超宽带端射天线关键技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天线作为无线通信系统中不可缺少的关键部分,它的性能对整个系统的工作能力起着决定性的作用。同样地,实现电磁信号发射和接收的端射天线或阵列的性能决定了反辐射导弹捕获、跟踪目标,并定向攻击辐射源目标的战场效能。随着现代反辐射导弹技术的发展和飞跃,对天线的技术要求也提出了更高的指标,如高增益、宽的3dB束宽、低的旁瓣电平、极宽频率带宽、小的尺寸、简单的安装结构,等等。另一方面,在设计反辐射导弹表面的端射天线时,还受到金属表面、介质天线罩的影响,也给天线设计带来了极大的困难。然而,采用传统的天线设计技术来应对这些要求和困难是极具挑战性的。为突破相关技术难题,需结合电磁研究领域其它分支学科,继续深入开发端射天线的若干关键技术。本论文在国家重点实验室基金项目“端射共形测向天线阵研究”的资助下,以传统Vivaldi天线和经典对数周期天线阵为研究基础,探索和发展小型化超宽带端射天线的结构和机制,研究和解决适合弹载的超宽带端射天线的理论、设计、测试等关键技术。主要研究工作如下:
     1.提出一款高增益的平衡Vivaldi天线:针对传统平衡Vivaldi天线在高频范围内(>11GHz)端射方向的增益值急剧下降,主波束严重偏离端射方向等技术问题,采用延长介质基板前端的方法,形成一个三角形介质棱镜,使主波束方向更接近端射方向。然后,沿着每块金属贴片的外边缘切除一个三角形金属片,并在其外边缘加载开口槽线,进一步增加天线辐射方向图的前后比,提高天线的端射性能。最后,研究了高增益天线放置于金属表面时天线辐射场的变化规律。
     2.首次分析了金属圆柱体表面的端射天线辐射特征:以平衡Vivaldi天线作为测向天线单元,通过分析金属圆柱体表面的水平极化天线辐射场,掌握水平极化天线辐射场的变化规律。
     3.提出一款垂直极化的小尺寸、超宽带单极Vivaldi天线结构:根据传统共平面Vivaldi天线设计原理,设计单极Vivaldi天线结构,然后选择指数曲线外边缘结构,以及在天线末端集成一个100欧姆的电阻,增加更低的谐振频率,扩展了带宽。在此基础上,运用参数分析,掌握天线参数变化对天线辐射场的影响机制,获得最佳的天线尺寸。
     4.研究介质天线罩对端射天线辐射场的影响机制:目前所出版的论文和书籍都集中研究天线放置于天线罩内部区域时的工作性能,而天线分布在天线罩外部区域的研究则很少报道。因此,有必要深入研究介质天线罩对天线辐射场的影响机制。文中先给出TE波和TM波入射到介质层表面时所发生的一些物理效应,推导出功率传输系数的表达式,并运用图形直观地表示介质层对不同极化电磁波的影响规律。结合理论分析,解释介质天线罩对水平极化和垂直极化天线的不同工作机制,总结出介质天线罩对不同极化天线辐射场的影响规律。最后,运用参数分析,研究介质天线罩的参数变化对垂直极化天线辐射场的影响机制。
     5.提出单极对数周期天线阵辐射方向图的稳定性条件,并设计了一款应用在金属圆柱体表面的单极对数周期天线阵:基于经典对数周期天线阵的设计和工作原理,分析和研究单极对数周期天线阵的稳定性辐射条件。结合相关理论分析,设计一款运用在金属圆柱体表面的宽频带单极对数周期天线阵,该结构具有工程实用性。
Antenna is an indispensable key part of wireless communication systems, itsperformance plays a decisive role in whole systems. Similarly, the endfire antennaelement or array on the surface of missile, which is responsible for sending andaccepting the electromagnetic signals, determines the battlefield performance when theanti-radiation missile acquires and tracks the target, and launch directional attack on theradiating source. With the rapid development of modern anti-radiation missile, thetechnological requirement of antenna is becoming higher and higher. For example, theantenna is expected to work at high gain, wide3dB beamwidth, low sidelobe level, verywide bandwidth, small size, simple install configuration, and so on. Meanwhile, theantenna also suffers from the effects of metal surface and dielectric antenna radome,which further increase the design difficulty. If we use conventional antenna-designtechnique to design an antenna which meets the engineering requirements andovercomes the difficulty, it is a very highly challenging. Thus, it is necessary to researchon the key technique of endfire antenna, and break through the technical difficulty byusing other correlative electromagnetic subject. Under the support of the State KeyLaboratory Foundation (Research of Endfire Conformal Direction-Finding AntennaArray), this dissertation, based on original Vivaldi antenna and log-periodic antennaarray, explores or develops compact ultra-wideband endfire antenna structure andworking mechanism, and researches and resolves the key techniques of ultra-widebandendfire antenna which is suitable for the surface of missile, such as, theory, design,measurement, and so on. The main research workings are as follow:
     1. A wideband high gain balanced Vivaldi antenna is proposed: because originalbalanced Vivaldi antenna has very low gain value in endfire direction when it isworking in high frequency ranges (>11GHz), and the main beam direction of that willdeviate from endfire direction largely, this chapter adopts a novel technique ofelongating of the supporting substrate of an original balanced antipodal Vivaldi antennabeyond its aperture, and shaping of triangular configuration, which lead to the mainbeam direction close to the endfire direction. And then, the antenna will be modified byonly cutting triangular patch along the terminal of two dual exponential curves, andloading three I-shaped notched slots on the edge of every copper layer, which further enhances the front-end ratio of radiation field. Finally, the chapter also analyzes theeffect of metallic surface on the radiation field when the proposed antenna is placednear a metallic surface.
     2. The section first analyzes the radiation characteristic of endfire antenna placedon surface of metal cylinder: the chapter uses the balanced Vivaldi antenna as theelement of direction-finding antenna array, and analyzes the radiation field of thehorizontally polarizated antenna placed on metal surface, aiming to find the variation ofthe radiation pattern.
     3. A compact ultra-wideband monopole antenna with vertically polarizedcharacteristic is proposed: Firstly, by using designed theory of conventional uniplanarVivaldi antenna, a monopole configuration is proposed, then selecting anexponent–shaped exterior edge configuration and integrating with a resistance of100in the end of the proposed antenna, which lead to further add resonant frequencybandwidth. On this basis, a parametric study is presented for knowing the variation ofthe radiation pattern, aiming to obtain optimal dimension.
     4. Effect of dielectric antenna radome on radiation pattern of the endfire antennamounted on a large conducting cylinder is presented: There are few literatures whichdiscuss the effect of antenna radome when the proposed endfire antenna is placed on theexterior of dielectric antenna radome, so the chapter firstly presents some physicsperformance and deduces the expression of power transmission coefficient when amodel simulating slanting the incidence of the TE waves or TM waves into thedielectric slab is adopted, and uses the graph curve attribute to show the effect ofdielectric board on the radiation field. Subsequently, by using theoretical analysis thesection shows the comparison between effects of dielectric antenna radome onhorizontally polarizated antenna and vertically polarizated antenna, and summarizes theeffect of dielectric antenna radome on radiation field of different polarization antenna.Finally, a parametric study showing the impact of the various parameters of dielectricantenna radome on the vertical-polarization antenna performance is presented.
     5. It puts forward the constant radiation condition of monopole log-periodicantenna, and designs a monopole log-periodic antenna array which is suitable forplacing on the surface of missile. The section, based on the design theory of classicallog-periodic antenna array, analyzes and studies the constant radiation condition ofmonopole log-periodic antenna array, then designs a wideband monopole log-periodic antenna array placed on the surface of missile, which possess practical engineeringapplication.
引文
[1]林昌禄,聂在平等著.天线工程手册[M].北京:电子工业出版社,2002
    [2]万国宾.带罩天线与有限阵列结构的研究[D].西安:西安交通大学,2000
    [3]陈伯孝,吴铁平,张伟.高速反辐射导弹探测方法研究[J].西安电子科技大学学报,2003,30(6):5
    [4]温晓坤,秦明等著.美军反辐射导弹及其作战运用[J].兵工自动化,2007,26(1):2
    [5]冯雨,卞树檀,李站良.反辐射导弹及其发展趋势[J].战术导弹技术,2005,4:1-3
    [6]温杰. Harpy反辐射无人机的现状与发展[J].飞航导弹,2000,7:4-8
    [7]马向玲,刘隆和.面向反辐射导弹的三模复合寻的制导研究[J].飞航导弹,2003,3:5-9
    [8]马明.反辐射导弹的特点及其应用[J].航空兵器,2001,1(1):35–38
    [9]刘桐林.巡逻型反辐射导弹的技术进展[J].飞航导弹,1999,3:14-18
    [10] K. S. Yngvesson, D. H. Schaubert, et al. Endfire tapered slot antennas on dielectricsubstrates[J]. IEEE Trans. Antennas Propag.,1985,33(12):1392-1400
    [11] R. Janaswamy, D. H. Schaubert. Analysis of the tapered slot antenna[J]. IEEE Trans. AntennasPropag.,1987,35(9):1058-1065
    [12] D. H. Schaubert. Radiation characteristics of linearly tapered slot antennas[C]. Antennas andPropagation Society International Symposium,1989,3:1324-1327
    [13] C. K. Wu, K. L. Wong. Broadband microstrip antenna with directly coupled and parasiticpatches[J]. Microwave and optical technology Lett.,1999,22(5):348-349
    [14] C. K. Ananandan, P. Mohanan, K. G. Nair. Broadband gap coupled microstrip antenna[J].IEEE Trans. Antennas Propag.,1990,38(10):1581-1586
    [15] J. R. James, P. S. Hall. Handbook of microstrip antennas[M]. IEE Electromagnetic WavesSeries28,1989
    [16] R. B. Waterhouse, D. Novak, A. Nimalathas. Broadband printed millimeter-wave antennas[J].IEEE Trans. Antennas Propag.,2003,51(9):2492-2495
    [17] J. Huang and A. C. Densmore. Microstrip Yagi array antenna for mobile satellite vehicleapplication[J]. IEEE Trans. Antennas Propag.,1991,39(7):1024-1030
    [18] W. R. Deal, N. Kaneda, S. James, and so on. A new Quasi-Yagi antenna for planar activeantenna arrays[J]. IEEE Trans. Microw. Theory Tech.,2000,48(6):910-918
    [19] N. Kaneda, W. R. Deal, Y. X. Qian, and so on. A broad-band planar Quasi-Yagi antenna[J].IEEE Trans. Antennas Propag.,2002,50(8):1158-1160
    [20] P. R. Grajek, B. Schoenlinner, G. M. Rebeiz. A24GHz high-gain Yagi-Uda antenna array[J].IEEE Trans. Antennas Propag.,2004,52(5):1257-1261
    [21] T. G. Ma, C.-W. Wang, R. C. Hua. A modified Quasi-Yagi antenna with a new compactmicrostrip-to-coplanar strip transition using artificial transmission lines[J]. IEEE Trans.Antennas Propag.,2009,57(8):2469-2474
    [22] D. E. Isbell. Log periodic dipole arrays[J]. IRE Trans. Antennas Propag.,1960,8(3):260-267
    [23]蔡镇远.对数周期天线的工作原理和设计方法[J].电子技术,1965,5:10-14
    [24]周建华,殷建平,张光生.宽带对数周期天线的优化设计[J].电波科学学报,2000,15(2):157-161
    [25] A. K. Bandyopadhyay, M. N. Roy. Computation of radiation patterns of rhombic antennas withlog periodic dipole array termination[J]. Proceedings of the IEEE,1969,57(7):1336-1337
    [26] B. G. Evans. The performance and design of2:1bandwidth log-periodic dipole arrays[J].Radio and Electronic Engineer,1972,42(5):225-232
    [27] S. N. Prasad, S. Mahapatra. A new MIC slot-line aerial[J]. IEEE Trans. Antennas Propag.,1983,31(3):525-527
    [28] D. H. Schaubert. Radiation characteristics of linearly tapered slot antennas[C]. IEEE Antennasand Propagation Society International Symposium,1989,3:1324-1327
    [29] B. Stockbroeckx, A. V. Vorst. Electromagnetic modes in conical transmission lines withapplication to the linearly tapered slot antenna[J]. IEEE Trans. Antennas Propag.,2000,48(3):447-455
    [30] Y. H. Sun, H. B. Zhang, G. J. Wen. Research progress in Yagi antennas[C].2012International Workshop on Information and Electronics Engineering (IWIEE),2012,29:2116-2121
    [31] H. Yagi, S. Uda. Projector of the sharpest beam of electric waves[J]. Proceedings of theImperial Acaderny,1926,2(2):49-52
    [32] D. K. Cheng. Gain optimization for Yagi-Uda arrays[J]. IEEE Antennas Propag. Magazine,1991,33(3):42-46
    [33] J. Huang, A. C. Densmore. Microstrip Yagi array antenna for mobile satellite vehicleapplication[J]. IEEE Trans. Antennas Propag.,1991,39(7):1024-1030
    [34] H. Yagi. Beam transmission of ultra short waves[J]. Proceedings of the Institute of RadioEngineers,1928,16(6):715-740
    [35] D. Gray, J. W. Lu, D. V. Thiel. Electronically steerable Yagi-Uda Microstrip patch antennaarray[J]. IEEE Trans. Antennas Propag.,1998,46(5):605-608
    [36] N. Kaneda, Y. Qian, T. Itoh. A novel Yagi-Uda dipole array fed by a microstrip-to-CPStransition[C]. Asia Pacific microwave conf.,1998:1413-1416
    [37] Y. Qian, W. R. Deal, N. Kaneda. Microstrip-fed quasi-Yagi antenna with broadbandcharacteristics[J]. Electronics Letters,1998,34(23):2194-2196
    [38] N. Kaneda, Y. X. Qian, T. Itoh. A broadband microstrip-to-waveguide transition usingquasi-Yagi antenna[J].1999,47(12):2562-2567
    [39] L. C. Kretly. Patch driver on the quasi-Yagi antenna: analyses of bandwidth and radiationpattern[C]. IEEE MTT-S International Microwave and Optoelectronics Conference,2003,1:313-316
    [40] F. Weinmann. Design, optimization, and validation of a planar nine-element Quasi-Yagiantenna array for X-band applications[J]. IEEE Antennas Propag. Magazine,2007,49(2):910-918
    [41] N. Nasiha, A. R. Weily. Printed quasi-Yagi antenna with folded dipole driver[C]. IEEEAntennas and Propagation Society International Symposium,2009,1-4
    [42] R. A. Alhalabi, G. M. Rebeiz. Differentially-fed millimeter-wave Yagi-Uda antennas withfolded dipole feed[J]. IEEE Trans. Antennas Propag.,2010,58(3):966-969
    [43] H. K. Kan, R. B. Waterhouse, A. M. Abbosh. Simple broadband planar CPW-fed quasi-Yagiantenna[J]. IEEE Antennas and Wireless Propag. Lett.,2007,6:18-20
    [44] T. G. Ma, C. W. Wang, R. C. Hua. A modified Quasi-Yagi antenna with a new compactmicrostrip-to-coplanar strip transition using artificial transmission lines[J]. IEEE Trans.Antennas Propag.,2009,57(8):2469-2474
    [45] A. A. Eldek, A. Z. Elsherbeni, C. E. Smith. Microstrip-fed printed lotus antenna for widebandwireless communication systems[J]. IEEE Antennas Propag. Magazine,2004,46(6):164-173
    [46] A. A. Eldek, A. Z. Elsherbeni, C. E. Smith. Wide-band modified printed bow-tie antenna withsingle and dual polarization for C-and X-band applications[J]. IEEE Trans. Antennas Propag.,2005,53(9):3067-3072
    [47] A. A. Eldek. Pattern stability optimization for wideband microstrip antennas for phased arraysand power combiners[J]. Microw. Opt.Tech. Lett.,2006,48(8):1492-1494
    [48] A. A. Eldek. Ultrawideband double rhombus antenna with stable radiation patterns for phasedarray applications[J]. IEEE Trans. Antennas Propag.,2007,55(1):84-91
    [49] A. A. Eldek. A double rhombus antenna fed by1800phase shifter for ultrawideband phasedarray applications[J]. IEEE Trans. Antennas Propag.,2008,56(6):1566-1572
    [50] A. A. Eldek. A100%bandwidth microstrip antenna with stable endfire radiation patterns forphased array applications[C]. IEEE Antennas and Propagation Society InternationalSymposium,2006,3751-3754
    [51] A. A. Eldek, F. E. Hefnawi. Analysis of the effect of high-dielectric substrate size on thedirectivity of an end-fire antenna[J]. Microw. Opt.Tech. Lett.,2011,53(9):2127-2132
    [52] S. J. Wu, C. H. Kang, K. H. Chen. A multiband Quasi-Yagi type antenna[J]. IEEE Trans.Antennas Propag.,2010,58(2):593-596
    [53] Y. Ding, Y. C. Jiao, P. Fei, et al. Design of a multiband Quasi-Yagi-type antenna withCPW-to-CPS transition[J]. IEEE Antennas and Wireless Propag. Lett.,2011,10:1120-1123
    [54] L. Lewis, M. Fassett, J. Hunt. A broadband stripline array element[C]. Antennas andPropagation Society International Symposium,1974,12:335-337
    [55] S. N. Prasad, S. Mahapatra. A novel MIC slot-line antenna[C].9th European MicrowaveConference on Fields, Waves&Electromagnetics,1979,120-124
    [56] S. D. Mirshekar, W. K. Odosu. Analysis of open-end slotline for examining radiationmechanisms of constant width and tapered slot antennas[C].23rd European MicrowaveConference on Fields, Waves&Electromagnetics,1993,201-203
    [57] W. K. Ofosu, S. D. Mirshekar. Radiation pattern of short constant width slot antenna[J].Electronics Lett.,1995,31(1):7-8
    [58] S. Jing, X. Zhi, Z. Ting. Design and mutual coupling analysis on wideband wide-angle scanstep constant tapered slot antenna array[C]. IEEE International Conference onUltra-Wideband(ICUWB),2010,2:1-4
    [59] T. G. Ma, S. K. Jeng. Planar miniature tapered-slot-fed annular slot antennas for ultrawidebandradios[J]. IEEE Trans. Antennas Propag.,2005,53(3):1194-1202
    [60] N. Fourikis, N. Lioutas, N.V. Shuley. Parametric study of the co-and cross-polarizationcharacteristics of tapered planar and antipodal slotline antennas[J]. IEE Proceedings of Microw.Antennas Propag.,1993,140(1):17-22
    [61] D. Schaubert, E. Kollberg, et al. Endfire tapered slot antennas on dielectric substrates[J]. IEEETrans. Antennas Propag.,1985,33(12):1392-1400
    [62] P. J. Gibson. The Vivaldi aerial[C].9th Eur. Microw. Conf., Brighton, U.K.,1979,101-105
    [63] T. Thungren, E. L. Kollberg, K. S. Yngvesson. Vivaldi antennas for single beam integratedreceivers[C].12th European Microwave Conference,1982,361-366
    [64] A. Y. Abdel, H. Elhennawy, S. Nahrous. Design of Vivaldi antenna for microwave integratedcircuits applications[C].14th European Microwave conference,1984,637-642
    [65] F. J. Zucker. Surface-and leaky-wave antennas[M]. Antenna Engineering Handbook, NewYork: McGraw-Hill,1961
    [66] Janaswamy, D. H. Schaubert. Dispersion characteristics for wide slotlines on low-permittivitysubstrates[J]. IEEE Trans. Microw. Theory Tech.,1985,33(8):723-726
    [67] R. Janaswamy, D. H. Schaubert. Analysis of the tapered slot antenna[J]. IEEE Trans. AntennasPropag.,1987,35(9):1058-1065
    [68] E. Gazit. Improved design of the Vivaldi antenna[J]. IEE Microw. Antennas Propag.,1988,135(2):89-92
    [69] M. F. Catedra, J. A. Alcaraz, J. C. Arredondo. Analysis of arrays of Vivaldi and LTSAantennas[C]. Antennas and Propagation Society International Symposium,1989,1:122-125
    [70] J. X. Huang, Z. B. Fan. Analysis of Vivaldi antennas[C]. Sixth International Conference onAntennas and Propagation,1989,1:206-208
    [71] M. F. Catedra, J. A. Alcaraz. Analysis of microstrip and Vivaldi antennas using a CG-FFTscheme that allows the study of finite dielectric sheets with arbitrary metallization on bothsides[C]. Antennas and Propagation Society International Symposium,1989,3:1332-1335
    [72] A. D. Macedof, M. M. Mosso. Ortho-mode Vivaldi antennas for agile polarization systems[C].Sixth International Conference on Antennas and Propagation,1989,1:437-440
    [73] M. Sierra, J. C. Bernal, F. Juarez. Multibeam antenna array[C]. Antennas and PropagationSociety International Symposium,1989,1:150-153
    [74] A. D. De Macedo-Filho, M. M. Mosso. Wideband ortho-mode Vivaldi antennas[C]. IEEEInternational Telecommunications Symposium,1990,68-70
    [75] J. D. S. Langley, P. S. Hall, P. Newham. Novel ultrawide-bandwidth Vivaldi antenna with lowcross-polarization[J]. Electronics Lett.,1993,29(23):2004-2005
    [76] J. D. S. Langley, P. S. Hall, P. Newham. Balanced antipodal Vivaldi antenna for widebandwidth phased arrays[J]. IEE proceedings of Microw. Antennas Propag.,1996,143(2):97-102
    [77] E. Thiele, A. Taflove. FDTD analysis of Vivaldi flared horn antennas and arrays[J]. IEEETrans. Antennas Propag.,1994,42(5):633-641
    [78] R. N. Simons, R. Q. Lee. Impedance matching of tapered slot antenna using a dielectrictransformer[J]. Electronics Lett.,1998,34(24):2287-2289
    [79] M. C. Greenberg, K. L. Virga. Characterization and design methodology for the dualexponentially tapered slot antenna[C]. IEEE Antennas and Propagation Society InternationalSymposium,1999,1:88-91
    [80] D. H. Schaubert. A class of E-plane scan blindnesses in single-polarized arrays of tapered slotantennas with a ground plane[J]. IEEE Trans. Antennas Propag.,1996,44(7):954-959
    [81] D. H. Schaubert. Wideband phased arrays of Vivaldi notch antennas[C]. Tenth InternationalConference on Antennas and Propagation,1997,1:6-12
    [82] J. Shin, D. H. Schaubert. A parameter study of stripline fed Vivaldi notch-antenna arrays[J].IEEE Trans. Antennas Propag.,1999,47(5):879-886
    [83] T. H. Chio, D. H. Schaubert. Large wideband dual-polarized array of Vivaldi antennas withradome[C]. Asia Pacific Microwave Conference,1999,1:92-95
    [84] T. H. Chio, D. H. Schaubert. Parameter study and design of wideband widescan dual-polarizedtapered slot antenna arrays[J]. IEEE Trans. Antennas Propag.,2000,48(6):879-886
    [85] H. Holter, T. H. Chio, D. H. Schaubert. Elimination of impedance anomalies in single-anddual-polarized endfire tapered slot phased arrays[J]. IEEE Trans. Antennas Propag.,2000,48(1):122-124
    [86] I. Linardou, C. Migliaccio, J. M. Laheurte. Equivalent circuit of twin Vivaldi antenna fed bycoplanar waveguide[J]. Electronics Lett.,1999,35(25):2160-2161
    [87] B. Stockbroeckx, V. A. Vander. Co-polar and cross-polar radiation of Vivaldi antenna ondielectric substrate[J]. IEEE Trans. Antennas Propag.,2000,48(1):19-25
    [88] M. C. Greenberg, K. L. Virga, C. L. Hammond. Performance characteristics of the dualexponentially tapered slot antenna for wireless communications applications[J], IEEE Trans.Vehicular Tech., March2003,52(2):305-312
    [89] H. Oraizi, S. Jam. Optimum design of tapered slot antenna profile[J]. IEEE Trans. AntennasPropag.,2003,51(8):1987-1995
    [90] J. J. Lee, S. Livingston, R. Koenig. A low-profile wide-band (5:1) dual-polarized array[J].IEEE Antennas and Wireless Propag. Lett.,2003,2:46-49
    [91] M. Chiappe, G. L. Gragnani. Theoretical and numerical analysis of the self-scaling propertiesof the exponentially tapered slot-line antenna[J]. Microw. Opt.Tech. Lett.,2005,45(6):485-491
    [92] M. Chiappe, G. L. Gragnani. Vivaldi antennas for microwave imaging: theoretical analysis anddesign considerations[J]. IEEE Trans. Instru. Measur., Dec.2006,55(6):1885-1891
    [93] C. Deng, Y. J. Xie. Design of resistive loading Vivaldi antenna[J]. IEEE Antennas andWireless Propag. Lett.,2009,8:240-243
    [94] M. E. Bialkowski, Y. F. Wang. A size-reduced exponentially tapered slot antenna withcorrugations for directivity improvement[C]. Asia Pacific Microwave Conference,2009,2482-2485
    [95] B. Veidt, G. J. Hovey, et al. Demonstration of a dual-polarized phased-array feed[J]. IEEETrans. Antennas Propag.,2011,59(6):2047-2057
    [96] K. Ebnabbasi, D. Busuioc, et al. Taper design of Vivaldi and co-planar tapered slot antenna(TSA) by Chebyshev transformer[J]. IEEE Trans. Antennas Propag.,2012,60(5):2252-2259
    [97] K. Ebnabbasi, C. Rappaport, et al. UWB performance of single and multi layer dielectricVivaldi antenna using cubic spline and exponential taper profile[C].40th European MicrowaveConference, Sept.2010,1500-1503
    [98] J. Bai, S. Shi, D.W. Prather. Modified compact antipodal Vivaldi antenna for4-50GHz UWBapplication[J]. IEEE Trans. Microw. Theory Tech.,2011,59(4):1051-1057
    [99] J. Y. Siddiqui, Y. M. M. Antar, A. P. Freundorfer, et al. Design of an ultrawideband antipodaltapered slot antenna using elliptical strip conductors[J]. IEEE Antennas and Wireless Propag.Lett.,2011,10:251-254
    [100] W. Chen, J. Litva. A design of120-degree vertical polarized sector antenna using very shortbalanced antipodal Vivaldi antenna[C]. IEEE Antennas and Propagation Society InternationalSymposium,2002,2:260-263
    [101] M. W. Elsallal, D.H. Schaubert. Electronically scanned arrays of dual-polarized,doubly-mirrored balanced antipodal Vivaldi antennas (DMBAVA) based modularelements[C]. IEEE Antennas and Propagation Society International Symposium,2006,887-890
    [102] J. Bourqui, M. Okoniewski, E. C. Fear. Balanced antipodal Vivaldi antenna for breast cancerdetection[C]. The Second European Conference on Antennas and Propagation,2007,1-5
    [103] S. S. Holland, W. Wang, et al. A wavelength scaled array of doubly-mirrored balancedantipodal Vivaldi antennas(Dm-BAVAs)[C]. IEEE Antennas and Propagation SocietyInternational Symposium,2009,1-4
    [104] J. Bourqui, M. Okoniewski, E. C. Fear. Balanced antipodal Vivaldi antenna with dielectricdirector for near-field microwave imaging[J]. IEEE Trans. Antennas Propag.,2010,58(7):2318-2326
    [105] K. Kota, L. Shafai. Gain and radiation pattern enhancement of balanced antipodal Vivaldiantenna[J]. Electronics Lett.,2011,47(5):303-304
    [106] D.E.Isbell. Log-periodic dipole arrays[J]. IRE Trans. Antennas Propag.,1960, AP-8:260-267
    [107] R.L.Carrel. The design of log-periodic antennas[J]. IRE Int.Conent.. Rec.,1961,9(1):61-75
    [108] G. De Vito, G. Stracca. Comments on the design of log-periodic dipole antennas[J]. IEEETrans. Antennas Propag.,1973,21(3):303-308
    [109] G. De Vito, G. Stracca. Further comments on the design of log-periodic dipole antennas[J].IEEE Trans. Antennas Propag.,1974,22(5):714-718
    [110] R. Mittra, K. Jones. Theoretical brillouin (k-β) diagram for monopole and dipole arrays andtheir application to log-periodic antennas[J]. IRE Inte. Conv. Rec.,1963,11(1):118-128
    [111] R. Mittra, K. Jones. Theoretical brillouin (k-β) diagrams for monopole and dipole arrays andtheir application to log-periodic antennas[J]. IEEE Trans. Antennas Propag.,1964,12(5):533-540
    [112] K. G. Balmain. Loop coupling to a periodic dipole array[J]. Electronics Lett.,1969,5(11):228-229
    [113] A. K. Bandyopadhyay, M. N. Roy. Computation of radiation patterns of rhombic antennaswith log periodic dipole array termination[J]. Proceedings of the IEEE,1969,57(7):1336-1337
    [114] K. Chan, P. Silvester. Analysis of the log-periodic V-dipole antenna[J]. IEEE Trans. AntennasPropag.,1975,23(3):397-401
    [115] C. Knop. On transient radiation from a log-periodic dipole array[J]. IEEE Trans. AntennasPropag.,1970,18(6):807-808
    [116] R. Kyle. Mutual coupling between log-periodic antennas[J]. IEEE Trans. Antennas Propag.,1970,18(1):15-22
    [117] E. W. Munro, P. A. Mcinnes. Calculation of the radiation pattern and impedance of alog-periodic dipole array[J]. Electronics Lett.,1973,9(22):530-531
    [118] K. Chan, P. Silvester. Projective analysis of log-periodic dipole antennas[J]. IEEE Trans.Antennas Propag.,1973,21(5):756-757
    [119] K. M. Keen. Log-periodic antenna with unidirectional radiation characteristics[J]. ElectronicsLett.,1976,12(19):498-500
    [120] Y. Chen, A. Ishimaru. High gain log-periodic antennas[C]. Antennas and Propagation SocietyInternational Symposium,1966,4:138-146
    [121] P. Butson, G. Thompson. A note on the calculation of the gain of log-periodic dipoleantennas[J]. IEEE Trans. Antennas Propag.,1976,24(1):105-106
    [122] K. Balmain, J. Nkeng. Asymmetry phenomenon of log-periodic dipole antennas[J]. IEEETrans. Antennas Propag.,1976,24(4):402-410
    [123] A. Paul, I. Gupta. An analysis of log periodic antenna with printed dipoles[J]. IEEE Trans.Microw. Theory Tech.,1981,29(2):114-117
    [124] P. S. Hall. Bandwidth limitations of log-periodic microstrip patch antenna arrays[J].Electronics Lett.,1984,20(11):437-438
    [125] P. S. Hall. Multioctave bandwidth log-periodic microstrip antenna array[J]. IEE Proceedingsof Microw., Anten. Propag.,1986,133(2):127-136
    [126] P. S. Hall, A. Sparrow. Microstrip log-periodic antenna array with endfire beam[J].Electronics Lett.,1987,23(17):912-913
    [127] M. Hilbert, K. Balmain. Characteristic-mode analysis of symmetric and asymmetriclog-periodic dipole antennas[C]. Antennas and Propagation Society International Symposium,1985,23:199-202
    [128] G. Dubost, S. Gueho, A. Bizouard. Log-periodic flat short-circuited dipole array with asquinted beam[J]. Electronics Lett.,1984,20(10):411-413
    [129] Y. Ruan. Input impedance analysis of dipole antenna with feedpoint displacements[C].Antennas and Propagation Society International Symposium,1985,23:195-198
    [130] C. Donn, J. Lew, J. Scherer. Microstrip log-periodic dipole array[C]. Antennas andPropagation Society International Symposium.1985,23:709-712
    [131] R. Pantoja, R. Sapienza, F. Filho. Analysis of a wideband microwave log-periodic antennafeeding technique[C]. Antennas and Propagation Society International Symposium,1986,24:757-760
    [132] T. Athanasas, P. Ingerson, S. Kuo. Log-periodic arrays with split delay-line feeders[C].Antennas and Propagation Society International Symposium,1986,24:765-768
    [133] Y. Yuan, L.-M. Si, Y. Liu. Integrated log-periodic antenna for Terahertz applications[C].International Conference on Microwave Technology and Computational Electromagnetics,2009,276-279
    [134] J. Yang, D. Nyberg, J. Yin. Impedance matrix of a folded dipole pair under elevenconfigurations[J]. IET Microw. Ant. Propag.,2009,4(6):697-703
    [135] J. Yang, X. M. Chen, N. Wadefalk. Design and realization of a linearly polarized eleven feedfor1-10GHz[J]. IEEE Antennas and Wireless Propag. Lett.,2009,8:64-68
    [136] J. Yang. On conditions for constant radiation characteristics for log-periodic array antennas[J].IEEE Trans. Antennas Propag.,2010,58(5):1521-1526
    [137] J. Yang, P. S. Kildal. Optimization of reflection coefficient of large log-periodic array bycomputing only a small part of it[J]. IEEE Trans. Antennas Propag.,2011,59(6):1790-1797
    [138] J. Yang, M. Pantaleev, et al. Cryogenic2-13GHz eleven feed for reflector antennas in futurewideband radio telescopes[J]. IEEE Trans. Antennas Propag.,2011,59(6):1918-1934
    [139] J. Yang, M. Pantaleev, P. Kildal. Design of compact dual-polarized1.2-10GHz eleven feedfor decade bandwidth radio telescopes[J]. IEEE Trans. Antennas Propag.,2012,60(5):2210-2218
    [140] Z. L. Gong K. Balmain. Reduction of the anomalous resonances of symmetric log-periodicdipole antennas[J]. IEEE Trans. Antennas Propag.,1986,34(12):1404-1410
    [141] R. Pantoja, A. Sapienza, F. M. Filho. A microwave printed planar log-periodic dipole arrayantenna[J]. IEEE Trans. Antennas Propag.,1987,35(10):1176-1178
    [142] C. Peixeiro. Design of log-periodic dipole antennas[J]. IEE Proceedings of Microw. Ant.Propag.,1988,135(2):98-102
    [143] M. Hibert, M. A. Tilston, K. G. Balmain. Resonance phenomena of log-periodic antennas:characteristic-mode analysis[J]. IEEE Trans. Antennas Propag.,1989,37(10):1224-1234
    [144] J. R. Mohassel. A miniaturized log-periodic dipole array[C]. Sixth International Conferenceon Antennas and Propagation,1989,1:403-406
    [145] D. C. Baker, T. G. Reuss. An investigation of the design of a log-periodic dipole array withlow side-lobe levels for broadcast applications[J]. IEEE Trans. Broadcasting.1990,36(1):89-93
    [146] D. J. Tammen, P. E. Mayes. A broadband dual linearly-polarized log-periodic slot antenna[C].Antennas and Propagation Society International Symposium,1991,2:723-726
    [147] B. Shuppert. Microstrip/slotline transitions: modeling and experimental investigation[J]. IEEETrans. Microw. Theory Tech.,1988,36(8):1272-1282
    [148] B. Schiek, J. Kohler. An improved microstrip-to-slot transition[J]. IEEE Trans. Microw.Theory Tech.,1976,24(4):231-233
    [149] V. Trifunovic, B. Jokanovic. New uniplanar balun[J]. Electronics Lett.,1991,27(10):813-815
    [150] E. W. Reid, L.O. Balbuena, K. Moez. Integrated low-loss balun for Vivaldi antennas[J].Electron. Lett.,2009,45(9):442-444
    [151] E. W. Reid, L. O. Balbuena, A. Ghadiri. A324-element Vivaldi antenna array for radioastronomy instrumentation[J]. IEEE Trans. Instru. Measur.,2012,61(1):241-250
    [152] F. Ndagijimana. Tapered slot antenna analysis with3-D TLM method[J]. Electronics Lett.,1990,26(7):468-470
    [153] K. Kang, W.X. Zhang, K. F. Tsang. Equivalent source analysis of curved edge taperedslot-line antennas[J]. International Journal of Infrared and Millimeter Waves,1995,16(12):2223-2229
    [154] D. H. Schaubert, J. A. Aas, M. E. Cooley. Moment method analysis of infinite stripline-fedtapered slot antenna arrays with a ground plane[J]. IEEE Trans. Antennas Propag.,1994,42(8):1161-1166
    [155]张克潜,李德杰.微波与光电子学中的电磁理论[M].北京:电子工业出版社,2001
    [156] R. Janaswamy, D. H. Schaubert. Characteristic impedance of a wide slotline on lowpermittivity substrates[J]. IEEE Trans. Microw. Theory Tech.,1986,34(8):900-902
    [157]丁晓磊.对数周期偶极子天线扇形阵的特性分析[D].成都:电子科技大学,2002
    [158] P. G. Ingerson, P. E. Mayes. Log-periodic antennas with modulated impedance feeders[J].IEEE Trans. Antennas Propag.,1968,16(6):633-642
    [159] P. B. Green, P. E. Mayes.50log-periodic monopole array with modulated-impedancemicrostrip feeder[J]. IEEE Trans. Antennas Propag.,1974,22(2):332-334

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700