用户名: 密码: 验证码:
黄土坡滑坡滑带土的结构特征与水—力相互作用性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型水库的建设对自然环境和社会环境的破坏和影响是不容忽视的,水库水位的上升以及周期性的水位变化会改变库区原有地质环境平衡状态,带来各种地质灾害和隐患,滑坡灾害即是库区易发的典型地质灾害之一。三峡工程位于中国重庆市至湖北省宜昌市之间的长江干流之上,是建设在中国长江中上游段的大型水利水电工程。由三峡工程所引起的百万移民和环境破坏等诸多问题使其自开始筹建的那一刻起,便始终伴随着巨大的争议。教育部长江三峡库区地质灾害研究中心是教育部直接领导下的以地质灾害为主要研究领域的综合性开放平台,由中国地质大学(武汉)作为建设承担单位,该平台位于三峡库区黄土坡滑坡体内的地下洞室群将全面揭露该滑坡滑带的原状特征。针对该滑坡滑带土样品的室内试验以及各种原位测试将对滑坡灾害的研究起到巨大的推动作用。根据已有的勘查资料,黄土坡滑坡主要由临江1号崩滑堆积体、临江2号崩滑堆积体、变电站滑坡和园艺场滑坡四部分组成,总面积约135x104m2,总体积约6934x104m3。同三峡库区大多数滑坡一样,黄土坡滑坡属于涉水滑坡,即滑坡前缘位于水库最高水位175m以下。三峡水库正常运营后,黄土坡滑坡体内部分区域处于周期为一年的饱和与非饱和干湿循环状态。黄土坡滑坡的研究对整个三峡库区地质灾害的研究具有重要的代表性意义。
     本文首先对黄土坡滑坡区域的自然地理、地质环境以及滑坡体的基本特征进行了阐述,重点分析了临江崩滑体滑带的分布特征并对滑带土的基本性质进行试验研究。从各剖面的滑带分布图中可以看出,临江崩滑体中发育有多层滑带,各层滑带在滑体中的分布高程随剖面位置的不同而存在差异,滑带在滑体内不同位置的连续性或贯通情况也有所不同。这些实际或潜在滑带的物理力学性质和分布特征直接控制着整个滑坡体的稳定性与破坏形式,因此对滑带土的研究是分析滑坡的成因机制与稳定性的关键问题。钻孔所揭露的滑坡滑带物质主要为含角砾或碎石的粉质粘土,其中粘粒的含量约为13%-30%,粉粒和砂粒的含量约为15%-37%,碎石的含量约为2.5-20%,随发育部位的不同,滑带士的颗粒组成差异较大。X射线衍射测试与化学全量测试结果表明,黄土坡滑坡滑带土的组成矿物主要包括石英、长石、方解石以及蒙脱石、绿泥石和伊利石等粘土矿物,粘土矿物总量占40%-45%。环剪试验测得滑带土的峰值粘聚力和内摩擦角分别为21.38kPa和20.35°,残余粘聚力和内摩擦角分别为8.54kPa和17.69°。
     由于岩土材料是由细小的矿物结合体和碎散颗粒所组成的不连续介质,碎散颗粒的性质和空间排列特征直接决定了岩士介质的宏观特性。本文通过颗粒分析、薄片分析和电镜扫描等手段,结合分形理论对滑带土的粒度组成、颗粒轮廓与表面特征以及片状粘土矿物颗粒的定向性排列性质进行了定量化的研究。颗粒分析试验结果显示滑带土土样的颗粒粒径和质量累计百分含量取对数后具有明显的线性关系,即滑带土的颗粒尺寸分布具有分形特征。其中,颗粒的质量-粒径分布分维数越大表示土体中细颗粒含量高而粗颗粒含量低,分维数越小则表明细颗粒含量少而粗颗粒含量高。将滑带土各粒径范围颗粒的轮廓分维值与标准磨圆度颗粒的轮廓分维值对比,可得相应粒组的磨圆度级别。对滑带土中泥质粉砂岩、泥质灰岩和方解石颗粒等粗颗粒的扫描电镜分析和能谱分析结果显示,泥质粉砂岩颗粒磨圆度相对较低,常见各种棱角和突起,表面一般起伏不平,布满形态各异的突起和凹坑,形成蜂窝状。泥质灰岩颗粒的磨圆度较高,颗粒表面相对光滑,但可见线状擦痕等刻蚀形态。方解石晶体则主要呈平行发育的柱状、板状和各种状态的菱面体等。滑带土粘土矿物颗粒定向性统计结果显示,距离剪切面较近区域的滑带土中粘土矿物颗粒的排列方向具有更明显的定向性,距离剪切面较远处的粘土矿物颗粒的排列仍具有一定的定向性,但定向性的程度比剪切面附近区域弱。对滑带土结构特征的研究有助于揭示滑坡滑带的物理力学性质以及形成演化过程,从而反演滑坡体宏观的变形破坏历史。例如,滑带土颗粒的粒度组成特征,粗颗粒的轮廓与特殊的表面特征可用作滑带土和滑坡演化的定量化分析指标,粘土矿物定向性排列的程度则可以用于评价和预测滑坡的发育阶段并间接地预测滑坡的稳定性,同时可用于区分和确定主滑面的位置以及确定滑带中剪切面和扰动层的位置和厚度。
     随着水库水位的上升与周期性变化,水库涉水滑坡体内部分区域处于饱和与非饱和干湿循环状态,因此,对滑坡体特别是滑带土水-力相互作用性质的研究是水库型滑坡的关键问题之一。本文针对不同孔隙结构特征的重塑滑带土进行了压力板土水特征曲线试验,试验结果表明在同一终止固结压力条件下,与土样进气值有关的模型参数α以及与孔隙尺寸分布特征有关的参数n均随颗粒质量-粒径分维数增大而逐渐减小,而对于同一种颗粒质量-粒径分维数的土样,参数α和n均随终止固结压力的增大而减小。土样的饱和含水量和残余含水量则随土样颗粒质量-粒径分维数的增大而增大,随终止固结压力的增大而减小。为研究滑带土土水特征曲线和水力传导函数的回滞效应,分别对重塑滑带土和原状滑带土进行了瞬态脱水和吸水试验(TWRI),从试验结果可以看出,土样的土水特征曲线和水力传导函数均存在明显的回滞效应,且回滞效应的大小受土样颗粒级配特征的影响。被测土样土水特征曲线和水力传导函数回滞效应的大小随颗粒质量-粒径分维数的增大而增大,其中进气值、饱和体积含水量和饱和渗透系数的回滞效应相对明显,而与孔隙分布特征有关的参数n在脱水路径和吸水路径中的差异性相对较小。由于渗透系数是影响土体中含水状态变化的决定性因素,脱水和吸水过程中水力传导函数的巨大差异会对库水位涨落过程中滑带土含水状态变化带来显著的影响,这也是本文对滑带土干湿过程中回滞效应进行研究的重要原因之一。对水-力相互作用性质回滞效应影响最显著的因素主要包括土体内部孔隙尺寸分布特征引起的“墨水瓶效应”以及干湿不同路径中土颗粒表面和孔隙水接触角的变化。
     非饱和土不同含水量状态时的有效应力可通过基于吸应力理论的统一有效应力原理来定义。对于饱和土,其有效应力可表示成总应力和孔隙水压力之差,非饱和土的有效应力则可以表示成总应力与吸应力之差。不同基质吸力状态重塑滑带土的直剪试验结果表明,在同一级垂直压力条件下,土样的抗剪强度随基质吸力的增大而增大,但是土样的内摩擦角基本没有变化,仅表现为粘聚力的提高,整个抗剪强度包络线随着基质吸力的增大成平行上升的规律,土样抗剪强度改变并不是随着基质吸力的提高而成线性变化。将不同饱和度状态重塑滑带土抗剪强度的直剪试验结果与基于吸应力理论的预测结果进行对比,可见预测结果具有较好的准确程度。对于水库型滑坡而言,滑坡体内的部分区域长期处于周期性的干湿循环状态,因此,采用传统的饱和土强度理论来分析该类问题往往不能得到符合实际情况的结果。采用基于吸应力理论的扩展摩尔-库伦抗剪强度准则来预测土体非饱和状态抗剪强度,可以较方便且准确地在滑坡稳定性分析中充分考虑滑坡岩土体非饱和状态的抗剪强度性质,有利于非饱和土力学理论在实际岩土工程工作中的应用。
     黄土坡滑坡地表位移监测数据表明该滑坡体的部分区域朝水库方向持续蠕滑,其地表变形的速度与库水位的波动具有显著的相关性。为了分析水库初期蓄水以及周期性水位变化诱发水库涉水滑坡的机制,提出了一个关于水库滑坡受力与稳定性状态的概念模型,该概念模型基本包括了库水位升降对滑坡体造成的所有力学机制,其中既包括有利于增强滑坡稳定性的力学机制,也有不利于滑坡稳定性的力学机制。这些作用于滑坡体内的力学机制主要是由库水位升降所带来的孔隙水压力、吸应力、静水压力以及滑体自重的变化所引起,对水库水位变化诱发的涉水滑坡具有一定的代表性意义。通过概念模型,我们可以发现在水库水位上升以及周期性波动的过程中,涉水滑坡体内既有滑动力和抗滑力增加的区域,也有滑动力和抗滑力减小的区域,其中引起滑体有效应力减小的原因是饱和区域孔隙水压力的增大以及非饱和区域吸应力的消散,而造成有效应力增大的因素则主要包括静水压力以及滑体自重增大所带来的总应力增大。由于各滑坡体的地质结构和水-力相互作用性质存在差异,滑坡体内不同区域有效应力随库水位变化的幅度和增减方向也有所不同。般来说,在滑坡体靠近水库且始终处于饱和状态的区域以及始终处于地下水位线以上的非饱和区域,其有效应力受库水位升降的影响较小,而滑坡体中部处于饱和-非饱和干湿循环状态的区域,其有效应力和饱和度在库水位波动过程中变化显著。
     为了定量化分析滑坡体的稳定性与库水位升降所引起的滑坡体含水状态、孔隙水压力、吸应力以及有效应力变化之间的关系,选取黄土坡滑坡临江1号崩滑体的典型剖面建立2维水-力耦合模型进行数值模拟计算,数值模拟的时间跨度为2003年4月至2010年4月,涵盖了三峡水库蓄水的四个主要阶段。由于数值模拟的主要目的是分析库水位升降对涉水滑坡体各种力学机制的综合作用结果,本次计算没有考虑降雨以及滑坡体内上层滞水等其它因素影响。模拟计算结果定量化显示了概念模型中各种力学机制对黄土坡滑坡临江1号崩滑体稳定性的综合作用效果,在库水位从原始的68m上升至最高175m并在145m和175m之间周期性波动的过程中,库水位升降所引起的孔隙水压力、吸应力、静水压力以及滑体自重的变化对滑坡体有效应力和稳定性有着各自不同的影响。根据计算和分析结果,对于黄土坡滑坡临江1号崩滑体特定的地质结构、滑体材料水-力相互作用性质以及水位边界条件而言,由库水位变化所引起的综合力学机制作用结果受静水压力主导。由于主滑面的稳定性系数在正常水位变化期仍会周期性地降低至1以下,因此,滑体仍会持续发生间歇性蠕滑。
The damage and impact on the natural and social environment caused by the construction of large scale reservoir can not be ignored. The initial impoundment and periodic water level variation may change the balance of geological environment of the reservoir area and bring abundant of geo-hazards and potential dangerous. Landslide is one kind of typical geo-hazards occurs in reservoir area susceptibly. The Three Gorges Project, locates on the main stream of Yangtze River between Yichang and Chongqing in China, is a large water conservancy and hydropower project constructed on the middle-upper stream of Yangtze River. As one of the largest engineering projects in the world, Three Gorges Project is always accompanied with great dispute for the millions of immigrants and environmental disruption since the preparation of the project. Three Gorges Research Center for Geo-hazard, Ministry of Education is a comprehensive open platform focus on the research on Geo-hazards and operated by China University of Geosciences. The underground tunnel group belongs to the research center which is built in the sliding mass of Huangtupo slope in Three Gorges Reservoir area can comprehensively expose the original features of the sliding zones in the landslide, on the other hand laboratory tests and in-situ tests for the sliding zones will bring great contribution to the study of landslide hazards. According to the existing investigation data, Huangtupo landslide is composed with4main parts, namely No.1adjacent to river sliding debris, No.2adjacent to river sliding debris, Garden Spot Landslide and Transformer Station Landslide, the total area is135×104m2and total volume is6934×104m3. As many other landslides in the reservoir area, Huangtupo landslide is a wading landslide which means the toe of the sliding body is under the highest175m water level of the reservoir. For the initial impoundment and annually water level fluctuation, parts of the sliding mass are under the drying and wetting circulation condition. The study on Huangtupo landslide has an important representative significance to the study on geo-hazards in the whole Three Gorges reservoir area.
     Firstly, the nature geography, geological environments and basic characteristics of the sliding mass of Huangtupo area are introduced, especially the distribution characteristics of sliding zones of adjacent to river sliding debris. Basic property of the sliding zone soils are tested by laboratory tests. From the sliding zones distribution sections, multi layers of sliding zones can be observed in the adjacent river sliding debris. The elevations of each layer of sliding zones distribute differently with the position of sections. Continuity and interconnectivity of the sliding zones are also different in different area of the sliding mass. Physico-mechanical properties and distribution characteristics of these subsistent or potential sliding zones directly dominate the stability and failure mode of the whole landslide. So, the study on sliding zones is the key points for analyze of the formation and stability of the landslides. Sliding zone soils exposed by boreholes are silty clay with gravels, in which, clay contents13%-30%, silt and sand contents15%-37%and gravel contents2.5-20%, the components of sliding zone soils have significant difference in different parts of the sliding body. Results of X-ray diffraction tests show that the main component minerals of sliding zone soils are quartz, feldspar, calcite and clay minerals such as montmorillonite, illite and chlorite, the total amount of clay minerals is40%~45%. Shear strength of sliding zone soils are tested by ring shear, peak cohesion and internal friction angle are21.38kPa and20.35。, respectively, residue cohesion and internal friction angle are8.54kPa and17.69。, respectively.
     As we know, soils and rocks are discontinuous materials composed by fine mineral aggregates and detrital particles. The properties and spatial arrangement of fine mineral aggregates and detrital particles directly determine the macroscopic properties of soil and rock materials. In order to quantitatively study the piratical size distribution, particle profile and surface characteristics and directionality of laminar clay mineral of sliding zone soils, particle size analysis, slice analysis and scanning electron microscope methods are employed combined with fractal theory. Particle size analyses indicate that there are obvious liner relationships between particle sizes and cumulative mass percentages in the logarithmic coordinate system, which means the particle size distribution has fractal characteristics. Higher fractal dimension of mass-size distribution represent more fine particles content and less coarse particle content, lower fractal dimension of mass-size distribution represent less fine particles content and more coarse particle content. Psephicity of sliding zone soils particles can be obtained by comparing their profile fractal dimensions and standard psephicity particles. Surface characteristics and energy spectrum analyses show the argillaceous siltstone particles has relative lower psephicity, apophysis and grooves distribute on the rough particle surfaces and form the honeycomb shapes. Argillaceous limestone particles have relative higher psephicity and smoother surfaces but a lot of linear scratches can be observed on the particle surfaces. Calcite crystals are mainly parallel developed columnar, laminal or rhombohedron shapes. Statistical results of clay particles directionality indicate that the clay mineral arrangements of siding zone soils close to shear surface have much stronger directionality. As the distances away from the shear surface, directionality of the clay mineral particles arrangements weaken gradually. The study on the structure of sliding zone soils can contribute to the analysis of physico-mechanical properties, formation and evolution process of sliding zones in the landslides, and finally invert the macroscopic deformation and failure history of the whole landslide. For example, the particle size distribution, coarse particle profiles and typical surface features can be used as quantitative analysis indexes for the evolution stage and failure mode of the sliding zones. Directionality of the clay mineral particles arrangements can be used to evaluate and predict the evolution stage and stability of the slope, and also used to distinguish and determine the main sliding surface and the position and thickness of disturbed layer of sliding zones.
     As the impoundment of reservoir and annually water level fluctuation, parts of areas in reservoir wading landslide are under saturated and unsaturated circulation condition, so, the study on the hydro-mechanical properties of sliding mass, and especially the sliding zones, is one of the most important problem of the study on reservoir induced landslides. Pressure plate tests are employed to test the soil water characteristic curve of remolded sliding zone soils with different pore size distributions, tests results indicate that under the same final consolidation pressure, the model parameter a related to air entrance value and model parameter n related to pore sizes distribution both decrease with the increase of particle mass-size fractal dimension. For the sample with the same particle mass-size fractal dimension, parameter a and n both decrease with the increase of final consolidation pressures. Saturated volumetric water content and residual volumetric water content both increase with the increase of particle mass-size fractal dimension or decrease of final consolidation pressures. In order to test the hysteresis of soil water characteristic curve and hydraulic conductivity function of sliding zone soils, transient water release and imbibitions method (TWRI) is employed to test both remolded and undisturbed soil samples. TWRI tests results indicate that both soil water characteristic curve and hydraulic conductivity function of sliding zone soils have obvious hysteresis, and the degree of hysteresis are affect by the particle size component of the samples. From the hydro-mechanical parameters in both drying and wetting paths of remolded sliding zone soils with different particle size distributions, we can find that the degree of hysteresis of soil water characteristic curve and hydraulic conductivity function increase with the increase of particle mass-size fractal dimension. In which, the air entrance value, saturated volumetric water content and saturated permeability appear larger hysteresis, but the hysteresis of pore size distribution parameters are relative smaller. Because of the hydraulic conductivity function is one of the determining factors of the variation of moisture condition in the soils, the large difference between permeabilities in drying and wetting paths significantly affect the moisture content of the sliding zone soils during the variation of water level, and this is the main reason for the study on hysteresis of the soil water characteristic curve and hydraulic conductivity function of sliding zone soils. There are two main influencing factors on the hysteresis of hydro-mechanical properties of soils, one is the "ink bottle effect" caused by the particle size distribution and the other one is the change of contact angle between the surface of soil particles and pore water in drying and wetting paths.
     Effective stresses of unsaturated soils with different moisture contents can be defined by unified effective stress principle which is based on suction stress theory. For saturated soil, the effective stress is the difference of total stress and pore water pressure. For unsaturated soil, the effective stress is the difference of total stress and suction stress. Direct shear tests results of remolded sliding zone soil samples with different matric suctions indicate that the shear strength of samples increase with the increase of matric suction under the same normal pressure. The cohesion of the sample change significantly with the matric suction but the internal friction angle do not change to much, the whole shear strength envelope rise with the increase of matric suction parallelly. There is not linear relationship between the increase of shear strength and matric suction. Comparing the direct shear tests results of remolded sliding zone soils with different saturation with the predict results on the base of suction stress theory, we can find that the predict results have acceptable accuracy. For the reservoir induced landslides, parts of the sliding mass are under periodic drying and wetting circulation condition. Analyzing this kind of problem with traditional strength theory for saturated soils can not obtain results conform to real situations. Predicting the shear strength of soils under unsaturated condition by unified Mohr-Coulomb shear strength criterion on the base of suction stress theory can adequately consider the shear strength of sliding materials under unsaturated conditions conveniently and accurately which is benefit for the application of unsaturated soil mechanics theory on the practical geotechnical engineering problems.
     Earth surface deformation monitoring data indicates that parts of Huangtupo slope is moving episodically into the reservoir. Such movements of the slope appear to be highly correlated to the initial and seasonal water level changes. In order to analyze the mechanisms of the reservoir induced landslides, a general conceptual model is established for landsliding triggered by initial reservoir impoundment and annual water level fluctuations. This conceptual model identifies most of the possible physical mechanisms for stabilizing or destabilizing slopes due to the reservoir water level fluctuation. These mechanisms are caused by variation of pore water pressure, suction stress, hydrostatic loading, and slope self-weight during the variation of water level. So, the conceptual model can represent the mechanisms for most of the wading landslides induced by the change of reservoir water level.
     Through the conceptual model, there are both increasing and decreasing in driving and resistant stress areas and regimes in wading landslides. The mechanisms for effective stress decrease are mainly the increase of pore water pressure and the disappearance of suction stress. The mechanisms for effective stress increase (thus shear resistant) are the total stress caused by the hydrostatic pressure on the slope surface and the increase in self-weight of the sliding mass. Because the geologic and hydrologic structure of the slope, the variations of effective stress in different regions are quite different. The effective stress in the toe area and the unsaturated areas that are always above the water table are less affected by the fluctuation of the water level. The effective stresses in the middle part are greatly affected by the fluctuation of the water level as the saturation in this region varies greatly with both the initial reservoir impoundment and annual water level fluctuation.
     In order to quantitatively analyze the relationship between the moisture conditions, pore water pressure, suction stress and effective stress in the sliding mass with the variation of water level of reservoir, a two-dimensional hydro-mechanical numerical model is constructed on the base of a typical section form No.1adjacent river sliding debris of Huangtupo landslide. The modeling period is from April2003to April2010which covers the total4stages of the impoundment of Three Gorges reservoir. For the main purpose of the numerical simulation is the comprehensive effect of the mechanisms to the wading landslide caused by the change of reservoir water level, the other factors such as precipitation and perched water are ignored in the model. Modeling results quantitatively indicate the comprehensive effect of all the mechanisms mentioned in the conceptual model on the stability of No.l adjacent river sliding debris of Huangtupo landslide. During the water level rise from68m to175m and of the seasonal fluctuation between145m and175m, it is shown that the induced variations in pore water pressure, suction stress, hydrostatic loading, and slope self-weight have different effects on the effective stress conditions and slope stability. According to above calculation and analysis results, for the No.1adjacent river sliding debris of Huangtupo landslide with particular geological structure, hydro-mechanical properties and water level boundary conditions, the dominating mechanism for the factor of safety is the hydrostatic loading by the water level fluctuation. Because of the factor of safety will decrease lower than1, this study suggests that the creep would continue seasonally in the future at Huangtupo landslide.
引文
[1].Committee on Reservoir Slope Stability. Reservoir Landslides:Investigation and Management[R]. Paris:International Commission on Large Dams (ICOLD) 2002.
    [2].金德镰,王耕夫.拓溪水库糖岩光滑坡,中国典型滑坡[M].北京:科学出版社,1988:3111-3117.
    [3].Breth, H.1967. The dynamics of a landslide produced by filling a reservoir[A]. Proc9thCongr. ICOLD Q.32:37-45.
    [4].刘广润,徐开祥.三峡水库岸沿岸移民区地质灾害防治研究[J].工程地质学报,2003,11(1):85-88.
    [5].中村浩之,王恭先.论水库滑坡[J].水土保持通报,1990,10(1):53-64.
    [6].王思敬,马凤山,杜永康.水库地区的水岩作用及其地质环境影响[J].工程地质学报,1996,4(3):1-9.
    [7].王士天,刘汉超,张倬元等.大型水域水岩相互作用及其环境效应研究.地质灾害与环境保护[J],1997,8(1):69-89.
    [8].Jones, F.O., Embody, D.R., Peterson, W.L.,1961. Landslides Along the Columbia River Valley, Northeastern Washington. U. S. Geological Survey Professional Paper,Vol 367.
    [9].蔡耀军,郭麒麟,余永志.水库诱发岸坡失稳的机制及其预测[J].湖北地矿,2002,16(4):4-8.
    [10].严福章,王思敬,徐瑞春.,清江隔河岩水库蓄水后茅坪滑坡的变形机理及其发展趋势研究[J].工程地质学报,2003,11(1):15-24.
    [11].K.Kavaragh,R.Clough.Finite element application in the characteringation of elastic solid[J].Int JSolids Structures,1972,7:11-23.
    [12].彭亚明,彭军还,张彬,王磊.三峡库区某滑坡抗剪强度参数的反演分析[J].桂林工学院学报,2003,23(3):279-283.
    [13].甘孝清.天然滑坡体力学参数反分析的研究与应用[硕士学位论文].长江科学院,2004.6.
    [14].Richards, L. A., Capillary conduction of liquids through porous medium [J],Journal of Physics, 1931,318-333.
    [15].祁庆和.水工律筑物[M].北京:水利电力出版社,1986.
    [16].陈祖煜.上质边坡稳定分析-原理、方法、程序[M].北京:中国水利水电出版社,2003.
    [17].宋二祥.土工结构稳定性系数的有限元计算[J].岩上工程学报,1997,19(2):1-7.
    [18].Dawson,E.M., Roth, W.H., Drescher,A.Slope stability analysis by strengh reduction[J]. Geotechnique,1999,Vol.49(6),pp.835-840.
    [19].Griffiths,D.V. and Lane,P.A. Slope stability analysis by finite elements[J]. Geotehnique,1999,Vol.49(3),pp.387-403.
    [20].连镇营,韩国城,孔宪京.强度折减法研究开挖边坡的稳定性[J].岩土工程学报,2001,23(4):407-411.
    [21].赵尚毅,郑颖人,时卫民等.用有限元强度折减法求解边坡稳定稳定性系数[J].岩土工程学报,2002,24(3):343-346.
    [22].郑颖人,赵尚毅.用有限元强度折减法求滑(边)坡支档结构的内力[J].岩石力学与工程学报,2004,23(20):3552-3558.
    [23].万林海,金海元,吴伟功等.有限差分强度折减法的应用分析[J].人民黄河,2005,27(9):43-45.
    [24].雷远见,王水林.基于离散元的强度折减法分析岩质边坡稳定性[J].岩土力学,2006,27(10):1693-1698.
    [25].丁秀丽,付敬,张奇华.三峡水库水位涨落条下奉节南桥头滑坡稳定性分析[J].岩石力学与工程学报,2004,23(17):2913-2919.
    [26].王学武.三峡库区水位升降作用对库岸边坡影响[硕士学位论文].成都理工大学,2005.
    [27].王志荣,王念秦.黄土滑坡研究现状综述[J].中国水上保持,2004,11:16-18.
    [28].王志兵.头寨滑坡的工程地质特征及其演化过程[学位论文].昆明理工大学,2006.
    [29].樊晓一,乔建平,陈永波.西藏妥昌公路K351滑坡形成机制及危险性评价[J].水土保持研究,2004,11(1):152-155.
    [30].乔建平,吴彩燕,田宏岭.三峡库区云阳-巫山段地层因素对滑坡发育的贡献率研究[J].岩石力学与工程学报200423(17):2920-2924.
    [31].王国强,吴道祥,刘洋等.巢湖风凰山滑坡形成机制和稳定性分析[J].岩士工程学报,2002,24(5):643-648.
    [32].王家鼎,惠映河.黄土地区灌溉水诱发滑坡群的研究[J].地理科学,2002,22(3):305-310.
    [33].崔芳鹏,胡瑞林,谭儒蛟.青海八大山滑坡群形成机制及稳定性评价研究[J].岩石力学与工程学报,2008,27(4):848-857.
    [34].陈永波,乔建平,王成华等.张家界唐家坡滑坡形成机制及成因分析[J].山地学报,2002,20(增):111-113.
    [35].许强,黄润秋,程谦恭等.三峡库区泄滩滑坡滑带土特征研究[J].工程地质学报,2003,11(4):354-359.
    [36].郑国东,徐胜,郎煌华等.日本富山县中田浦滑坡滑带内的黄铁矿[J].地球化学,2006,35(2):201-210.
    [37].严春杰,唐辉明,孙云志.利用扫描电镜和X射线衍射仪对滑坡滑带土的研究[J].地质科技情报,2001,20(4):89-92.
    [38].戴绍斌,黄俊,夏林.鄂北膨胀土的矿物组成和化学成分分析[J].岩土力,2005,26(增):296-299.
    [39].孟小海,时佃海,张保卫.王庄油田粘上矿物转化对储层的影响[J].特种油气藏,2006,13(6):80-84.
    [40].Kawamura K, Ogawa Y.J.,Oyagi N,et al.Structural and fabric analyses of basal slip zone of the Jin'nosuke-dani landslide,northem central Japan:its applieation to the slip mechanism ofdecollement[J].Landslides,2007,4:371-380.
    [41].Wen B.P.Chen H.Y.Mineral compositions and elements concentrations as indicators for the role of groundwater in the development of landslide slipzones:a case study of large-scale landslides in the Three Gorges area in China[J].Earth science frontiers,2007,14(6):98-106.
    [42].ShuzuiH.Process of slip surface development and formation of slip surface clay in landslide in Tertiary volcanic rocks, Japan[J].Engineering geology,2001,61:199-219.
    [43].Zheng G.D.,Lang Y.H.,Miyahara M. Iron oxide precipitates in seepage of groundwater from a landslide slipzone[J].Environmenial geology,2007,51:1455-1464.
    [44].Wen B.P.,Aydin A.Microstruetural study of a natural slipzone:quantification and deformation history [J]. Engineering geology,2003,68:289-317.
    [45].Pusch R.Experience from Preparation and investigation of clay microstructure[J].Engineering geology,1999,54:187-194.
    [46].施斌.粘性土微观结构简易定量分析法[J].水文地质工程地质,1997,1:7-10.
    [47].Prikryl R,Ryndova T.Bohac J,et al.Microstruetures and Physical Properties of "backfill" clays:comparison of residual and sedimentary montmorillonite clays[J].Applied clay science,2003,23:149-156.
    [48].Wen B.P.,Duzgoren-Aydin N.S.,Aydin A.Geochemical characteristies of the slip zones of a landslide in granitic saproliteHongKong:implications for their development and microenvironmenis[J].Environmental geology,2004,47:140-154.
    [49].Wen B.P.,Aydin A.Meehanism of a rainfall-induced slide-debris flow:constraints from microstructure of its slip zone[J].Engineering geology,2005,78:69-88.
    [50].龙建辉,李同录,雷晓锋等.黄土滑坡滑带土的物理特性研究[J].岩石力学与工程学报,2007,29(2):289-293.
    [51].王洪兴,唐辉明,晏同珍.小浪底库区庙上北滑坡滑带土粘士矿物定向性的x射线衍射研究及其对滑坡的作用[J].矿物岩石,2004,24(2):26-29.
    [52].李瑞娥,徐郝明,王娟娟.黄土滑坡滑带土的特点[J].煤田地质与勘探,2009,37(1):43-47.
    [53].余宏明,胡艳欣,唐辉明.红色泥岩风化含砾粘土的抗剪强度参数与物理性质相关性研究[J].地质科技情报,2002,21(4):93-95.
    [54].任光明,聂德新,左三胜.滑带土结构强度再生研究[J].地质灾害与环境保护,1996,7(3):7-12.
    [55].CHANDLER R J.Back analysis techniques for slope stabilization works:a case record[J]. Geotechnique,1977,27(4):479-495.
    [56].SKEMPTON A.W.Residual strength of clays in landslides, folded strata and the laboratory[J].Geotechnique,1985,35(1):3-18.
    [57].WEN B.P., AYDIN A.Mechanism of a rainfall-induced slide-debris flow:constraints from microstructure of its slip zone[J].Engineering Geology,2005,78(1/2):69-88.
    [58].王洪兴,唐辉明,陈聪.滑带土黏土矿物定向性的X射线衍射研究及其对滑坡的作用[J].水文地质工程地质,2004,31(增):79-81.
    [59].Skempton.First-time slides in over-consolidated lays[J].Geotechnique.1970,20(3):320-324.
    [60].Skempton A.W.Residual strength of clays in landslides,folded strata and the laboratory[J].Geotechnique.1985,35(1):3-15.
    [61].Zhong, L., Yin, Y., Tang, C.,1992. Environmental geology research on the new site of the Badong town in the reservoir area of the Three Gorges Project. In:Environment Institute (Eds.), Collection of Papers of Environmental Geology vol.1. Geology Press, Beijing, China, pp.41-53, (in Chinese).
    [62].Deng Q. L., Zhu Z. Y., Cui Z. Q., Wang X. P.. Mass Rock Creep and Landsliding on the Huangtupo Slope in the Reservoir Area of the Three Gorges Project, Yangtze River[J], China. Engineering Geology,2000,58(1):67-83.:
    [63].Wen, B.P., Aydin, A, N.S. Aydin, Li, R.R., Chen, H.Y., Xiao, S.D.,2007. Residual strength of slip zones of large landslides in the Three Gorges area, China[J]. Engineering Geology 93(3-4): 82-98:
    [64].刁承泰,黄京鸿.三峡水库水位涨落带土地资源的初步研究[J].长江流域资源与环境.1998,8(1):75-80.
    [65].Skempton A.W.Long-term stability of clay slopes[J]. Geotechnique:1964.14(2):77-101.
    [66].熊顺贵.基础土壤学北京:中国农业大学出版社,2001.
    [67].李广信.高等土力学北京:清华大学出版社,2004.
    [68].Paul C,Hiemenz著.胶体与表面化学原理[M].周司祖康,马季铭译,北京:北京大学出版社,1986.
    [69].Lu, N., Likos, W.J. Unsturated Soil Mechanics. New York,John Wiley and Sons.2004.2004,
    [70].Peck, R. B., Hansen, W. E., and Thornburn, T. H., Foundation Engineering,2nd Edition, New York,John Wiley and sons.1974.
    [71].Lane, K. S., and Washburn, S. E.Capillary tests by capillarimeters and by soil filled tubes[J]. Proceedings of Highway Research Board,1946,26,460-473.
    [72].Lu.N, Godt.J. Hillslope Hydrology and Stability. Cambridge University Press.2013.
    [73].陈颙,陈凌.分形几何学.北京:地质出版社.2005.
    [74].胡瑞林,李向金,官国琳等.粘性土微结构定量模型及其工程地质特征研究.北京:地质出版社.1995.
    [75].谢和平,岩土介质的分形孔隙和分形粒子[J].力学进展,199323(2)145-165.
    [76].陶高粱,张季如.岩土工程中的分形理论及其应用[J].中国科技论文在线,2009,4(7).
    [77].Katz A J,Thompson A H.Fractal sandstone pores:Implications for conductivity and pore formation[J].Phys Rev lett,1985,54(12):1325-1328.
    [78].Rieu M,Sposito G..Fractal fragmentation,soil porosity,and soil water properties:I theory[J].Soil SciSocAmJ,1991,55(5):1231-1238.
    [79].徐永福,董平.非饱和土的水分特征曲线的分形模型[J].岩土力学,2002,23(4):400-405.
    [80].郁伯铭.多孔介质运输性质的分形分析研究进展[J].力学进展,2003,33(3):333-346.
    [81].Mualem Y. New model for predicting the hydraulic conductivity ofunsaturated porous media [J]. Water Res Res,1976,12(3):513-522.
    [82].徐永福,黄寅春.分形理论在研究非饱和土力学性质中的应用[J].岩土工程学报,2006,28(5):635-638.
    [83].Bonala M V S, Reddi P E L N. Fractal representation of soil cohesion [J]. Journal of Geotechnical and Geoenvironmental Engineering,1999,125(10):901-904.
    [84].Turcotte D L. Fractals and fragmentation [J]. J Geophys Res B,1986,91(2):1921-1926.
    [85].Tyler S W, Wheatcraft S W. Fractal scaling of soil particle size distributions:analysis and limitations [J]. Soil Sci Soc Am J,1992,56(2):362-369.
    [86].王国梁,周生路,赵其国.土壤颗粒的体积分形维数及其在土地利用中的应用[J].土壤学报,2005,42(4):545-550.
    [87].孙愫文,沈孝宇,王伯桢.“虹吸比重瓶”测定粘性土粒度成份方法的研究[J].地球科学.1985(01).
    [88].Kaye B H徐新阳等译·分形漫步·沈阳:东北大学出版社,1994.
    [89].Biedeman. Jr,Edwin W. Distinction of shoreline[J]. Environments in New Jersey.1962 vol.32 no. 2:181-200.
    [90].Kuenen P.H.,Experimental abrasion:eolian action[J]. J.Geol.,1960, Vol.68,pp.427-449.
    [91].Doornkamp,J.C, and Krinsley, D., Electron microscope study of the loess and related sediments along Nonconnah Creek, Memphis, Tennessee. M.Sc. thesis, Memphis State University, Memphis, Tenn. USA,1971.
    [92].TOVEY N K.A digital computer technique for orientation analysis of micrographs of soil fabrie[J].Journal of Microscopy,1980,120(2):303-315.
    [93].王宝军,施斌,刘志彬等.基于GIS的黏性土微观结构的分形研究[J].岩土工程学报,2004,26(2):244-247.
    [94].王宝军,张明瑞,施斌.基于坡度坡向原理的黏性土扫描电镜图像颗粒定向性研究[J].岩石力学与工程学报,2010,29(增1):2951-2959.
    [95].地质矿产部编写组.长江三峡工程库岸稳定性研究.北京:地质出版社,1988:13-27.
    [96].李守定,李晓,吴疆等.大型基岩顺层滑坡滑带形成演化过程与模式[J].岩石力学与工程学报,2007,26(12):2473-2480.
    [97].徐永福,史春乐.用土的分形结构确定土的水份特征曲线[J].岩土力学1997(02):41-45.
    [98].李功伯,徐小荷.分形理论及其在岩石破碎中的应用[J].岩石破碎理论与实践.1992.9:15-21.
    [99].谢和平.分形岩石力学导论.北京:科学出版社.2005.
    [100].Fredlund D.G.and Rahardjo H.《非饱和土土力学))(中译本,陈仲颐等译).北京:中国建筑工业出版社,1997.
    [101].刘海鹏,高世桥.毛细力学.北京:科学出版社,2010.
    [102].Letey, J., Osborn, J., and Pelishek, R. E.Measurement of liquid-solid contact angles in soil and sand[J]. Soil Science,,1962,93,149-153.
    [103].Kumar, S., and Malik, R. S.Verification of quick capillary rise approach for determining pore geometrical characteristics in soils of varying texture[J]. Soil Science,1990,150(6),883-888.
    [104].Brooks R.H.,and Corey A.T. Hydraulic properties of porous medium[J].Colorado State University(Fort Collins).Hydrology Paper 3.1964.
    [105].Fredlund D.G.and Anqing Xing. Equations for The Soil-water characteristic curve[J]. Canadian Geoteehnical Journal.1994,Vol.31:521-532.
    [106].van Genuchten M.T. A Closed-form equation for predieting the hydraulic conduetivity of unsaturated soils[J]. Soil Sci. Soe.Am.J.1980,44:892-898.
    [107].Lebedeff A.F.The movement of ground and soil waters[J]. Proe.lst Int.Cong.Soil.1927,1:459-494.
    [108].Sillers W.S.and Fredlund D.G. Statistical assessment of soil-water characteristic curve models for geotechnical engineering[J],Canadian Geotechnical Journal.2001, Vol.38:1297-1313.
    [109].Hilf, J. W. An investigation of pore water pressure in compacted cohesive soils. Technical Memorandum No.654, United States Department of the Interior, Bureau of Reclamation, Design and Construction Division, Denver, CO.,1956.
    [110].Spanner, D. C.The Peltier Effect and Its Use in the Measurement of Suction Pressure[J]. J. Exp. Bot.,1951,11,145-168.
    [111].Gee, G. W., Campbell, M. D., Campbell, G. S. Rapid Measurement of Low Soil-Water Potentials Using a Water Activity Meter[J]. Soil Sci. Soc. Am. J.,1992, Vol.56,805 No.4, pp.1068-1070.
    [112].Houston, S. L., Houston, W. N., and Wagner, A.Laboratory filter paper suction measurements[J]. Geotechnical Testing Journal, GTJODJ,1994.17(2),185-194.
    [113].Likos, W. J. and Lu, N. An Automated Humidity System for Measuring Total Suction Characteristics of Clays[J] Geotech. Testing J.,2003, Vol.28, No.2, pp.178-189.
    [114].Wayllace, Alexandra, Lu, Ning. A Transient Water Release and Imbibitions Method for Rapidly Measuring Wetting and Drying Soil Water Retention and Hydraulic Conductivity Functions[J]. Geotechnical Testing Journal, Volume 35, Issue 1 (January 2012).
    [115].Clayton, W. S. Relative permeability-saturation-capillary head relationships for air sparging in soils. Ph.D. Dissertation, Colorado School of Mines, Golden, CO.,1996.
    [116].Ning Lu, Alexandra Wayllace, Jiny Carrera, and William J. Likos. Constant Flow Method for Concurrently Measuring Soil-Water Characteristic Curve and Hydraulic Conductivity Function[J].Geotechnical Testing Journal,2006 Vol.29, No.3.1-12.
    [117].Bruce, R., and Klute, A.The measurement of soil moisture diffusivity[J]. Soil Science Society of America Proceedings,1956,20,458-462.
    [118].Gardner, W. R.'Calculation of capillary conductivity from pressure plate outflow data[J]. Soil Science Society of America Proceedings,1956,20,317-320.
    [119].Mualem, Y.'Hydraulic conductivity of unsaturated porous media:Generalized macroscopic approach[J]. Water Resources Research,1978,14(2),325-334.
    [120].Fredlund D.G.,Xing A and Huang S.Predicting the Permeability function for unsaturated soils using the soil-water characteristic curve[J].Can.Geoteeh.J.1994.31.
    [121].Mualem, Y. Hydraulic conductivity of unsaturated soils:Prediction and formulas, in Methods of Soil Analysis. Part I. Physical and Mineralogical Methods,2nd ed., A. Klute, ed., Agronomy Monograph No.9, American Society of Agronomy, Madison, WI,,1986, pp.799-823.
    [122].Averjanov, S. F. About permeability of subsurface soils in case of complete saturation[J]. English Collection,1950,7,19-21.
    [123].Wind, G. P. Field experiment concerning capillary rise of moisture in heavy clay soil [J]. Netherlands Journal of Agricultural Science,1955,3,60-69.
    [124].Gardner W.R. Some steady state solutions of the unsaturated moisture flow equation with application to evaporation from a water table[J].Soil Science.1958,85:228-232.
    [125].Richards, L. A. Water conducting and retaining properties of soils in relation to irrigation, in Proceedings of an International Symposium on Desert Research, Jerusalem,1952,pp.523-546.
    [126].Childs E.C. and Collis-George N.The pemreability of porous materials[J]. Proceedings of the Royal Soeiety of London.Series A.1948,201:392-405.
    [127].S.S.Agus, E.C.Leong, H.Rahardjo. Soil-water characteristic curves of Singapore residual soils [J]. Geotechnical and Geological Engineering,2001,19(3-4):292.
    [128].Mantoglou, A., and Gelhar, L.W. Effective hydraulic conductivities of transient unsaturated flow in stratified soils[J]. Water Resources Research,1987,23(1),57-67.
    [129].Kool, J.B., and Parker, J.C. Development and evaluation of closed-form expressions for hysteretic soil hydraulic properties[J]. Water Resources Research,1987,23(1),105-114.
    [130].Li, A.G., Tham, L.G., Yue, Z.Q., Lee, C.F., and Law, K.T. Comparison of field and laboratory soil-water characteristic curves[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(9),1176-1180.
    [131].Benson, C.H., and Gribb, M. Measuring unsaturated hydraulic conductivity in the laboratory and field, in Unsaturated Soil Engineering and Practice, S. Houston and D.G. Fredlund. eds., American Society of Civil Engineers Special technical Publication No.68, Reston, VA,1997, pp. 113-168.
    [132].Simunek, J., Sejna, M. and van Genuchten, M.Th. The HYDRUS-2D Software Package for Simulating the Two-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, Version 2.0, U.S. Salinity Laboratory Agricultural Research Service, U.S. Department of Agriculture, Riverside,1999,pp.225.
    [133].Mualem, Y. Hysteretical models for prediction of the hydraulic conductivity of unsaturated porous media, Water Resources Research,1976,12(6),1248-1254.
    [134].Haines, W. B. Studies in the physical properties of soil. Ⅴ. The hysteresis effect in capillary properties and the modes of moisture distribution associated therewith[J]. Journal of Agricultural Science,1930,20,97-116.
    [135].Mualem, Y.A modified dependent domain theory of hysteresis[J]. Soil Science,1984,137, 283-291.
    [136].Nimmo, J. R.Semiempirical model of soil water hysteresis[J]. Soil Science Society of America Journal,1992,56,172-173.
    [137].Childs, E. C. Soil Water Phenomena. New York,Wiley-Interscience,1969.
    [138].Laroussi, C. H., and DeBacker, L. W. Relations between geometrical properties of glass bead media and their main hysteresis loops[J]. Soil Science Society of America Journal,1979,43, 646-650.
    [139].Bishop,.A. W., lecture delivered in oslo,entitled The principle of effective stress, printed in Teknisk, ukeblad[J],1959, vol.106 (39):859-863.
    [140].G. E. Blight, Effective stress, Evaluation For Unsaturated soils, Journal of the soil Mechanics and Foundations Division proceedings of the America society of civil Engineers March,1967,SM2: 125-148.
    [141].Khalili N., Khabbaz M.H.A unique relationship for the determination of the shear strength of unsaturate soils[J].Geotechnique,1999,48(5):681-687.
    [142].陈正汉,王永胜,谢定义.非饱和土的有效应力探讨[J].岩土工程学报1994.NO.3.
    [143].沈珠江.广义吸力和非饱和土的统一变形理论[J],岩土工程学报,1996.18(2):1-10.
    [144].Ning Lu, M.ASCE; and William J. Likos, M.ASCE, Suction Stress Characteristic Curve for Unsaturated Soil[J]. Journal of Geotechnical and Geoenvironmental Engineering.12006, 32(2):131-141.
    [145].Ning Lu, F.ASCE. Is Matric Suction a Stress Variable? [J] Journal of Geotechnical and Geoenvironmental Engineering,2008,134(7),:899-905.
    [146].Escario, V.Suction-controlled penetration and shear tests.in Proceedings of the 4th International Conference on Expansive Soils, Denver, CO,1980, pp.781-787.
    [147].Bolt, G. H. Physicochemical analysis of the compressibility of pure clays[J] Geotechnique,1956, 6,86-93.
    [148].Sridharan, A., and Rao, V. G.Mechanisms controlling volume change of saturated clays and the role of the effective stress concept[J]. Geotechnique,1973,23(3),359-382.
    [149].Gan, J. K., Fredlund, D. G., and Rahardjo, H. Determination of the shear strength parameters of an unsaturated soil using the direct shear test[J].Canadian Geotechnical Journal,1988,25, No.3, 500-510.
    [150].Escario, V., Juca, J., and Coppe, M. S. Strength and deformation of partly saturated soils[J]. in Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering,1989, Vol.3, Rio de Janeiro, pp.43-46.
    [151].Vanapalli S.K.,Fredlund D.G.,Pufahl D.E.,Clifton A.W.Model for the Prediction of shear strength with respect to soil suction [J].Canadian Geotechnical Journal,1996,33:379-392.
    [152].Ning Lu, Jonathan W. Godt, and David T. Wu. A closed-form equation for effective stress in unsaturated soil[J], Water Resouces Research 46, W05515,2010.
    [153].湖北省地质灾害防治工程勘察设计院.长江三峡工程库区湖北省巴东县黄土坡滑坡区滑坡与塌岸勘察报告.2001.
    [154].长江勘测规划设计研究有限责任公司.三峡库区巴东大型野外综合试验场建设工程工程地质勘察报告.2009.
    [155].Liu, P., Li, Z.H. and Hoey, T. Using advanced InSAR time series techniques to monitor landslide movements in Badong of the Three Gorges region, China, International Journal of Applied Earth Observation and Geoinformation, in press, Available online 15 November 2011.
    [156].湖北地质环境监测站.黄土坡滑坡监测月报.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700