增强现实中的虚实遮挡处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息技术的发展,增强现实(Augmented Reality,简称AR)技术越来越广泛地引起了研究人员的注意,其研究内涵与应用范围也不断拓展延伸。它是一种将计算机系统产生的虚拟物体、场景或系统提示信息叠加到真实世界中实现对真实世界有效扩充和增强的技术。增强现实技术与虚拟现实(Virtual Reality,简称VR)技术密切相关,但存在区别。不同于VR的纯虚拟环境,AR强调虚拟对象与真实环境的完美融合。
     在早期的研究中,研究者们多将注意力集中在解决跟踪注册、三维重建等问题上,并取得了突破性的进展。但随着研究的不断深入,虚实遮挡处理成为增强现实系统所必须解决的又一关键性问题。当将虚拟物体叠加到真实场景中时,虚拟对象与真实场景间存在一定的空间位置关系,即遮挡与被遮挡的关系。目前,大多数增强现实系统只是简单的将虚拟对象叠加到真实场景图像上,以致真实场景始终被虚拟物体遮挡。当场景中的虚拟物体被真实物体遮挡时,用户很难正确判断虚实物体间的位置关系。针对上述问题,本文详细分析了现有方法存在的缺点与不足,吸取了数字图像处理、模式识别、计算机视觉和非线性优化等学科理论的最新成果,围绕虚实遮挡处理中的半自动实时处理方法、自动实时处理方法和非刚性物体虚实遮挡处理方法等技术内容展开了深入、系统的研究与实践,目标旨在针对不同的应用场合,研究相应的虚实遮挡处理方法,在提高增强现实系统可用性的同时最大限度保证虚实遮挡处理的效果和系统的实时性。
     本文的主要研究工作如下:
     (1)基于轮廓跟踪的虚实遮挡处理方法研究
     针对现有基于模型的虚实遮挡处理方法中,要求用户重建三维场景或遮挡物体,以及基于深度的虚实遮挡处理方法仅适用于真实场景比较固定的情况,设计一种基于轮廓跟踪的虚实遮挡处理框架,使系统在未知场景或遮挡物体三维模型的情况下,能够实时的完成虚实遮挡处理,并且适用于视角发生变化的情况。
     (2)半自动实时虚实遮挡处理方法的研究与实现
     设计一种基于用户手工指定与系统自动划分相结合的半自动实时虚实遮挡处理方法,在完成第一帧虚实合成图像遮挡处理的同时为后续帧的遮挡判断提供可靠的依据,最大限度的降低操作的复杂程度,在后续帧中,采用一种基于水平集的快速跟踪方法,实时、精确的跟踪目标轮廓,不仅保证了虚实遮挡处理的有效性,也保证了系统的实时性和可用性。
     (3)自动实时虚实遮挡处理方法的研究与实现
     针对增强现实系统无人工干预的要求,设计一种自动实时虚实遮挡处理方法。在无人工参与的情况下,利用立体匹配技术计算得到的初始帧图像中像素点的深度信息,判断真实物体与虚拟物体间的空间位置关系,保证判断的准确性。另外,采用一种基于光流法和最大流/最小割的轮廓跟踪方法,使系统在场景复杂、前景背景颜色相似的情况下也能实时、精确的跟踪目标轮廓,且当初始轮廓与目标边界相差较大时,也能快速收敛到目标边界,从而保证了后续帧图像中遮挡处理的有效性和实时性。
     (4)非刚性物体虚实遮挡处理方法的研究与实现
     针对真实场景中存在非刚性物体的情况,借助因式分解技术和基于活动外观模型的轮廓跟踪技术,设计一种非刚性物体虚实遮挡处理方法,在准确求取摄像机外部参数的同时完成虚实遮挡处理,使系统在无标识物的条件下,能够完成三维注册和遮挡判断,降低系统对标识物的依赖,扩大系统的应用范围。
People pay more and more attention to augmented reality (AR) along with the development of information technology. Its range of application expanded significantly recently. AR is a technology that superimposes the computer generated virtual objects, scene and information to the real world. It expands and augments the real world with additional information. The AR has close relationship to virtual reality (VR), but they have distinctions. All the objects in the VR system are computer generated. Different with the VR system, AR system emphasizes the fusion between the virtual objects and the real worlds.
     The early researches on augmented reality mainly focus on the registration between virtual and real worlds and the 3D reconstruction technology. People have made significant improvements in these areas. With the development of research, occlusion handling has become another crucial problem we need to solve. When we overlay the virtual objects on the real scene, there are spatial relationships between the virtual and real objects. Sometimes the virtual objects occlude the real object and sometimes on the contrary. At present, most AR systems simply draw virtual objects on the composite images regardless of the spatial relationships between the virtual and real objects. This leads to that the real objects are occluded by the virtual objects all the time. It will make the user difficult to get the correct spatial relationships between the real and virtual objects. Focusing on this problem, we analyze the advantages and disadvantages of the existing approaches. Then we take full advantages of digital image processing, pattern recognition, computer vision and non-linear optimization technology to investigate the real-time semi-automatic occlusion handling method, real-time automatic occlusion handling method and non-rigid occlusion handling method. The goal is to get correct spatial relationships between real and virtual objects in real time and improve the availability of AR systems.
     The main studies and achievements of the thesis are listed as following:
     (1) A new framework handling occlusion problem based on contour tracking
     In the existing model-based occlusion handling approaches, the 3D models of the real scene or the occluding real objects need to be reconstructed. This is difficult in the complex scene. And the existing depth-based methods are only suitable to the static scene. To enlarge the application range, we propose a novel framework based on contour tracking to handle occlusion problem. Our approach can successfully handle the occlusion problem without 3D reconstruction and is suitable to the case when the camera changes over a wide range of viewing angles and volumes.
     (2) A real-time semi-automatic occlusion handling method
     We propose a novel real-time semi-automatic occlusion handling method. Our method is divided into three steps:occluding real object specifying, object tracking and occlusion handling. In occluding real object specifying step, user specifies the occluding object using interactive segmentation method. Then the contour of the specified object will be tracked in the subsequent frames using the fast level set contour tracking method which is accurate and real-time. In occlusion handling step, all the pixels on the tracked object are redrawn on the unhandled augmented image to produce a new synthesized image in which the relative position between real and virtual objects is correct. The proposed method has several advantages. Firstly, it is robust and stable as it remains effective when the camera is moved through large changes of viewing angles and volumes or when the object and the background have many similar colors. Secondly, it is fast as the real object can be tracked in real-time. Lastly, the seamless mergence is improved by utilizing smoothing technique. Several experiments are provided to validate the performance of the proposed method.
     (3) A real-time automatic occlusion handling method
     To satisfy the requirement of minimizing the human intervention in AR systems, we propose a new real-time automatic approach that resolves occlusion problem. The main interest is that it can automatically obtain the proper spatial relationships between virtual and real objects in real time. Our approach is divided into two steps:off-line disparity map constructing and on-line occlusion handling. In the off-line stage, the disparity map of the real scene is constructed using the global stereo matching method prior and then the disparities are refined by means of the fast mean shift method. Because the depth values of objects in different positions are different, the real object that occludes the virtual object can be specified according to the depth value. In the on-line stage, the contour of the specified object is tracked using the real time object tracking method with the combination of feature tracking method and minimum s-t cut method. The augmented image with correct occlusions is produced by redrawing all the tracked object pixels on the augmented image. Compared with the existing methods, the proposed approach can automatically resolve occlusion problem in real time. The effectiveness of our method is demonstrated with several experimental results.
     (4) An occlusion handling method for non-rigid objects in augmented reality systems
     There are always non-rigid objects existing in the real world. Different with rigid objects, the shape of the non-rigid objects will change randomly. So the general occlusion handling methods used for rigid objects are not suitable to the non-rigid objects. We propose an occlusion handling method for non-rigid objects in augmented reality systems based on active appearance models (AAM) and factorization method. This method can not only calculate the extrinsic parameter but also solve the non-rigid occlusion problem.
引文
[1]赵沁平,何红梅.分布式虚拟环境综述.计算机科学,2000,27(11):1-7.
    [2]李玉忠,杜慧军.虚拟现实技术综述与基于Internet的虚拟培训系统设计.计算机工程与应用,2002,15:127-129.
    [3]朱淼良,姚远,蒋云良.增强现实综述.中国图象图形学报,2004,9(7):767-774.
    [4]齐越,马红妹.增强现实:特点、关键技术和应用.小型微型计算机系统,2004,25(5):900-903.
    [5]Milgram, P., Kishino, F. A taxonomy of mixed reality visual displays. IEICE Transactions on Information Systems,1994, E77-D(12):1321-1329.
    [6]Azuma, R. Recent advances in augmented reality. IEEE Computer Graphics and Applications,2001,21(6):34-47.
    [7]胡晓明.用于增强现实的姿态测量系统及其校正技术研究[博士学位论文].北京:北京理工大学图书馆,2006.
    [8]马志艳.面向数控加工仿真的增强现实关键技术研究[博士学位论文].武汉:华中科技大学图书馆,2007.
    [9]Soferman, Z., Blythe, D., John, N.W. Advanced graphics behind medical virtual reality:Evolution of algorithms, hardware, and software interfaces. In Proceedings of the IEEE,1998:531-554.
    [10]Kahol, K., French, J., McDaniel, T., et al. Augmented virtual reality for laparoscopic surgical tool training. In Proceedings of the 12th International Conference on Human-Computer Interaction,2007:459-467.
    [11]Rosenthal, M., State, A., Lee, J., et al. Augmented reality guidance for needle biopsies:an initial randomized, controlled trial in phantoms. In Proceedings of the Conference on Medical Image Computing and Computer-Assisted Intervention, 2002:313-320.
    [12]Tang, S.L., Kwoh, C.K., Teo, M.Y., et al. Augmented reality systems for medical applications. IEEE Engineering in Medicine and Biology Magazine,1998,17(3): 49-58.
    [13]Caudell, T.P., Misell, D.W. Augmented reality:An application of heads-up display technology to manual manufacturing processes. In Proceedings of Hawaii International Conference on System Sciences,1992:659-669.
    [14]Sims, D. New realities in aircraft design and manufacture. IEEE Comp. Graph. Appl.,1994,14(2):91.
    [15]Zauner, J., Haller, M., Brandl. A. Authoring of a mixed reality assembly instructor for hierarchical structures. In Proceedings of ISMAR'03,2003:237-246.
    [16]Reinhart, G., Patron, C. Integrating augmented reality in the assembly domain-fundamentals, benefits and applications. Ann. CIRP,2003,52(1):5-8.
    [17]Liverani, A., Amati, G., Caligiana, G A CAD-augmented reality integrated environment for assembly sequence check and interactive validation. Concur. Eng.:Res.& Appl.,2004,12:67-77.
    [18]Day, P.N., Ferguson, R.K., Holt, O.B., et al. Wearable augmented VR for enhancing information delivery in high precision defence assembly:an engineering case study. Virt. Real.,2005,8(3):177-185.
    [19]Yuan, M.L., Ong, S.K., Nee, A.Y.C. Augmented reality for assembly guidance using a virtual interactive tool. International Journal of Production Research, 2008,46(7):1745-1767.
    [20]Papagiannakis, G, Schertenleib, S., O'Kennedy, B., et al. Mixing virtual and real scenes in the site of ancient pompeii. Computer Animation and Virtual Worlds, 2005,16:11-24.
    [21]Papagiannakis, G., Magnenat-Thalmann, N. Virtual worlds and augmented reality in cultural heritage applications. In Proceedings of Recording, Modeling and Visualization of Cultural Heritage,2006:419-430.
    [22]Vlahakis, V., Ioannidis, N., Karigiannis, J. ARCHEOGUIDE:An augmented reality guide for archaeology sites. IEEE Computer Graphics and Applications, 2002,22(5):52-60.
    [23]Vlahakis, V., Karigiannis, J., Tsotros, M., et al. ARCHEOGUIDE:First results of an Augmented Reality. In Proceedings of VAST 2001 Virtual Reality,2001: 131-139.
    [24]Fritz, F., Susperregui, A., Linaza, M.T. Enhancing cultural tourism experiences with augmented reality technologies. In Proceedings of the 6th International Symposium on Virtual Reality,2005:101-106.
    [25]Noh, Z., Sunar, M.S., Pan, Z. A review on augmented reality for virtual heritage system. In proceedings of the 4th International Conference on E-Learning and Games,2009:50-61.
    [26]Gleue, T., Dahne, P. Design and implementation of a mobile device for outdoor augmented reality in the ARCHEOGUIDE project. In Proceedings of VAST 2001 Virtual Reality, Archeology, and Cultural Heritage,2001:161-168.
    [27]Billinghurst, M., Kato, H., Poupyrev, I. The MagicBook-Moving seamlessly between reality and virtuality. IEEE Computer Graphics and Applications,2001, 21(3):6-8.
    [28]Miyawaki, K., Sano, M. A virtual agent for a cooking navigation system using augmented reality. In Proceedings of the 8th International Conference on Intelligent Virtual Agents,2008:97-103.
    [29]Klein, G., Murray, D. Parallel tracking and mapping for small AR workspaces. In Proceedings of the 6th IEEE and ACM International Symposium on Mixed and Augmented Reality,2007:1-10.
    [30]胡晓明,刘越,杨健等.五指七自由度数据手套的研究.光电子技术与信息,2003,8(S1):768-771.
    [31]哈涌刚,周雅.用于增强现实的头盔显示器的设计.光学技术,2000,26(4): 350-353.
    [32]周雅,闰达远,王涌天等.一种增强现实系统的三维注册方法.中国图象图形学报,2000,5(5):430-433.
    [33]陈靖,王涌天,施琦等.利用光流预测的增强现实系统注册方法.系统仿真学报,2002,14(6):739-742.
    [34]齐越,段晓娟.增强现实技术在虚拟演播室系统中的应用.小型微型计算机系统,2001,22(9):1033-1035.
    [35]庄宁.虚拟演播室中遮挡技术的实现[硕士学位论文].长沙:国防科学技术大学图书馆,2002.
    [36]Guan, T., Wang, C. Registration based on scene recognition and natural features tracking techniques for wide-area augmented reality systems. IEEE Transactions on Multimedia,2009,11(8):1393-1406.
    [37]Guan, T., Li L.J., Wang, C. Registration using multiplanar structures for augmented reality systems. Journal of Computing and Information Science in Engineering,2008,8(4):041002-1-041002-6.
    [38]Guan, T., Li, L.J., Wang, C. Robust estimation of trifocal tensors using natural features for augmented reality systems. Computing and Informatics,2008,27(6): 891-911.
    [39]Li, L.J., Guan, T., Ren, B., et al. Registration based on Euclidean reconstruction and natural features tracking for augmented reality systems. Assembly Automation,2008,28(4):340-347.
    [40]管涛.增强现实中的虚实配准方法研究[博士学位论文].武汉:华中科技大学图书馆,2008.
    [41]朱杰杰,潘志庚.用视觉计算实现视频增强现实遮挡处理.计算机辅助设计与图形学学报,2007,19(12):1624-1628.
    [42]Breen, D.E., Whitaker, R.T., Rose, E., et al. Interactive occlusion and automatic object placement for augmented reality. Computer Graphics Forum,1996,15(3): 11-22.
    [43]Fuhrmann, A., Hesina, G., Faure, F., et al. Occlusion in collaborative augmented environments. Computers and Graphics,1999,23(6):809-819.
    [44]Ong, K.C., Teh, H.C., Tan, T.S. Resolving occlusion in image sequence made easy. Visual Computer,1998,14(4):153-165.
    [45]Lepetit, V., Berger, M.O. A semi-automatic method for resolving occlusion in augmented reality. In Proc. of the CVPR,2000:225-230.
    [46]Lepetit, V., Berger, M.O. Handling occlusion in augmented reality systems:a semi-automatic method. IEEE and ACM International Symposium on Augmented Reality,2000:137-146.
    [47]Yokoya, N., Takemura, H., Okuma, T., et al. Stereo vision based video see-through mixed reality. Proceedings of the 1st International Symposia on Mixed Reality 1999:85-94.
    [48]Fortin, P.A., Hebert, P. Handling occlusions in real-time augmented reality: dealing with movable real and virtual objects. Proceedings of the 3rd Canadian Conference on Computer and Robot Vision,2006:54-54.
    [49]Edward, S.J., Livingston, M.A., Smallman, H.S., et al. A perceptual matching technique for depth judgments in optical, see-through augmented reality. Proceedings of IEEE Virtual Reality Conference,2006:19-26.
    [50]Hayashi, K., Kato, H.K., Nishida, S. Occlusion detection of real objects using contour based stereo matching. Proceedings of International Conference on Augmented Tele-existence,2005:180-186.
    [51]张玮,陈一民,张目等.增强现实中虚拟物体制作的研究.计算机应用研究,2005,12:154-159.
    [52]马颂德,张正友.计算机视觉——计算理论与算法基础.北京:科学出版社,1998.
    [53]Hartley, R., Zisserman. Multiple view geometry in computer vision. Cambridge University Press,2004.
    [54]刘伟.刚体目标位姿计算算法研究[硕士学位论文].武汉:华中科技大学图书馆,2009.
    [55]Jose, M.M. Computer vision and augmented reality for guiding assembly. The Pennsylvania State University,2002.
    [56]Hagen, S. Camera models and calibration. Computer Vision Laboratory Department of Electrical Engineering Linkoping University,2003.
    [57]孙磊.基于视觉的增强现实系统的研究[硕士学位论文].福州:福州大学图书馆,2006.
    [58]姚晓文.宽视域下的虚实配准方法研究[硕士学位论文].武汉:华中科技大学图书馆,2009.
    [59]Hartley, R.I., Zisserman, A.计算机视觉中的多视图几何.韦穗,杨尚骏,章权兵等译.合肥:安徽大学出版社,2002.
    [60]Milan,S.,Vaclav,H.,Roge,B.图像处理、分析与机器视觉.艾海舟,武勃译.北京:人民邮电出版社,2003.
    [61]Rachard, H., Andrew, Z. Multiple view geometry. CVPR,1999:1-228.
    [62]袁钰杰.增强现实环境中的三维重建技术研究[硕士学位论文].成都:电子科技大学图书馆,2009.
    [63]郑宁斐.增强现实中关键技术的研究[硕士学位论文].西安:西安电子科技大学图书馆,2007.
    [64]朱铮涛,黎绍发.镜头畸变及其校正技术.光学技术,2005,31:136-140.
    [65]Tsai, R.Y. An efficient and accurate camera calibration technique for 3D machine vision, In Proc. CVPR,1986:364-374.
    [66]徐迟.增强装配系统的虚实融合技术研究[硕士学位论文].武汉:华中科技大学图书馆,2007.
    [67]金剑华,陈一民.增强现实中基于视觉与磁力跟踪器的三维注册方法.计算机应用,2006,26(6):1485-1489.
    [68]Didier, S., Gudrun, K., Dirk, R. A fast and robust line-based optical tracker for augmented reality application. Proceedings of IWAR,1998:905-914.
    [69]Jun, R. Matrix:A real-time object identification and registration method for augmented reality. Proceedings of 3rd Asia Pacific Computer Human Interaction, 1998:63-68.
    [70]Wellner, P. Interacting with paper on the digital desk. Communication of the ACM,1993,36(7):87-96.
    [71]Vincent, L., Soille, P. Watersheds in digital spaces:an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13(6):583-598.
    [72]Bill, I.M., Kato, H., Weghorst, S., et al. A mixed reality 3D conferencing application. Technical Report, Human Interface Technology Laboratory-University of Washington,1999.
    [73]管涛,李利军,武建刚等.一种健壮的三维注册方法——对ARToolKit 的改进.计算机应用与软件,2007,24(11):174-176.
    [74]Porter, T., Duff, T. Compositing digital images. In SIGGRAPH,1984:253-259.
    [75]Chuang, Y.Y., Brian C., David H., et al. A bayesian approach to digital matting. In Proc. IEEE Conf. Computer Vision and Pattern Recog.,2001:264-271.
    [76]Sun, J., Jia, J.Y., Tang, C.K., et al. Poisson matting. ACM Trans. Graphics,2004, 23(3):315-321.
    [77]Wang, J., Agrawala, M., Cohen, M.F. Soft scissors:an interactive tool for realtime high quality matting. SIGGRAPH,2007.
    [78]Levin, A., Lischinski, D., Weiss, Y. A closed-form solution to natural image matting. IEEE Tranctions on Pattern Analysis and Machine Intelligence,2008, 30(2):228-242.
    [79]Adalsteinsson, D., Sethian, J. A fast level set method for propagating interfaces. Journal of Computational Physics,1995,118(2):269-277.
    [80]Whitaker, R. A level-set approach to 3D reconstruction from range data. International Journal of Computer Vision,1998,29(3):203-231.
    [81]Peng, D., Merriman, B., Osher, S., et al. A PDE-based fast local level set method. Journal of Computational Physics,1999,155(2):410-438.
    [82]Paragios, N., Deriche, R. Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. Pattern Anal. Machine Intell.,2000, 22(3):266-280.
    [83]Boykov, Y.Y., Jolly, M.P. Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In Proc. IEEE Int. Conf. on Computer Vision,2001:105-112.
    [84]Hosaka, T., Kobayashi, T., Otsu, N. Image segmentation using MAP-MRF estimation and support vector machine. Interdisciplinary Information Sciences, 2007,13(1):33-42.
    [85]Li, Y., Sun, J. Tang, C.K., et al. Lazy snapping. SIGGRAPH,2004,23(3): 303-308.
    [86]Rother, C., Blake, A., Kolmogorov, V. "Grabcut"-Interactive foreground extraction using iterated graph cuts. In Proceedings of ACM SIGGRAPH,2004: 23(3):309-314.
    [87]杜振龙.图像—视频抠像技术的研究[博士学位论文].浙江:浙江大学图书馆,2007.
    [88]杨明辉,彭思龙.分水岭分割的方向迭代后处理算法.计算机工程,2006,32(12):8-10.
    [89]Sapiro, G, Ringach, D.L. Anisotropic diffusion on multivalued images with applications to color filtering. IEEE Trans. Image Process.,1996,5(11): 1582-1586.
    [90]刘建龙.基于图论的图像分割算法研究[硕士学位论文].哈尔滨:哈尔滨工业大学图书馆,2006.
    [91]Greig, D., Porteous, B., Seheult, A. Exact maximum a posteriori estimation for binary images. J. Royal Statistical Soc., Series B,1989,51(2):271-279.
    [92]Kwatra, V., Schoodl, A., Essa, I., et al. Graphcut textures:image and video synthesis using graph cuts, ACM Trans. Graphics, Proc.,2003:277-286.
    [93]Ahn, J.H, Kim, K., Byun, H. Robust object segmentation using graph cut with object and background seed estimation. The 18th International Conference on Pattern Recognition,2006:361-364.
    [94]Kolmogorov, V. What energy functions can be minimized via graph cuts? IEEE Tractions on Pattern Analysis and Machine Intelligence,2004,26(2):147-159.
    [95]Boykov, Y., Kolmogorov, V. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. In 3rd. Intnl. Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition,2001: 359-374.
    [96]陆悌亮,龚声蓉.一种基于水平集的视频运动对象分割算法.微电子学与计算机,2007,24(7):105-107.
    [97]任继军,何明一.一种新的水平集图像分割方法.计算机工程与应用,2007,43(19):16-18.
    [98]张育,查宇飞.基于曲线演化的运动目标跟踪研究.弹箭与制导学报,2005,25(4):802-804.
    [99]Zhu, S., Yuille, A. Region competition:unifying snake/balloon, region growing, and bayes/mdl/energy for multi-band image segmentation. IEEE Trans. Pattern Anal. Machine Intell.,1996,18(9):884-900.
    [100]Chan, T., Vese, L. Active contours without edges. IEEE Trans. Imag. Process., 2001,10(2):266-277.
    [101]Gibou, F., Fedkiw, R. A fast hybrid k-means level set algorithm for segmentation. In Proceedings of the 4th Annual Hawaii Int'l Conf. Statistics and Mathematics, 2005:281-291.
    [102]Shi, Y.G., Karl, W.C. Real-time tracking using level sets. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. USA:IEEE Computer Society,2005.34-41.
    [103]Perona, P., Malik, J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Machine Intell.,1990,12(7):629-639.
    [104]Feng, H., Castanon, D.A., Clem Karl, W. A curve evolution approach for image segmentation using adaptive flows. In Proc. ICCV,2001:494-499.
    [105]Bertrand, G Simple points, topological numbers and geodesic neighborhoods in cubic grids. Pattern Recognition Letters,1994,15(10):1003-1011.
    [106]Han, X., Xu, C., Prince, J. A topology preserving level set method for geometric deformable models. IEEE Trans. Pattern Anal. Machine Intell.,2003,25(6): 755-768.
    [107]刘献如,杨欣荣,伍春洪等.基于能量最小化的立体匹配方法研究.计算机工程,2006,32(22):197-199.
    [108]Kolmogorov, V., Zabih, R. Computing visual correspondence with occlusions using graph cuts. Proceedings of International Conference on Computer Vision, 2001:508-515.
    [109]Boykov, Y., Kolmogorov, V. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(9):1124-1137.
    [110]Boykov, Yuri., Veksler, O., Zabih, R. Markov random fields with efficient approximations. In IEEE Conference on Computer Vision and Pattern Recognition,1998:648-655.
    [111]Ishikawa, H., Geiger, D. Occlusions, discontinuities, and epipolar lines in stereo. In European Conference on Computer Vision,1998:232-248.
    [112]Roy, S. Stereo without epipolar lines:A maximum flow formulation. International Journal of Computer Vision,1999,1(2):1-15.
    [113]Szeliski, R., Zabih, R. An experimental comparison of stereo algorithms. Lecture Notes in Computer Science,1999,1883:1-19.
    [114]裴明涛,刘鹏.一种基于图割的快速立体匹配方法.北京理工大学学报,2009,29(3):229-232.
    [115]Potts, R. Some generalized order-disorder transformation. Proceedings of the Cambridge Philosophical Society,1952,48:106-109.
    [116]尹传历,向长波,宋建中等.一种基于自适应窗口和图切割的快速立体匹配算法.光学精密工程,2008,16(6):1117-1121.
    [117]Boykov, Y., Veksler,O., Zabih, R. Fast approximate energy minimization via graph cuts. IEEE Tranctions on Pattern Analysis and Machine Intelligence,1999, 1:1222-1239.
    [118]Tian, Y., Guan, T., Wang, C., et al. Interacive foreground segmentation using mean shift and graph cuts. Sensor Review,2009,29(2):157-162.
    [119]Guiducci, A. Corner characterization by differential geometry techniques. Pattern Recognition Letters,1988,8(5):311-318.
    [120]燕鹏,安如.基于FAST改进的快速角点探测算法.红外与激光工程,2009,38(6):1104-1108.
    [121]Rosten E., Drummond, T. Machine learning for high-speed corner detection. In European Conference on Computer Vision,2006:430-443.
    [122]Pyramidal implementation of the Lucas Kanade feature tracker, http://sourceforge.net/projects/opencvlibrary.
    [123]Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell.,1986,8(6):679-698.
    [124]Berger, M.O. Resolving occlusion in augmented reality:a contour based approach without 3D reconstruction. In Proceedings of CVPR,1997:91-96.
    [125]Schmidt, J., Niemann, H., Vogt, S. Dense disparity maps in real-time with an application to augmented reality. In Proceedings of Sixth IEEE Workshop on Applications of Computer Vision,2002:225-230.
    [126]曹会志,罗述谦.基于配准与ASM方法的医学图像分割.中国医学影像技术,2006,22(7):1108-1111.
    [127]金城,沈学文,卜佳俊等.基于主动外观模型的人脸合成技术.浙江大学学报(工学版),2008,42(7):1140-1144.
    [128]Sclaroff, S., Pentland, A.P. Modal matching for correspondence and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(7): 545-561.
    [129]Duta, N., Jain, A. K., Dubuisson-Jolly, M.P. Learning 2D shape models. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1999:8-14.
    [130]Walker, K.N., Cootes, T.F., Taylor, C.J. Determining correspondences for statistical models of appearance. Proceedings of 6th European Conference on Computer Vision,2000:829-843.
    [131]Andresen, P.R. and Nielsen, M. Non-rigid registration by geometry-constrained diffusion. Medical Image Analysis,2001,5(2):81-88.
    [132]蔡宇新,徐涛.基于ASM的图像中二维物体的定位方法研究.计算机应用,2003,23(6):191-194.
    [133]Bookstein, F.L. Landmark methods for forms without landmarks:localizing group differences in outline shape. Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis,1996:25-244.
    [134]Cootes, T.F., Taylor, C.J., Lanitis, A. Multi-resolution search with ASM. Pattern Recognition,1994,1:610-612.
    [135]Cootes, T.F., Twining, C.J., Taylor, C.J. Diffeomorphic statistical shape models. Proc. British Machine Vision Conference,2004,1:447-456.
    [136]Davies, R.H. Twining, C.J., Cootes, T.F., et al. A minimum descrip tion length approach to statistical shape modeling. IEEE Transactions on Medical Imaging, 2002,21:525-537.
    [137]谢玉鹏,吴海燕.基于AAM的人脸图像描述与编码.计算机仿真,2009,26(6):272-276.
    [138]章秋生,徐涛.基于主动表观模型(AAM)的图像中物体的定位方法研究.计算机应用真,2004,24(6):138-140.
    [139]Wang, S.C., Wang, Y.S., Chen, X.L. Weighted active appearance models.3rd Internatioanl Conference on Intelligent Computing,2007:1295-1304.
    [140]Tomasi, C., Kanade, T. Shape and motion from image streams under orthography: a factorization method. International Journal of Computer Vision,1992,9(2): 137-154.
    [141]Bregler, C., Hertzmann, A., Biermann, H. Recovering non-rigid 3d shape from image streams. In IEEE CVPR,2000:690-696.
    [142]Zhu, J.K., Hoi, S.C.H., Lyu, M.R. Real-time non-rigid shape recovery via active appearance models for augmented reality.9th European Conference on Computer Vision,2006:186-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700