchin, P., Lupoi, A., Pinto, P. E.. Seismic fragility analysis of 3D structures. Structural Safety, 2004, (26):421-441.
    [8] Lupoi, G., Franchin, P., Lupoi, A., Pinto, P.E.. Seismic fragility analysis of structural systems. Proceedings of 13th World Conference on Earthquake Engineering, Vancouver, Canada, August 1-6, 2004, Paper No. 4008.
    [9] Cornell, A. C., Jalayer, F., Hamburger, R., Foutch, D.. Probabilistic basis for the 2000 SAC/FEMA steel moment frame guidelines. Journal of the Engineering Mechanics Division, 2002, 128(4):526-533.
    [10] Giorgio Lupoi, Paolo Franchin, Alessio Lupoi, Paolo E. Pinto. Seismic fragility analysis of structural systems. Journal of Engineering Mechanics, ASCE. 2006, 132(4):385-395.
    [11] Sathish K. Ramamoorthy, Paolo Gardoni, Joseph M. Bracci. Probabilistic demand models and fragility curves for reinforced concrete frames. Journal of Structural Engineering, ASCE, 2006, 132 (10): 1563-1572.
    [12] Gardoni, P., Der Kiureghian, A., Mosalam, K. M.. Probabilistic capacity models and fragility estimates for RC columns based on experimental observations. Journal of the Engineering Mechanics Division, 2002, 128(10):1024-1038.
    [13] Bryant Nielson, Reginald Des Roches. Seismic fragility curves for bridges: a tool for retrofit prioritization. 6th U.S. Conference and Workshop on Lifeline Earthquake Engineering, August 10-13, Long Beach, California, 2003.
    [14] Hwang H., Liu J. B. and Chiu Y.H.. Seismic fragility analysis of highway bridges. Technical report, Center for Earthquake Research and Information, University of Memphis, Memphis, TN38152, 2000.
    [15] Mander J. B.. Fragility curve development for assessing the seismic vulnerability of highway bridges. Multidisciplinary Center for Earthquake Engineering Research, University at Buffalo State University of New York.
    [16] Mander, J.B., Basoz, N.. Seismic fragility curve theory for highway bridges. Proceeding of the 5th U.S. Conference on Lifeline Earthquake Engineering, Seattle, WA, August 12-14, 1999, 31-40.
    [17] Shinozuka, M.. Development of bridge fragility curves based on damage data. Proceedings of International Workshop on Annual Commemoration of Chi-Chi Earthquake, September 18-20, 2000, Taipei, Taiwan, Ⅱ, 14-25.
    [18] 常业军.建筑物结构易损性分析及震害预测.合肥:合肥工业大学,2000.
    [19] 张令心,江近仁,刘洁平.多层住宅砖房的地震易损性分析.地震工程与工程振动,2002,22(1):49-55.
    [20] 于德湖,王焕定.配筋砌体结构地震易损性评价方法初探.地震工程与工程振动,2002,22(4):97-101.
    [21] 尹之潜,赵直,杨淑文.建筑物易损性和地震损失与地震加速度谱值的关系.地震工程与工程振动,2003,23(4):195-200.
    [22] 温增平.建筑物地震易损性分析研究.北京:国家地震局地球物理研究所,1999.
    [23] H.Hwang,刘晶波.地震作用下钢筋混凝土桥梁结构易损性分析.土木工程学报,2004,37(6):47-51.
    [24] 杜鹏.钢筋混凝土梁式桥的地震易损性分析.北京:北京工业大学硕士学位论文,2004.
    [25] 李鸿晶,冯启民.基于地震易损性的框架结构的优化方法.地震工程与工程振动,2000,20(1):42-47.
    [26] 李鸿晶,冯启民,王中生.平面框架结构抗震易损性的简化分析方法.地震工程与工程振动,1997,17(4):18-25.
    [27] EQE International and the Geographic Information Systems Group of the Governor's Office of Emergency Services. The Northridge Earthquake of January 17, 1994: Preliminary Report of Data Collection and Analysis, Part A: Damage and Inventory Data: Governor's Office of Emergency Services of the State of California: Sacramento, 1995.
    [28] Park, Y.J., Ang, A. H.S.. Mechanistic seismic damage model for reinforced concrete. Journal of Structural Engineering, 1985, 111(4): 722-739.
    [29] GB50010-2002,混凝土结构设计规范.北京:中国建筑工业出版社,2001.
    [30] 丰定国,王社良.抗震结构设计.武汉:武汉工业大学出版社,2001.
    [31] 东南大学,清华大学.建筑结构抗震设计.北京:中国建筑工业出版社,1999.
    [32] 龚思礼.建筑抗震设计手册.北京:中国建筑工业出版社,2002.
    [33] 李康宁,洪亮,叶献国.结构三维弹塑性分析方法及其在建筑物震害研究中的应用.建筑结构,2001,31(3):53-61.
    [34] 李康宁,Tetsuo Kubo,CarlosE.Ventura,杨松涛.建筑物三维分析模型及其用于结构地震反应分析的可靠性.建筑结构,2000,30(6):14-18.
    [35] Wen, Y.K. Method for random vibration of hysteretic systems. Journal of the Engineering Mechanics Division, ASCE, 1976, 102(EM2):249-263.
    [36] Clough,R.w., Penzien, J.. Dynamics of structures, 2nd Ed., McGraw-Hill, Inc., New York, N.Y. 1993.
    [37] 潘士,许哲明.框架结构的非线性地震反应分析.同济大学学报,1980,8(2):43-63.
    [38] Clough R W, Johnston S B.. Effect of stiffness degradation on earthquake ductility requirements. Jap. Ear. Eng. Symp., Tokyo, 1966:37-44.
    [39] Takeda T, Sozen M A, Nielson N N.. Reinforced Concrete to Simulated Earthquakes. Journal of Structural Engineering, ASCE, 1970, 96(12):2557-2773.
    [40] Roufaiel M SL, Meyer C.. Analytical modeling of hysteretic behavior of RC frames. Journal of Structural Engineering, ASCE, 1987, 113(3):429-444.
    [41] 叶献国.基于非线性分析的钢筋混凝土结构地震反应与破损的数值模拟.土木工程学报,1998,31(4):3-13.
    [42] 赵忠虎,谢和平,许博,刘志宝.钢筋混凝土压弯构件恢复力特性研究状况.工业建筑,2006,36(1):63-65.
    [43] 周文峰.结构地震动力反应分析中的混凝土恢复力模型的适用性研究.重庆:重庆大学,2003.
    [44] Park, Y.J., Ang, A. H.S., and Wen, Y.K. Seismic damage analysis and damage-limiting design of RC buildings. Struct. Res. Ser., Rep. No. Uilu-Eng-84-2007, Univ. of Illinois at Urbana-Champaign, Urbana, 1984.
    [45] Powell G H. Influence of analysis and design assumptions on computed inelastic response of moderately tall frames. Report no. UBC/EERC76/11, Univ. of Calf., Berkeley, CA, 1976.
    [46] 张令心,江近仁.Latin超立方采样技术及其在结构可靠性分析中的应用.世界地震工程,1997,13(4):1-6.
    [47] Anders M. J., Olsson, Goran E. Sandberg. Latin hypercube sampling for stochastic finite element analysis. Journal of Engineering Mechanics, ASCE, 2002, 128(1): 121-125.
    [48] Yingqi Zhang, George F. Pinder. Latin hypercube sampling of random hydraulic-conductivity fields for monte-carlo analysis of groundwater flow and mass transport. Water Resources, 2000, 104(2), 389-392.
    [49] Kangning Li. 3-dimensional nonlinear static/dynamic structural analysis computer program CANNY. Users' Manual, 2004.
    [50] 杨伟军,赵传智.土木工程结构可靠度理论与设计.北京:人们交通出版社,1999.
    [51] 魏琏.高层及多层钢筋混凝土建筑抗震设计手册.北京:地震出版社,1990.
    [52] 汪荣鑫.数理统计.西安:西安交通大学出版社,2001.
    [53] HAZUS99 User's Manual. Washington, D. C., Federal Emergency Management Agency, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700