扬水曝气技术改善黑河水库水源水质的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,国内很多水源地都受到了不同程度的污染,水源水质原位修复技术越来越被人们所重视,逐渐成为城市饮用水源水质改善的有效方法。扬水曝气技术是一种新型的水质原位改善技术,具有投资较低、运行管理方便灵活等特点,尤其适用于水质季节性变化大、内源污染严重的水源水库的原位水质改善。
     本文针对黑河水库的内源污染问题,较系统地研究了扬水曝气器在水库内源污染控制方面的作用与效果。主要包括两个方面的内容:(1)黑河水库水质分析及污染成因分析;(2)扬水曝气器对黑河水库水质改善效果的研究。
     本论文采用水库现场监测和实验室分析结合的方法,对黑河水库水质特征和及扬水曝气对黑河水库的水质改善进行分析研究,主要得出以下结论:
     (1)扬水曝气试运行期间,黑河水库下层溶解氧下降趋势得到遏制,底泥表面溶解氧浓度比08年同期平均提升了1.7~2.4mg/L,充氧效果十分显著。
     (2)扬水曝气能够不断混合上下水层,扬水曝气运行后,黑河水库上下层温差较08年同期减少了1.4~3.3℃,而扬水曝气器周围温差比距离扬水曝气1Km以外的点温差减少了1.9~2.8℃,扬水曝气对水体混合起到了一定的作用。
     (3)扬水曝气的运行有效抑制了沉积物中NH3-N、TP、有机质等污染物的厌氧释放,与08年同期相比,底泥附近的氨氮、TP、CODMn含量分别降低了75.6%、58.8%、49.7%,从而有效削减了内源污染负荷;有效控制了表层藻类的数量,抑制了藻类的生长,与08年同期相比,将表层叶绿素a的含量降低了76.5%。
     (4)2010年7~11月,扬水曝气运行期间,金盆水库出水水质较2008年同期得到明显改善。其中,总磷含量较历史同期削减约41.4%,基本稳定在0.05mg/L以下;氨氮含量较往年同期削减66.9%,浓度不超过0.1mg/L;CODMn含量较历史同期削减约17.6%;叶绿素a含量较2008年同期削减约53.2%,藻类抑制效果明显。
     运行结果表明,扬水曝气技术对黑河水库的水质改善具有显著的效果,扬水曝气技术在用于大水深水库水质改善方面是可行的和有效的。
At present, most domestic resoure water has been polluted,the technology of resoure water quality onsite process are getting more and more attention by people, and gradually become effective method of urban drinking water quality improvement. Water-lifting aerator is a new techonology of water quality onsite process,it is an economic and flexible techonology. For some reservior that seasonal change is big and has serious endogenous pollution is a better way to improve the water quality.
     Aiming at the problem of endogenous pollutions of heihe reservoir, the paper systematically studies the effect of water-lifting aerator in improving the water quality of Heihe reservior. It Mainly includes two aspects of content: (1) Analysis of water quality and reason of pollution of Heihe reservior;(2) Result of treatment of Heihe reservior by water-lifting aerator.
     This paper adopts the method of reservoir field monitoring and laboratory analysis, analyzed the water quality characteristics and effect of water-lifting aerator in improving the water quality of Heihe reservior,and get the Following conclusions:
     (1)Because water-lifting aeration mix and recruit affect,the trend of substrate water DO fall is hold back. Dissolved oxygen of mud surface is increased by1.7~2.4mg/L,and it produces much effect in increasing DO.
     (2)The technology of lifting water and aeration can mix water,the difference of tempeature between surface and substrate is dereased by 1.4~3.3℃compared to corresponding period of 2008, So the water lifting and aeration produce some effect in mixing the water.
     (3)The water-lifting aeration circulate hold release of mud NH3-N、TP、organic pollutants,compared to corresponding period of 2008,NH3-N、TP、organic pollutants near the mud is decreased by 75.6%、58.8%、49.7%, and the internal pollution is relieved;The algae in water surface is controlled by the technology of lifting water and aeration,and the Chlorophylls-a in water surface is decreased by 76.5%。
     (4)The water quality in the outlet of Heihe reservior is improved during the run of water-lifting aerator, and the TP、NH3-N、CODMn、Chlorophylls-a in the outlet of Heihe reservior is decreased by 41.4%、66.9%、17.6% and 53.2% compared to corresponding period of 2008.
     The experimental results indicate:the water-lifting aeration have marked effect in improving water quality of Heihe reservior,and it is effective and viable in improving the water quality of reservoir with great depth.
引文
[1]孙燕.分析我国水资源现状及水环境保护现状[J].商业环境, 2008, 2(8): 12-14.
    [2]张杰.水资源、水环境与城市污水再生回用[J].给水排水, 1998, 24(8):1-4.
    [3]黄廷林,柴蓓蓓.水源水库水质污染与富营养化控制技术研究进展[J].地球科学进展,2009, 24(6):588-596.
    [4]国家环境保护总局.中国环境状况公报[J].2002-2004.
    [5]秦伯强.我国湖泊富营养化及其水环境安全[J].科学对社会的影响, 2007, 3:17-23.
    [6]金培坚.水库水源地水环境容量分析与水质控制研究[D].杭州:浙江大学, 2009.
    [7]孙傅,曾思育,陈吉宁.富营养化湖泊底泥污染控制技术评估[J].环境污染治理技术与设备, 2003, 4(8): 61-64.
    [8]王淑梅,刘艳辉.湖泊水库水体富营养化的危害及污染控制措施[J].吉林水利, 2009, 10(12-16).
    [9]黄文钰,吴延根,舒金华.中国主要湖泊水库的水环境问题与建议[J].湖泊科学, 1998, 10(3): 83-88.
    [10] Ding-Sie Ting, Adhityan Appan. General characteristics and fractions of phosphorus in aquatic sediments of two tropical reservoirs [J]. Water Science& Technology, 1996, 34(7/8): 53-59.
    [11] Qixing Zhou, Christopher E. Gibson, Yinmei Zhu. Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK [J]. Chemosphere. 2001, 42(2): 221-225.
    [12]付永清,周易勇.沉积物磷形态的分级分离及其生态学意义[J].湖泊科学, 1999, 11(4): 376-381.
    [13]林治宝,韩学洋,张莲香.水源地水库水质富营养化防治技术探讨[J].山东水利, 2009: 115-117.
    [14]刘军,林叔忠,胡和平.水源水库富营养化问题及生态治理途径[J].水利渔业, 2007, 27(5):75-77.
    [15] T. W. Lanbert, C.F.B Holmes, S. E Hrudey. Microcystin class of toxins: health effects and safety of drinking water supplies [J] . Environmental Reviews, 1994, 2:167-186.
    [16]夏江,施之新.武汉市饮用水中浮游藻类的调查[J].环境与健康杂志, 2005, 22(4): 287~288.
    [17] Ian R. Falconer. Tumor promotion and liver injury caused by oral Consumption of cyanobacteria [J]. Environmental Toxicology and Water Quality. 1991, 6(2): 177~184.
    [18]王占生,刘文君.微污染水源饮用水处理[M].北京:中国建筑工业出版社. 1999.
    [19]严煦世,范瑾初主编.给水工程(第四版) [M].北京:中国建筑工业出版社. 1999.
    [20]杜春富,董昌伟,崔维本.田庄水库氮素转化机理和水质改善研究[J].中国农村水利水电, 2010, 5:87-88
    [21]刘辉.全流程生物氧化技术处理微污染原水[M].北京:化学工业出版.2003.
    [22]周利,杨慧敏,孙嗣杰.给水处理中藻类的除去方法[J].青岛建筑工程学院学报, 2005, 26(4):40-43.
    [23]丛海兵,黄廷林,赵建伟.扬水曝气技术在水源水质改善中的应用[J].环境污染与防治, 2006, 28(3):215-218.
    [24]彭芳,黄廷林,张延风.水源水库中藻类生长及分布特征[J].供水技术, 2009, 3(1):1-4.
    [25]胡芳,许杰.水源地原位控藻技术的比较与选择[J].环境科学与管理, 2010, 35(5):56-58.
    [26]邱二生.黑河水库水质及藻类监测和水体分层研究[D].西安:西安建筑科技大学,2010.
    [27] Milan Stra?kraba. Ecotechnological Methods for Managing Non-point Source Pollution in Watersheds, Lakes and Reservoirs [J]. Watet Science and Technology, 1996, 33(4-5):73-80.
    [28]丛海兵.扬水曝气水源水质改善技术研究[D].西安:西安建筑科技大学, 2007.
    [29]刘建康,谢平.用鲢鳙直接控制微囊藻水华的围隔试验和湖泊实践[J].生态科学,2003, 22(3):193-196.
    [30]金相灿,荆一凤,刘文生.湖泊污染底泥疏浚工程技术[J]环境科学研究, 1999, 12(5):9-12.
    [31]罗阳,刘敬.控制湖泊内源磷负荷曝有效性研究[J].水资源保护, 1996, 2:52-55.
    [32] Petra M.Visser, Henk A.M Ketelaars. Reduced growth of cyanobacterium microcystis in an artificially mixed lake and reservioir [J].Water science and technology, 1995, 32(4): 53-54.
    [33] Vickie L. Burris, John C. Little. Bubble dynamics and oxygen transfer in a hypolimnetic aerator [J] Water Science and Technology, 1998, 37(2): 293-300.
    [34] Holdren, C., W. Jones, J. Taggart. Managing Lakes and Reservoirs 3rd edition Prep. by N. Am. Lake Manage Soc. and Terrene Inst. ,in coop. with U. S. EPA. , 2001.
    [35] T. P. Murphy, A. Lawson, M.Kumagai, J. Babin. Review of emerging issues in sediment treatment [J].Aquatic Ecosystem Health and 7`Management, 1999, 2 (4): 419 -434.
    [36] Klapper, H., translated by Bernard Hemmings. Control of eutrophication in inland waters. Ellis Horwood, 1993, 80(3):309
    [37] Clasen J. Raw water quality management at Wahnbach reservoir [J] Water supply, 2000, 18(1):581-585.
    [38]丛海兵,黄廷林,缪晶广等.水体修复装置——扬水曝气器的开发[J].中国给水排水, 2005, 21(3):41-45.
    [39]丛海兵,黄廷林,缪晶广等.扬水曝气器的水质改善功能及提水、充氧性能研究[J].环境工程学报, 2007, 1(1):7-13.
    [40] Orr PT, JonesGJ, Hunter R, et al. ExPosure of beef cattle to subclinical doses of Mierocystis aeruginosa: toxin bioaccumulation, physiological effects and human health risk assessmengt [J]. Toxieon, 2003, 41(5): 613-620.
    [41] Brunberg A K, Blomqvist P. Reeruitment of microcystis (CyanoPhyceae) from lake sediment: The importance of littoral inocula[J].J Phycol, 2003, 39:58-63.
    [42] Xie L, Xie P, Li S, et al. The low TN: TP ratio, a cause or a result of Microcystisblooms [J]. Water Res, 2003, 37(9):2073-2080.
    [43] T. W. Lambedt, C. F. B. Holmes, S. E. Hrudey. Microcystin class of toxins: health effects and safety of drinking water supplies [J] Environ. Rev., 1994, 2: 167-186.
    [44] Carmichael WW. Toxins of freshwater algae [M]. Handbook of NaturalToxins. New York: MarcelDekkar, 1985: 121-147.
    [45]国家环境保护总局.《水和废水监测分析方法》(第四版)[M]北京:中国环境科学出版社, 2002.
    [46]姜爱霞.水环境氮污染的机理和防治对策[J].中国人口·资源与环境, 2000, 20:75-76.
    [47]宋立荣,雷腊梅,陈德辉等.蓝藻水华的发生和危害机理研究[C]//长江流域洪涝灾害成因和对策研讨会论文集.武汉:1998, 12:313-317
    [48]徐祖信.河流污染治理技术与实践[M].北京:中国水利水电出版社,2004
    [49]岳舜琳.给水中的氨氮问题[J]净水技术, 2001, 20(2):12-14.
    [50]李建军.扬水曝气技术改善汾河水库水源水质的应用研究[D].西安:西安建筑科技大学, 2006.
    [51]段婷婷.水源水中藻类监测及水质变化原因分析[D].西安:西安建筑科技大学,2007.
    [52]董浩平,姚琪.水体沉积物磷释放及控制[J].水资源保护, 2004, (6):20-23.
    [53]朱广伟,陈英旭,周根娣等.运河(杭州段)沉积物磷释放的模拟试验[J].湖泊科学, 2002, 14(4):343-349.
    [54] Gale PM, Reddy K R, Graetz D A. Mineralization of sediment organic mater under anoxic condition [J]. Environ Qual, 1992, (21):394-400.
    [55]黄廷林,章武首,柴蓓蓓.大水深水库内源污染特征及控制技术[J]环境污染与防治, 2010, 32(3):1-4.
    [56]王进行.温度分层及水深对扬水曝气器流场影响的CFD模拟[D].西安:西安建筑科技大学, 2010.
    [57]黄廷林,李建军.扬水曝气技术对汾河水库原水水质的改善[J]供水技术, 2007,1(4):13-16.
    [58]李素琴.浅谈汾河水库水质的改善[J].科技情报开发与经济, 2007, 17(31):251-252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700