厦门海底隧道陆域段土质围岩稳定性及预加固技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着我国城市基础建设的需要和地下工程修建技术的发展,大量隧道及地下工程全部或部分修建于软弱的土质围岩中。厦门海底隧道是我国规划建设的第一条海底隧道,全长约30%修建于第四系沉积或风化成因的软弱土质围岩中,因此施工中保证两端陆域段土质围岩稳定对整个隧道建设和展示我国隧道修建技术有重要意义。目前国内对土质围岩稳定性评价指标和方法与岩质围岩相同,没有体现土质围岩的特点;同时,对土质围岩稳定性判定和预加固措施及参数的选择仍以经验为主。因此,提出明确的、能较全面反映土质围岩稳定性且易于操作的稳定性评价指标及方法,并提出相应的施工方法及预加固措施,是土质隧道施工中迫切需要解决的问题。本文针对厦门海底隧道陆域段土质围岩施工中亟待解决的几个重点问题,对土质围岩的稳定性及预加固进行了系统的研究,其工作具体体现在以下几个方面:
     1.结合现场监测和调研资料,对陆域段土质围岩进行地质分段,然后通过室内试验获得各段的物理力学参数,并对两端土质围岩进行遇水崩解试验;以实测数据分析各段土质围岩开挖变形和破坏特征,并以此验证地质分段的正确性,同时对土质围岩段设计和施工存在的问题进行了分析。
     2.针对厦门海底隧道陆域段粘质土围岩和砂质土围岩,运用调研资料和理论分析方法,提出了粘质土围岩和砂质土围岩稳定性的评价指标体系;基于土工试验和调研资料,以强度值比对粘质土和砂质土围岩稳定性指标值进行组合分组,并通过模型试验和数值计算获得了各组合的自稳跨度;根据围岩自稳跨度,建立土质围岩亚级分级方法并对厦门海底隧道陆域段土质围岩进行亚级分级。
     3.根据调研资料和模型试验,总结和定义土质围岩的破坏模式的同时,分析了土质围岩破坏模式的影响因素;运用临界尺度分析破坏模式的形成、转化和统一机理,在此基础上,提出了发生各破坏模式的理论条件并加以验证;运用该理论条件获得了陆域段各亚级土质围岩可能的破坏模式。
     4.在分析施工跨度、开挖进尺、初支封闭时间和距离及台阶长度对围岩稳定性影响基础之上,结合自稳跨度研究结果,提出土质围岩施工方法、预加固水平及施工参数的确定原则;根据此原则,研究了双车道、三车道土质隧道的施工工法及预加固水平和厦门海底隧道陆域段土质围岩的施工方法及相关施工参数。
     5.根据小导管、注浆和正面锚杆的预加固机理,分析它们各自及其组合加固措施与围岩类型和破坏模式的适应性;在适应性分析基础上,通过模型试验分析了它们的预加固效果;根据预加固措施的适应性和加固效果,提出了预加固措施选择原则,并根据此原则获得厦门海底隧道陆域段土质围岩预加固措施。在利用双参数地基模型求解了小导管加固时的扰度及内力后,分析了小导管加固后掌子面的稳定性;以小导管扰度和内力满足设计要求且最优和预加固后掌子面稳定为原则,建立了小导管预加固参数的设计方法,并以此确定了厦门海底隧道各亚级的小导管预加固参数。
In recent decades, with the need of city basic construction and the construction technology development of underground project, most of tunnels and underground engineering are constructed completely or partially in weak soil surrounding rock. Xiamen subsea tunnel is the first subsea tunnel to be planned and constructed in our country. Almost thirty percent of its length is located in soil surrounding rock formed by the Quaternary sedimentation or weathering, so it is important to ensure the soil surrounding rock stability of land segment in excavation for itself construction and the display of our construction technology. Now the stability indexes and evaluation methods of soil surrounding rock are the same with the rocky surrounding rock methods in domestic, which don't reflect the characteristics of soil surrounding rock. In addition, the experience is the major way to estimate soil surrounding rock stability and select the pre-reinforcement measure and parameters. Thereby, it is in an urgent need to propose an explicit and user- friendly the stability indexes and evaluation methods, which can comprehensively show the stability of soil surrounding rock, and the excavation method and pre-reinforcement measure. Aiming at the solution of major problems of soil surrounding rock in Xiamen subsea tunnel, this thesis makes a systemic research on rock mass classification of sandy tunnel and arrives at conclusions as follows:
     1. The physical and mechanical parameters of each geological subsection in land segment of Xiamen subsea tunnel, divided by testing and investigation , are obtained, and the disintegration of soil surrounding rock in land segment is tested. The deformation and failure of surrounding rock which are analyzed according to monitoring data are used for verifying the validity of geological subsection. The problems in the design and construction are also analyzed.
     2. Aiming at clayey surrounding rock and sandy surrounding rock in this tunnel, a new evaluation index system of stability is established by geotechnical test, investigation materials and theory analysis. The values of stability index are grouped, and the basic steady excavated span of each group is studied through model test, numerical simulation. The sub-classification method of soil surrounding rock is established according to the basic steady excavated span, and then the sub-classification of soil surrounding rock in land segment is divided.
     3. Based on the results of investigation materials and model test, the failure mode of soil surrounding rock is summarized and defined, and the influence factors of surrounding rock failure is discussed. The mechanism of failure modes is analyzed by critical measure, including occurring, transforming and unifying. The possible failure mode of all levels of soil surrounding rock in land segment of Xiamen subsea tunnel, using theory failure condition which is developed according to the failure mechanism, can be obtained.
     4. Depending on the influence on stability of soil surrounding rock from construction span, excavated length, closing time and distance of primary support and the length of bench, and combining with the research of self-stability span, this paper proposes the determination principle of construction method and parameters and pre-reinforcement level, which is applied in double lane and three lane soil tunnel and in land segment of Xiamen subsea tunnel to determine construction method and parameters.
     5. According to the pre-reinforcement mechanism of small pipe, grouting and frontal blot, the adaptability of their single or combination reinforcement measures and surrounding rock type and failure mode are analyzed. Their pre-reinforcement effect is contrasted through the results of model test on the base of adaptability analysis. The select principle of pre-reinforcement measures, developed based on the analysis of adaptability and reinforcement effect, is used for determining pre-reinforcement measures of soil surrounding rock in land segment of Xiamen subsea tunnel. Utilizing double-parameter model of foundation, the deflection and internal force of small pipe were deduced, and tunnel face stability is also analyzed after pre-reinforcing. Taking the deflection, internal force of small pipe meeting the design requirements that is optimum, and stability of tunnel face after pre-reinforcing as a principle, the design method of small pipe pre-reinforcing parameters is generated. Pre-reinforcing parameters of small pipe of each sub-grade of soil surrounding rock in land segment of Xiamen subsea tunnel are ascertained.
引文
[1]孙钧.海底隧道工程设计施工若干关键技术的商榷[J].岩石力学与工程学报,2006,25(8):1513-1521.
    [2]王国栋.厦门东通道海底隧道施工关键技术研究[D].天津大学,2006.
    [3]中铁大桥勘测设计院.厦门东通道工程施工图设计阶段工程地质综合勘察报告[R].武汉,2004.
    [4]Lunardi.P,G.Cassani.Construction of an underpass at the Ravone railway yard in the city of Bologna:aspects of the design and construction[A].Progress In Tunneling After 2000,Teuscher,P and A.Colombo(eds.),Bologna,2001,(3):319-328.
    [5]坂卷清.纵穿运营线下方超浅埋深盾构隧道的掘进实例--筑波、三之轮隧道[A].中日铁路技术交流年会论文集,2004年.
    [6]黄正荣,朱伟,梁精华等.盾构法隧道开挖面极限支护压力研究[J].土木工程学报,2006,39(10):112-117.
    [7]方勇.土压平衡式盾构掘进过程对环境的影响与控制[D].西南交通大学,2007.
    [8]沈中其,关宝树.铁路隧道围岩分级方法[M].成都:西南交通大学出版社,2000.
    [9]JTG D70-2004.公路隧道设计规范[S].北京:人民交通出版社,2004.
    [10]曹丽文、魏永军、李新民等.围岩稳定性分级影响因素的灰色关联度分析[J].中国煤田地质,2006,18(5):41-43.
    [11]黄希强.广州地铁岩土分层系统与隧道围岩分类[J].西部探矿工程,2006,(8):153-154.
    [12]白明洲 段钢 张爱军.考虑非饱和粘性土含水量变化的地铁隧道围岩土体稳定性分析[J].工程地质学报,2006,14(5):603-608.
    [13]#12
    [14]#12
    [15]#12
    [16]Pierre Chambon.Shallow tunnels in cohesionless soil:Stability of tunnel face[J].Journal of Geotechnical Engineering,1994,120(7):1148-1165.
    [17]#12
    [18]D Takano,H Nagatani,J Otani,at el.Evaluation of the mechanism of tunnel face failure using X-ray CT scanner[J].
    [19]Adachi,T.,Tamura,T.,Yashima,A.at el.Behavior and simulation of sandy ground.tunnel[J].Jour.Geotech.Eng.,1985(358):129-136.
    [20]Hisatake,M.Tunnel face behavior at sandy shallow ground[J].Jour.Geotech.Eng.,1995(517):105-115
    [21]Konishi,Shinji.Evaluation of Tunnel Face Stability by the Rigid Plasticity Finite Element Method[J].Railway Technology Avalanche,2004,(5):29.
    [22]Takehiro OHTA,Dr.Sci el at.Experimental Study and Numerical Analysis on Stability of Tunnel Face in Sandy Ground[J].QR of RTRI,2001,42(3).
    [22]Takehiro OHTA,Dr.Sci el at.Experimental Study and Numerical Analysis on Stability of Tunnel Face in Sandy Ground[J].QR of RTRI,2001,42(3).
    [24]Mair R J,Taylor R N.Theme lecture:Bored tunneling in the urban environment[A].In:Proceedings of the Fourteenth intemational Conference on Soil Mechanics and Foundation Engineering Rotterdam,1997:2353-2358.
    [25]Mair R J.Centrifuge modelling of tunnel construction in soft clay[D].Cambridge University,1979.
    [26]Domon T,Konda T,Nishimura K,et al.Model tests on face stability of tunnels in granular material[A].In:Negro Jr.,Ferreira.Tunnels and Metropolises[M].Rotterdam:Balkema,1998:229-234.
    [27]常硝东.管棚超前预支护作用机理研究[D].西南交通大学,1999.
    [28]Jiro Takemura,Tsutomu Kimura,et al.软土中二维未衬砌隧道的不排水稳定性(陆荣用译)[J].隧道译丛,1992,(1):1-11.
    [29]Davis,E.H,Gunn,M.J,et al.The stability of shallow tunnels and underground opening in cohesive material.Geotechnique.1980,30(4):397-419.
    [30]程展林,吴忠明,徐言勇.砂基中泥浆盾构法隧道施工开挖面稳定性试验研究[R].长江科学院院报,18,(5),2001.
    [31]程展林.南水北调穿黄工程开挖面稳定性试验研究[R].武汉:长江科学院.1997.
    [32]李昀,张子新,张冠军.泥水平衡盾构开挖面稳定模型试验研究[J].岩土工程学报,2007,29(7):1074-1079.
    [33]秦建设,尤爱菊.盾构隧道开挖面稳定数值模拟研究[J].矿山压力与顶板管理,2005,(1):27-30.
    [34]朱伟,秦建设,卢廷浩.砂土中盾构开挖面变形与破坏数值模拟研究[J].岩土工程学报,2005,27(8):897-902.
    [35]裴洪军.城市隧道盾构法施工开挖面稳定性研究[D],河海大学,2005.
    [36]G.Anagnostou,K.Kovarl.Face stability in slurry and EPB shield tunnelling[J].Tuneling and Underground Space Technology,1996,11(2):165-173.
    [37]高立群.大直径盾构正面稳定性研究[D].同济大学,2006.
    [38]袁小会,韩月旺,郭涛.盾构施工中开挖面失稳数值分析[J].山西建筑,2007,33(9):336-337.
    [39]Takehiro OHTA,Dr.Sci el at.Experimental Study and Numerical Analysis on Stability of Tunnel Face in Sandy Ground[J].QR of RTRI,2001,42(3).
    [40]In-Mo Lee,Jae-Sung Lee,Seok-Woo Nam.Effect of seepage force on tunnel face stability reinforced with multi-step pipe grouting[J].Tunnelling and Underground Space Technology,2004,19:551-565.
    [41]Borms B B,Bennermark H.Stability of clay at vertical openings[J].Journal of the soil Mechanics and Foundations Division,1967,93(1):71-94.
    [42]Kimura.T,Mair,J.R.Centrifugal testing of model tunnels in soft clay[A].Proc.10th lnt.Conf.Soil Mechanical and Foundation Engineering.(Stoeklom).1981,(2):319-322.
    [43]Cornejo,L.Instability at the faee:its repereussions for tunneling technology[J].Tunnels and Tunneling,1989,(21):69-74.
    [44]Ellstein,A.R.Heading failure of lined tunnel sin soft soils[J].Tunnels and Tunnelling,1986,(18):51-54.
    [45]Egger,P.Deformation at the face of the heading and determination of the cohesion of the rock mass[J].Underground Space Technology,1980(4):313-318.
    [46]Romo,M.P.,Diaz,C.M.Face stability and Ground settlement in Shield Tunneling [C].Proc.Of the 10th Int.Conf.on Soil Mechanics and Foundation Engineering,Vol.,Stockholm,1981,pp.357-360.
    [47]Davis E H,Gunn M J,Mair R J,et al..The stability of shallow tunnels and underground openings in cohesive material[J].Geotechnique,1980,30(4):397-416.
    [48]Sloan,S.W.and Assaddi.A.Stability of shallow tunnels in soft ground[C]. Predictive Soil Mechanics.Proc.Wroth memorial symposium[A].Oxford.1993:644-663.
    [49]裴洪军,孙树林,吴绍明等.隧道盾构法施工开挖面稳定性研究方法评析[J].地下空间与工程学报,2005,1(1):117-120.
    [50]秦建设.盾构施工开挖面变形与破坏机理研究[D].河海大学,2006.
    [51]杨俊龙,范明星,李向阳.软土地层大断面箱涵网格开挖面稳定性分析[J].岩土工程界,2006,9(2):47-50.
    [52]李向阳.大断面管幕-箱涵推进工法中管幕力学作用与开挖面稳定性研究[D].同济大学,2006.
    [53]关宝树译.隧道掌子面稳定性评价手法的研究[R].成都,2004.
    [54]孔恒.城市地铁隧道浅埋暗挖法地层预加固机理极其应用研究[D].北京交通大学,2003.
    [55]王梦恕,张建华.浅埋双线铁路隧道不稳定地层新奥法施工[J].铁道工程学报,1987,(2):176-191.
    [56]大尺英夫,佐藤靖夫.用超前锚杆攻克破碎带(马积薪译)[J].隧道译丛,1988,(2):13-19.
    [57]小泉光政,今村修等.在覆盖层浅的砂土地层中开挖三车倒隧道(马积薪译)[J].隧道译丛,1992,(1):42-51.
    [58]李国维,黄志怀,张丹等.玻璃纤维增强聚合物锚杆承载特征现场试验[J].岩石力学与工程学报,2006,25(11):2240-2246.
    [59]施仲衡,张弥等.地下铁道设计与施工[[M].西安:陕西科学技术出版社,1997.
    [60]孙星亮,徐文明,姚铁军.国内外水平旋喷注浆加固技术应用发展概况[J].世界隧道,2000(6),42-47
    [61]况成明,刘定初等.水平旋喷预支护技术在某隧道施工中的应用[J].西部探矿工程,2001,(2),74-75.
    [62]李远宁,段玉刚,吴胜.隧道支护新技术--水平旋喷成拱法[J].四川地质学报,2002(22)增:39-41.
    [63]Haruyama,K.,Nobuta,H.,et al.Construction of Ouma tunnel having large cross section with double-tier structure in unconsolidated ground.Progress in tunneling after 2000.(eds Teuscher,P.&Colombo,A).Bologna,2001(3):185-192.
    [64]曹彦国译.机械预切槽--项重新被发现的隧道技术[J].Tunnels&Tunnelling,1991(5):60-62.
    [65]宋爱志.切槽隧道施工法及其最新发展[J].西部探矿1994,6(1):53-56.
    [66]Eric Russell.Monitoring & Instrumentation:The electronic revolution[J].Tunnels & Tunnelling,1996,(5):59-60.
    [67]王秀英,吕和林等.机械预切槽法开挖软土隧道地层变形研究[J].岩土力学,2005,26(1):140-144.
    [68]Shinji Fukushima.Yoshitoshi Moehizuki,et al.Model Study of Pre-reinforcement method by bolts for shallow tunnel in study.Proc.Progress and Innovation in Tunnelling.(Toronto,Canada).1989,pp:61-67.
    [69]AI Hallak R.,Gamier J.Experimental study of the stability of a tunnel face reinforced by bolts.Proc.Geotechnical Aspect of Underground Construction in Soft Ground.(eds Kusakabe,Fujita & Miyazaki)Balkema,2000.PP:65-68.
    [70]Calvello,M Taylor,R.N.Centrifuge modeling of a spile-reinforced tunnel heading.Proc.Geotechnical Aspect of Underground Construction in Soft Ground.(eds Kusakabe,Fujita & Miyazaki).Balkema,2000.pp:345-350.
    [71]Chungsik Yoo,Hyun-Kang Shin.Deformation behaviour of tunnel face reinforced with longitudinal pipes-laboratory and numerical investigation[J].Tunnelling and Underground Space Technology,2003.18:303-319.
    [72]Aydan,et al.Three-dimensional simulation of an advancing tunnel supported with forepoles,shotcrete,steel ribs and rockbolts[C].Proc.Numerical Methods in Geomechanics[A].(Irmsbruck),1988:1481-1486.
    [73]Peila,D.Oreste,P.P.,et al.Study on the influence of sub-horizontal fiber-glass pipes on the stability of a tunnel face[C].Proc.North American Tunneling'96(ed Levent Ozdemir).Balkema,.1996:425-432.
    [74]Yoo,C.S.,Shin,H.K.Behavior of tunnel face pre-reinforced with sub-horizontal pipes[C].Proc.Geotechnical Aspect of Underground Construction in Soft Ground[A].(eds Kusakabe,Fujita&Miyazaki).Balkema.2000:463-468.
    [75]马同骧译.管棚支护与土壤的相互作用[J].隧道译丛.1986.(3):34-38.
    [76]马同骧译.巷道围岩的应力状态[J].隧道译丛.1990,(6):60-62.
    [77]Kotake,N,Ymamoto.et al.Design for umbrella method based on numerical analyses and field measurements.Tunneling and Ground Conditions(ed M.E.Abdel Salam).Balkema,1994.PP:501-508.
    [78]武建伟,宋卫东.浅埋暗挖管棚超前预支护的受力分析[J].岩土工程技术,2007,21(3):116-121.
    [79]程小彬.地下工程管棚支护有限元分析[D].西北工业大学,2007.
    [80]朱国保.软弱破碎围岩隧道中管棚超前预支护技术研究[D].西南交通大学,2005.
    [81]W.L.Tan and RG Ranjith.Numerical Analysis of Pipe Roof Reinforcement in Soft Ground Tunnelling[A].In:Proc.of the 16th International Conference on Engineering Mechanics[C].ASCE,Seattle,USA,2003.
    [82]In-Mo Lee,Jae-Sung Lee,Seok-Woo Nam.Effect of seepage force on tunnel face stability reinforced with multi-step pipe grouting[J].Tunnelling and Underground Space Technology,2004,19:551-565.
    [83]Chungsik Yoo.Finite-element analysis of tunnel face reinforced by longitudinal pipes[J].Computers and Geotechnics,2002,29:73-94.
    [84]C.W.W.Ng,G.T.K.Lee.A three-dimensional parametric study of the use of soil nails for stabilising tunnel faces[J].Computers and Geotechnics,2002(29)673-697.
    [85]Gerhard Scheuch著.隧道施工的机械预切槽法(邓应祥译)[J].隧道译丛,1986:32-34.
    [86]富海鹰.地铁隧道非降水法施工引起的地表沉降的研究[D].西南交通大学,2006.
    [87]李河玉.小导管注浆技术及在隧道和地下工程中的应用[D].西南交通大学,2002.
    [88]董铁路.注浆在厦门海底隧道施工中的应用[J].铁道建筑技术,2008(s):220-222.
    [89]姜洪涛、谭兵等.高速公路隧道浅埋段地表深层注浆施工技术[J].现代隧道技术,2008,45(3):65-69.
    [90]周宇.锁脚锚管和仰拱注浆对控制大断面海底隧道位移的有效性分析[J].岩石力学与工程学报,2007,s2:3830-3834.
    [91]乔海兵,葛家良.地下隧道围岩结构特性对注浆效果的影响[J].岩土工程界,2007,10(8):54-55.
    [92]王玉锁.砂质土隧道围岩力学参数及分级方法研究[D].西南交通大学,2007.
    [93]中交第二公路勘察设计研究院/重庆交通科研设计院.厦门翔安隧道及接线工程-隧道土建工程施工图设计说明[R].2004.
    [94]林韵梅等著.岩石分级的理论与实践[M].北京:冶金工业出版社,1996.
    [95]邓聚龙.灰色系统基本方法[M].武汉:华中理工人学出版社,1987.
    [96]卢肇钧.粘性土抗剪强度研究的现状与展望[J].土木工程学 报,1999,32(4):3-9.
    [97]徐雷云.土体物理力学参数的数据库开发及其相关性和概率统计分析[D].河海大学,2006.
    [98]刘成宇.土力学[M].成都:西南交通大学出版社,2002年第二版.
    [99]李继华编著.可靠性数学[M].中国建筑工业出版社,1988.
    [100]翟静阳,冷伍明.粘性土物理力学指标的变异性及相互关系[J].铁道建筑技,2001(1):49-51.
    [101]胡世华,王侠民.上海地区粘性土有效内摩擦角与塑性指数关系[J].大坝观测与土工测试,1997,21(2):39-41.
    [102]工程地质手册编写委员会.《工程地质手册》[M].北京:中国建筑工业出版社,1992
    [103]西南交通大学.公路隧道围岩分级指标体系与动态分类方法研究[R].成都,2007.
    [104]于学馥.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983.
    [105]惠丽萍,王良.浅埋暗挖土质隧道开挖进尺的理论探讨[J].铁道建筑标准,1995,(11):25-26.
    [106]罗文艺.粘土地质隧道塌方处治方法探讨[J].湖南交通科技,2007,33(3):128-130.
    [107]王明年.公路隧道围岩亚级物理力学参数研究[J].岩石力学与工程学报,2008.
    [108]王明年,李志业,关宝树.3孔小间距浅埋暗挖隧道地表沉降控制技术研究[J].岩土力学,2002,23(6):821-825.
    [109]程小彬,刘建民.三维非线性有限元分析在地下管棚支护中的应用[J].探矿工程,2007,(6):59-62.
    [110]董新平,周顺华,胡新朋.软弱地层管棚法施工中管棚作用空间分析[J].岩土工程学报,2006,28(7):841-847.
    [111]董新平,胡新朋,周顺华.软弱地层管棚作用特性判别和分析[J].地下空间与工程学报,2006,2(6):631-635.
    [112]周顺华.软弱地层浅埋暗挖施工中管棚法的棚架原理[J].岩石力学与工程学报,2005,24(14):2565-2570.
    [113]周顺华,张先锋,佘才高等.南京地铁软流塑地层浅埋暗挖法施工技术的探讨[J].岩石力学与工程学报,2005,24(3):526-531.
    [114]李政钧.锚杆加固围岩的作用机理研究[J].西部探矿工程,2006,(8):182-183.
    [115]孔宪宾,余跃心,李炜等.土--锚杆相互作用机理的研究[J].工程力学,2000,17(3):80-86.
    [116]关宝树.隧道及地下工程专题技术--辅助工法概论[M].西南交通大学.1981.
    [117]黄义,何芳社.弹性地基上的梁、板、壳[M].北京:科学出版社,2005:1-181.
    [118]张望喜.混凝土地基板静、动力特性试验与研究[D].湖南大学,2002.
    [119]周景星等.基础工程[M].北京:清华大学出版社,2007.
    [120]赵建平.浅埋暗挖隧道管棚预支护机理及其效用研究[D].中南大学,2005.
    [121]Feng Zhaohua,Robert D.Cook.Beam elements on the two-parameter elastic foundations[J].Journal of Engineering Mechanics,1983,109(6):1390-1402.
    [122]徐干成.地下工程支护结构[M].北京:中国水利水电出版社,2002.
    [123]龙裕球.弹性地基梁的计算[M].北京:人民教育出版社,1981.
    [124]Hak Joon Kim.Estimation for tunnel Lining Loads[D].University of Alberta,1997.
    [125]崔天麟.超浅埋暗挖隧道初期支护结构内力监测及稳定性分析[J].现代隧道技术,2001,38(2):29-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700