舱室内液体晃荡的数值模拟及其与船体运动耦合作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,以液化天然气船(LNGC)为代表的液货船成为重要的海上运输装备。该类液货船在海上航行时,受海浪作用会产生船体摇荡运动,由于具有大体积的液舱,因此会引起液舱晃荡现象。在恶烈海况下,大幅船舶摇荡运动所引发的液体剧烈晃荡,会对液舱结构产生砰击,造成局部结构损坏,甚至还会恶化耐波性能严重影响运营作业安全。因此,开展液舱晃荡及其与船体的耦合运动研究就具有实际工程应用价值。
     据此,本论文着重研究四个方面的问题:液舱晃荡的液面大变形现象模拟及其砰击压强计算;带防晃结构液舱的晃荡现象模拟,以及防晃结构效能对比分析;基于PIV技术的液舱晃荡流场测量及其模拟分析;液舱晃荡与船体的耦合运动模拟分析。
     针对上述问题,本论文所开展的主要工作具体如下:
     一、三维液舱晃荡运动控制方程及其数值计算方法
     考虑到不同的晃荡激励形式,建立了三维液舱晃荡运动的控制方程,基于直角有限差分网格,对控制方程进行了数值离散,并采用超松弛高斯-赛德尔迭代法进行了速度和压强耦合求解。
     二、三维液舱晃荡的PLIC-VOF方法数值模拟
     基于直角有限差分网格,根据方向分裂算法以及Lagrange对流计算法求解流体体积分数控制方程,并结合控制方程的数值解法,发展了自由表面重构的PLIC-VOF法,并应用于模拟三维液舱的剧烈晃荡问题。
     三、液舱晃荡的CLSVOF方法数值模拟
     基于PLIC-VOF方法,考虑及Level-set方法隐式跟踪自由表面的性能,引入Level-set函数确定自由表面法向,结合PLIC-VOF良好的质量守恒性能,实现了PLIC-VOF方法与Level-set方法耦合的CLSVOF数值方法,并应用于液舱剧烈晃荡模拟等问题。
     四、三维通度系数法结合PLIC-VOF法模拟带防晃结构的液舱晃荡问题
     引入三维通度系数法,并修改了流动的控制方程,结合直角网格的PLIC-VOF方法,实现了三维带不同型式防晃结构的液舱晃荡数值模拟,并通过局部液面和压强时历对比探讨了防晃效果。
     五、基于PIV技术的液舱晃荡流场精细测量与模拟
     合理设计液舱及其平面运动机构,由伺服系统控制运动机构在直线方向的速度时历,考虑液舱的不同装载水平,设定共振频率下的横荡运动激励,应用PIV技术进行液舱晃荡流场的精细测量以及波形观察分析。应用PLIC-VOF方法,进行了液舱晃荡流场的数值模拟,以及PIV试验结果对比分析。
     六、液舱晃荡的WC-MPS方法数值模拟
     基于流体弱可压缩假定,提出了基于Tait状态方程的弱可压缩移动粒子半隐式法(WC-MPS)。该方法通过直接计算流体状态方程来快速获取流场压强,而没有求解计算耗时的压强Poisson方程,并应用该方法模拟了剧烈晃荡的自由表面大变形现象。
     七、波浪中液舱晃荡与船体摇荡的耦合作用数值模拟
     考虑到液舱晃荡与船体运动的耦合作用,建立了液货船的耦合运动方程,结合内流场粘性流体PLIC-VOF方法,确定液舱晃荡作用力以及力矩,由外流场二维切片方法确定波浪中船体频域水动力系数及波浪载荷,采用Newmark-β法进行耦合运动方程的时域求解,实现波浪中船体运动的数值模拟。
     本论文研究的创新性可以总结为以下三个方面:
     一、三维通度系数法结合PLIC-VOF方法模拟带防晃结构液舱的晃荡问题
     基于三维通度系数法表达流场中的固体相,并修改流动的控制方程,与三维PLIC-VOF方法相结合,实现了带防晃结构的三维液舱晃荡模拟。
     二、直角网格CLSVOF数值方法模拟液舱剧烈晃荡问题
     基于PLIC-VOF方法的良好质量守恒性能,考虑及Level-set方法隐式跟踪自由表面的性能,针对每一时间步的Level-set函数重新初始化,由PLIC-VOF重构自由表面,通过确定邻近网格到自由表面网格的最近距离,进行Level-set函数的重新初始化,实现了耦合的CLSVOF数值方法,并应用于液舱剧烈晃荡模拟。
     三、基于弱可压缩假定的WC-MPS方法模拟液舱剧烈晃荡问题
     鉴于传统不可压缩移动粒子半隐式法(Fully Incompressible-MPS)通过求解Poisson方程获取压强,计算低效而耗时,因此基于流体弱可压缩假定,选用流体的Tait状态方程直接而快速求解流场压强,建立了弱可压缩移动粒子半隐式法(WeaklyCompressible-MPS),并应用于模拟剧烈晃荡问题。
Recent years, liquid cargo ships such as LNGC become an important facility fortransportation of liquefied cargoes. Navigating at sea, these ships will suffer from randomsea waves and ship motions. With the liquid tanks of large volumes, the liquid sloshing intanks occurs excited by ship motions. In severe sea states, the amplitudes of ship motionsare large and therefore arouse violent sloshing. This violent sloshing can pose greatimpulsive impact to the local tank structures, and cause their damage, and even harm safetynavigation and operation of LNG ships at sea. So it is of practical importance to study theviolent sloshing in tanks and its coupling effects with ship motions.
     Based on above situations, in this thesis four related issues are focused on: thenumerical simulation of largely distorted free surface motions and computation ofimpulsive pressures during violent sloshing; the numerical simulation of liquid sloshing inbaffled tanks, and evaluation of effectiveness of different baffles; the measurements offlow fields during sloshing in liquid tanks and corresponding numerical simulations; thenumerical simulation and analysis of the coupled motions between tank sloshing and shipmotions.
     Considering above issues, the work done in this thesis is as follow:
     1. The governing equations and the corresponding numerical schemes for threedimensional sloshing in tanks
     Considering the different kinds of sloshing excitations, the governing equations for3-D sloshing problem are established, and discretized numerically based on the cartesianstaggered grids by finite difference method, also the coupled velocity and pressure in theequations are solved by the over-relaxed Gauss-Seidel iteration scheme.
     2. The PLIC-VOF method for three dimensional sloshing in tanks
     In cartesian staggered grids, the governing equations for volume fractions are solvedbased on the directional splitting scheme and Lagrange convection algorithm. Applying the numerical algorithm for the governing equations, the PLIC-VOF method is developed toreconstruct free surface, and employed for the numerical simulation of the violent sloshingin tanks.
     3. The CLSVOF method for the violent sloshing in tanks
     Based on the PLIC-VOF method, the Level-set method is applied to determine thefree surface normal considering its excellent performance in tracking the free surfaceexplicitly. Because of the PLIC-VOF method with good property in mass conservation, theLevel-set method and the PLIC-VOF method are coupled to develop the CLSVOF method.Finally, this method is employed to simulate the violent sloshing in tanks.
     4. The aperture technique coupled with the PLIC-VOF method in three dimensionsfor the numerical simulation of the liquid sloshing in tanks with the baffles
     The3-D aperture approach is introduced, and therefore the governing equations aremodified to adapt to the change of the volume fraction in cells. Coupled with PLIC-VOFmethod, the sloshing problem in tanks with different type of the baffles is simulated, andthe effectiveness of the baffles are compared and evaluated according to the time historiesof the local pressures and wave elevations.
     5. The detailed measurements of the flow fields in the tank with the sloshing problemby PIV technique and the numerical simulation correspondingly
     The motion mechanism for the tank is rational designed, and its real-time velocity iscontrolled by the control systems. Considering different filling levels, the excitationfrequencies of the sway motion are set as the resonant frequencies under different fillingconditions. Based on these conditions, the PIV technique is applied to measure the flowfields and the flow patterns in the liquid tanks. Finally, the numerical simulation is carriedout by the PLIC-VOF method and compared with the PIV experimental results.
     6. The WC-MPS method for the numerical simulation of the tank sloshing
     With the weakly compressible assumption, a weakly compressible moving particlesemi-implicit method (WC-MPS) is introduced based on the Tait’s equation of state of thefluid. For this method, the pressure field is obtained directly by Tait’s equation of statewithout solving time-consuming Poisson’s equation. Employing this WC-MPS method, theviolent sloshing with highly-distorted free surface in tanks are simulated and validated withexperimental results.
     7. The study on the coupling effects of tank sloshing and ship motion in waves
     Considering the coupling effects of the tank sloshing and the ship motions, thecoupled motion equations of the liquid cargo ships are established. To obtain the force andmoment induced by the tank sloshing, the PLIC-VOF method for vicious fluid is applied.While, to determine the hydrodynamic coefficients and wave loads for the ships in waves,a two dimensional strip theory is applied in frequency domain. Taking advantage of theNewmark-β approach, the coupled motion is solved in time domain to simulate themotions of liquid cargo ships in waves.
     The creativity of the studies in this thesis can be summarized as the flowing threeaspects:
     1. The aperture technique coupled with the3-D PLIC-VOF method is developed andemployed to simulate the liquid sloshing in the baffled tanks.
     The3-D aperture approach is introduced to express the solid phase in the flow field,and the governing equations are modified correspondingly coupled with the PLIC-VOFmethod. And this approach is used to simulate the sloshing problems in the baffled tanks.
     2. The CLSVOF method in cartesian grids is developed and applied to simulate theviolent sloshing in tanks.
     For the PLIC-VOF method has good property in mass conservation, and the Level-setmethod possesses excellent performance in tracking interface explicitly. Therefore, theLevel-set method and PLIC-VOF method are coupled to develop the CLSVOF method. Ineach time step, the reinitialization of Level-set function is based on the constructed freesurface by PLIC-VOF method, and the values of the Level-set function are obtained bydetermining the shortest distance from the neighboring cells to the free surface cells. Andthis coupled method is employed to simulate the violent sloshing in tanks.
     3. The WC-MPS method based on weakly-compressible assumption is developed andapplied to simulate the violent sloshing in tanks.
     For fully incompressible MPS method, the pressure field is obtained by solvingtime-consuming Poisson’s equation. With the weakly compressible assumption, a weaklycompressible moving particle semi-implicit method (WC-MPS) is introduced based on thepressure field computed directly by Tait’s equation of state of the fluid. Employing thisWC-MPS method, problems of the violent sloshing in tanks are simulated.
引文
[1]Faltinsen, O.M. A nonlinear theory of sloshing in rectangular tanks[J].Journal of Ship Research,1974,18(4):224-241.
    [2]Faltinsen, O.M. A numerical nonlinear method of sloshing in tanks with two dimensional flow[J].Journal of Ship Research,1978,22(3):193–202.
    [3]Faltinsen,O.M., Timokha, A.N. Sloshing [M]. New York,USA: Cambridge University Press,2009.
    [4]Shinkai,A., Nozu,Y., Yamaguchi,K., et al. Numerical analysis of three-dimensional sloshingproblems[J]. Trans. West Japan Soc. Of Naval Architects,1982,64:103-116.
    [5]Shinkai, A. Numerical analysis of three-dimensional slosing problems[J].Tran. West Jpapa Soc. OfNaval Architects,1983,66:25-35.
    [6]Firouz-Abadi, R.D., Ghasemi,M., Haddadpour, H. A modal approach to second-order analysis ofsloshing using boundary element method[J]. Ocean Engineering,2010,5:1-11.
    [7]Abbaspour, M., Hassanabad, M.G. Comparing Sloshing Phenomena in a Rectangular Container withand without a Porous Medium Using Explicit Nonlinear2-D BEM-FDM[J]. MechanicalEngineering,2010,17:93-101.
    [8]Faltinsen,O.M., Rognebakke,O.F., Lukovsky,I.A.et al. Multi-diensional modal analysis of nonlinearsloshing in a rectangular tank with finite water depth[J]. Journal of Fluid Mechanics,2000,407:201-234.
    [9]Faltinsen,O.M., Timokha,A.N. Adaptive multimodal approach to nonlinear sloshing in a rectangularrtank[J]. Journal of Fluid Mechanics,2001,432:167-200.
    [10]Faltinsen,O.M., Timokha,A.N. Asymptotic modal approximation of nonlinear resonant sloshing in arectangular tank with small fluid depth[J]. Journal of Fluid Mechanics,2002,470:319-357.
    [11]Faltinsen, O. M., A. N. Timokha. A multimodal method for liquid sloshing in a two-dimensionalcircular tank[J]. Journal of Fluid Mechanics,2010,665:457-479.
    [12]Firoozkoohi, R., Faltinsen, O.M. Experimental and Numerical Investigation of the Effect of SwashBulkhead on Sloshing[C]. ISOPE2010, June2010, Beijing China.
    [13]Faltinsen,O.M., Firoozkoohi,R., Timokha, A.N. Steady-state liquid sloshing in a rectangular tankwith a slat-type screen in the middle: Quasilinear modal analysis and experiments[J]. Physics ofFluids,2011,23(4):042101-19.
    [14]Faltinsen,O.M., Firoozkoohi,R., Timokha, A.N. Effect of central slotted screen with a highsolidity ratio on the secondary resonance phenomenon for liquid sloshing in a rectangular tank[J].Physics of Fluids,2011,23(6):062106-12.
    [15]Amano, K., Koizumi,M., Yamakawa, M.Three-dimensional analysis of sloshing problems using aboundary element method[J]. Trans(2nd report). JSME. Part B,1991,57(540):2791-2797
    [16]Abramson, H.N. The dynamic behavior of liquid in moving containers[R]. Report SP106of NASA,1996.
    [17] Lee, D.Y., Choi, H.S. Study on Sloshing in Cargo Tanks Including Hydroelastic Effects[J]. MarineScience and Technology,1999,4:27-34.
    [18]Firouz-Abadi, R.D., Haddadpour, H., Kouchakzadeh, M.A. Free vibrations of composite tankspartially filled with fluid[J]. Thin-Walled Structures,2009,47:1567-1574.
    [19]Wu, G.X., Ma, Q.W., Eatock Taylor, R. Numerical simulation of sloshing waves in a3D tank basedon a finite element method[J]. Appl. Ocean Res.1998,20:337-355.
    [20]Wu, G.X. Second-order resonance of sloshing in a tank[J]. Ocean Engineering,2007,34(17-18):2345-2349.
    [21]Huang, S., Duan, W.Y., Zhu, X. Time-domain simulation of tank sloshing pressure and experimentalvalidation[C].9th International Conference on Hydrodynamics, October2010Shanghai, China.
    [22]Wang,C.Z., Khoo, B.C. Finite element analysis of two-dimensional nonlinear sloshing problems inrandom excitations[J]. Ocean Engineering,2005,32:107-133.
    [23]Hirt,C.W., Nichols,B.D. Volume of fluid (VOF) method for the dynamics of free surface fluidflow[J]. Journal of Computational Physics,1981,39:201-225.
    [24]Noh,W., Woodward,P. SLIC(simple line interface calculation)[M]. Proceeding,5th Int. Conf. FluidDyn. Vol59, Lect. Notes Phys. Ed. A van de Vooren, P Zandbergen, Berlin: Springer-Verlag,1976,330-340.
    [25]Youngs, D. L. Time-dependent multi-material flow with large fluid distortion[J]. in K. W. Mortonand M. J. Baines(eds.), Numerical Methods for Fluid Dynamics, Academic, New York,1982,273-285.
    [26]Puckett,E.G. A volume-of-fluid interface tracking algorithm with applications to computing shockwave refraction[C].4th International Symposium on Computational Fluid Dynamics,September1991,Davis, Canada.
    [27]Puckett,E.G., Saltzman,J.S. A3D adaptive mesh refinement algorithm for interfacial gasdynamics[D]. Physics D.1992,60:84-93.
    [28]Parker,B.J., Youngs,D.L. Two and three dimensional Eulerian simulation and fluid flow withmaterial interfaces[R]. Tech. Rep. UK Atomic Weapons Establ.1992.
    [29]Li,J. Calcul d’ interface affine par morceaux (piecewise linear interface calculation)[J]. CR Acad.Sci,1995,320:391-396.
    [30]Puckett,E.G., Almgren,A.S., Bell,J.B., et al. A high-order projection method for tracking fluidinterfaces in variable density incompressible flows[J]. Journal of Computational Physics,1997,130:369-282.
    [31]Rudman M.. Volume-tracking methods for interfacial flow calculations[J]. Inter. J. Numer. Methodsin Fluids,24,1997:671-691.
    [32]Ashgriz,N., Poo,J.Y. Flair: Flux Line-Segment Model for Advection and Interface Reconstruction[J].Journal of Computational Physics,1991,93:449-468.
    [33]Boris,J.P., Book,D.L. Flux corrected transport[J]. Journal of Computational Physics,1973,11:38-69.
    [34]刘儒勋,王志锋.数值模拟方法和运动界面追踪[M].合肥:中国科学技术大学出版社,2001.
    [35]Osher,S., Sethian,J.A. Fronts Propagating with Curvature Dependent Speed: Algorithms Based onHamilton-Jacobi Formulation[J]. Journal of Computer Physics,1988,79:12-49.
    [36]Sethian, J.A. Level Set Methods and Fast Marching Methods[M]. Cambridge: CambridgeUniversity Press,1996.
    [37]Osher, S., Fedkiw, R. Level set methods and dynamic implicit surfaces[M]. New York: SpringerPress,2003.
    [38]Sussman,M., Smereka, P., Osher,S.J. A level set approach for computing solutions to incompressibletwo-phase flow[J]. Journal of Computational Physics,1994,114:146-159.
    [39]Sussman,M., Smereka, P. Axisymmetric free boundary problems[J]. Journal of Fluid Mechanics,1997,341:269-294.
    [40]Sussman,M., Almgren,A., Bell,J., et al. An adaptive level set approach for incompressibletwo-phase flows[J]. Journal of Computational Physics,1999,148:81-124.
    [41]Sussman,M., Puckett,E.G. A coupled level set and volume-of-fluid method for computing3d andaxisymmetric incompressible two-phase flows[J]. Journal of Computational Physics,2000,162:301-337.
    [42]Pijl,S.P., Segal,A., Vuik,C., et al. A mass-conserving level-set method for modeling of multi-phaseflows[J].Int. J. Num. Meth. Fluids,2005,47:339-361.
    [43]Yang,X.F., James,A.J., Lowengrub,J., et al. An adaptive coupled level-set/volume-of-fluid interfacecapturing method for unstructured triangular grids[J]. Journal of Computational Physics,2006,217:364-394.
    [44]Sun,D.L.,Tao,W.Q. A coupled volume-of-fluid and level set (VOSET) method for computingincompressible two-phase flows[J]. International Journal of Heat and Mass Transfer,2010,53:645-655.
    [45]Norman,M.L., Winkler,K.H.2-D Eulerian hydrodynamics with fluid interfaces, self-gravity androtation[J]. In Astrophysical Radiation Hydrodynamics, ed. K-H Winkler, ML Norman, pp.187-221.New York: Reidet.1986.
    [46] Miller,G.H., Puckett,E.G. A high-order Godunov method for multiple condensed phases[J]. Journalof Computational Physics,1996,128:134-164.
    [47]Saurel,R., Abgrall,R. A simple method for compressible multiple flows[J]. SIAM J. Sci Comput.1999,21(3):1115-1145.
    [48]Lowry,S.A., Keenan,J.A., Bayyuk,A.A., et al. ACE-WAVE: an evolving CFD code for modelingwaves and wave-structure interaction[J]. ASME FEDSM97, June1997, Vancouver Canada..
    [49]Schuman,C. Computing free-surface ship flows with a Volume-of-Fluid method[C]. PRADS’98Conf., December1998, Haag Dutch.
    [50]Wang, Z.Y., Yang, J.M., Koo B., et al. A coupled level set and volume-of-fluid method for sharpinterface simulation of plunging breaking waves[J]. International Journal of Multiphase Flow,2009:35:227-246.
    [51]Sussman,M. A second order coupled level set and volume-of-fluid method for computing growthand collapse of vapor bubbles[J]. Journal of Computational Physics,2003,187:110-136.
    [52]Son,G., Hur,N. A coupled level set and volume-of-fluid method for the buoyancy-driven motion offluid particles [J].Numerical Heat Transfer, Part B,2002,42:523-542.
    [53]Menard,T., Tanguy,S., Berlemont,A. Coupling level set/VOF/ghost fluid methods: Validation andapplication to3D simulation of the primary break-up of a liquid jet[J]. International Journal ofMultiphase Flow,2007,33:510-524.
    [54]Kim, Y. Numerical simulation of sloshing flows with impact load[J].Applied Ocean Research,2001,23:53-62.
    [55]Kim, Y., Shin,Y.S., Lee,K.H. Numerical study on slosh-induced impact pressures onthree-dimensional prismatic tanks[J]. Applied Ocean Research,2004,26:213-226.
    [56]Akyild za, H., Unal, N.E. Sloshing in a three-dimensional rectangular tank: Numerical simulationand experimental validation[J]. Ocean Engineering,2006,33:2135-2149.
    [57]朱仁庆,颜开,吴有生.盛液容器内液体二维晃荡的数值模拟[J].华东船舶工业学院学报,1998,12(2):14-21.
    [58]朱仁庆.船舶液体晃荡动力学的研究方法及进展[J].华东船舶工业学院学报,1999,13(1):45-50.
    [59]朱仁庆,吴有生.液舱内液体晃荡特性的数值研究[J].中国造船,2002,43(2):15-21.
    [60]朱仁庆.液体晃荡及其与结构的相互作用[D].无锡:中国船舶科学研究中心,2002.
    [61]刘永涛,马宁,顾解忡.三维大幅晃荡的Youngs-VOF法模拟[J].哈尔滨工程大学学报2012,33(9):1075-1078.
    [62]Liu, Y.T., Ma, N., Gu, X.C. Numerical simulation of large amplitude sloshing in FPSO tanks underirregular excitations based on Young’s VOF method[C]. OMAE2010, June2010, Shanghai China.
    [63]Liu,D.M., Lin, P.Z. A numerical study of three-dimensional liquid sloshing in tanks[J]. Journal ofComputational Physics,2008,227:3921-3939.
    [64]Xue,M.A., Lin,P.Z. Numerical study of ring baffle effects on reducing violent liquid sloshing[J].Computers&Fluids,2011,52:116-129.
    [65]Wemmenhove, R., Iwanowski, B., Lefranc,M., et al. Simulation of Sloshing Dynamics in a Tank byan Improved Volume-of-Fluid Method[C]. ISOPE2009, June2009, Osaka Japan.
    [66]Godderidge,B.et al. An investigation of multiphase CFD modelling of a lateral sloshing tank[J].Computers&Fluids,2009,38:183-193.
    [67]Lee, D.H., Kim, M.H., Kwon, S.H., et al. A parametric sensitivity study on LNG tank sloshing loadsby numerical simulations[J]. Ocean Engineering,2007,34:3-9.
    [68]Godderidge, B.,Turnock,S.et al. The effect of fluid compressibility on the simulation of sloshingimpacts[J].Ocean Engineering,2009,36(8):578-587.
    [69]郭晓宇,王本龙,刘桦.低充水液舱晃荡气垫效应的数值分析[J].水动力学研究与进展,2011(5):623-630.
    [70] Harlow, F. H., Welch, J. E., Shannon, J. P., et al. The MAC method, a computing technique forsolving viscous, incompressible, transient fluid problems involving free surface[R]. Los AlamosScientific Lab. Rep. LA-3425,1965.
    [71]Viecelli,J.A. A method for including arbitrary external boundaries in the MAC incompressible fluidcomputing technique[J]. Journal of Computational Physics,1969,4:543-551.
    [72] Viecelli, J. A. A computing method for incompressible flows bounded by moving walls[J]. Journalof Computational Physics,1971,8:119-143.
    [73]Amsden, A. A., Harlow, F. H. A simplified MAC technique for incompressible fluid flowcalculations[J]. Journal of Computational Physics,1970,6:322-325.
    [74]Miyata, H., Nishimura, S., Masuko, A. Finite-difference simulation of nonlinear waves generated byships of arbitrary three-dimensional configuration[J]. Journal of Computational Physics,1985,60:391-436.
    [75]Miyata, H., Kajitan, H., Zhu, M. Numerical study of some wave-breaking problems by afinite-difference method[J]. J. Kansai Soc. Naval Architects,1987,207:11-23.
    [76]Miyata, H., Sato, T., Baba, N. Difference solution of a viscous flow with free surface wave about anadvancing method[J]. Journal of Computational Physics,1987,72(2):393-421.
    [77]Miyata, H., Katsumata, M., Lee, Y. G., et al. A finite-difference simulation method for stronglyinteracting two-layer flow[J]. Journal of the Society of Naval Architects of Japan,1988,163:1-16
    [78]Chen, S., Johnson, D. B., Radd, P.E. The surface marker method[M]. In computational Modeling ofFree and Moving boundary problem, Vol.1, fluid flow, de Gruyter, New York,1991:223-224.
    [79]Armenio,V. A new algorithm (SIMAC) for the solution of free surface unsteady free surface viscousflows[C].9th Inc. Workshop on water waves and floating Bodies, April1994, Fukuoka Japan.
    [80]Chen, S., Jhon, D. B., Raad, P. E. Velocity boundary conditions for the simulation of free surfacefluid flow[J]. Journal of Computational Physics,1995,116:262-276.
    [81] Chen, S., Jhon, D. B., Radd, P. E. The surface marker and micro cell method[J]. Int. J. Num.Methods Fluids,1997,25:749-778.
    [82] Milkelis, N. E., Miller, J. K., Taylor, K.V. Sloshing in partially filled liquid tanks and its effect onShip Motions: Numerical Simulations and Experimental Verification[J]. Transactions of the RoyalInstitution of Naval Architects,1984,126:267-277.
    [83]Arai, M. Experimental and numerical studies of sloshing pressure in liquid cargo tanks[J]. Journalof the Society of Naval Architects of Japan,1984,155:114-121.
    [84]Milkelis, N.E., Robinson, D.W. Sloshing in Arbitrary Shaped Tanks[J]. Journal of the Society of theNaval Architects of Japan,1985,158:246-255.
    [85]Eguchi, T., Niho, O. A Numerical Simulation of2D Sloshing Problem[J]. Mitsui Zosen TechnicalReview,1989,138:41-42.
    [86]Nagahama,M., Nagahama,S., Nekado,Y., et al. A3-Dimensional analysis of sloshing by means oftank wall fitted coordinate system[J]. Journal of the Society of Naval Architects of Japan,1992,172:487-489.
    [87]Arai, M., Cheng,L.Y., Inoue, Y.3D numerical simulation of impact load due to liquid cargosloshing[J]. Journal of the Society of Naval Architects of Japan,1992,171:177-184.
    [88]Arai, M., Cheng, L.Y., Inoue, Y. Numerical simulation of sloshing and swirling in a cubic and acylindrical tank[J]. J. Kansai Soc. N. A., Japan,1993,219:97-101.
    [89]Armenio,V. An improved MAC method (SIMAC) for unsteady high-Reynolds free surface flows[J].Int. J. Num. Methods Fluids,1997,24:185-214.
    [90]Armenio,V. Dynamic loads on submerged bodies in a viscous numerical wave tank at small KCnumbers[J]. Ocean Engineering,1998,25(10):881-905.
    [91]沈国光.矩形容器内流体晃动的数值模拟[J].水动力学研究与进展(A),1997,12(3):281-288
    [92]Lucy,L.B. A numerical approach to the testing of fusion process[J]. Astronomical Journal,1977,88:1013-1024.
    [93]Gingold,R.A., Monaghan, J.J. Smoothed particle hydrodynamics: theory and application tonon-spherical stars[J]. Monthly Notices Royal Astronomical Society,1977,181:375-389.
    [94]Monaghan, J.J. Smoothed Particle Hydrodynamics[J]. Annu. Rev. Astron. astr.1992,30:543-574.
    [95]Monaghan,J.J. Simulating Free Surface Flows with SPH[J]. Journal of Computational Physics,1994,110:399-406.
    [96]Monaghan,J.J., Kos,A. Solitary waves on a Cretan beach[J]. Journal of Waterway.Port, Coastal andOcean Engineering, ASCE,1999,125(3):145-154.
    [97]Monaghan,J.J. SPH without a Tensile Instability[J]. Journal of Computational Physics,2000,159:290-311.
    [98]Monaghan,J.J. Smoothed particle hydrodynamics[J]. Reports on Progressin Physics,200568:1703-1759.
    [99]Delorme, L., Colagrossi, A. A set of canonical problems in sloshing, Part I: Pressure fielding forcedroll-comparison between experimental results and SPH[J]. Ocean Engineering,2009,36:168-178.
    [100]Rudman,M., Prakash,M., Cleary,P.W. SPH Modelling of Liquid Sloshing in an LNG Tank[C].ISOPE2009, June2009, Osaka Japan.
    [101]Marsh,A.P., Prakash, M. A shallow-depth sloshing absorber for structural control[J]. Journal ofFluids and Structures,2010,26:780-792.
    [102]Marsh,A., Prakash, M. A numerical investigation of energy dissipation with a shallow depthsloshing absorber[J]. Applied Mathematical Modelling,2010,34,2941-2957.
    [103]Baeten,A. LNG Tank Sloshing Parameter Study in a Multi-Tank Configuration[C]. ISOPE2010,June2010, Beijing China.
    [104]Oger, G., Brosset, L., Guilcher, P.M.,et al. Simulations of Hydro-elastic Impacts Using a ParallelSPH Model[C]. ISOPE2009, June2009, Osaka Japan.
    [105]Anghileri, M., Luigi-M., Castelletti, L. et al. Fluid-structure interaction of water filled tanks duringthe impact with the ground[J]. International Journal of Impact Engineering,2005,31:235-254.
    [106]Landrini,M., Colagrossi,A., Faltinsen,O.M. Sloshing in2d flows by the SPH method[C].8thInternational Conference on Numerical Ship Hydrodynamics, September2003, Busan Korea.
    [107]Colagrossi, A. A meshless lagrangian method for free-surface and interface flows withfragmentation[D]. Ph.D.Thesis,Universita di RomaLaSapienza,2004.
    [108]崔岩,吴卫,龚凯,等.二维矩形水槽晃荡过程的SPH方法模拟[J].水动力学研究与进展,2008,23(6):618-624.
    [109]李大鸣,陈海舟,张建伟,等.基于SPH法的二维矩形液舱晃荡研究[J].计算力学学报,2010,27(2):369-374.
    [110]Guilcher,P.M., Oger,G., Brosset, L., et al. Simulation of Liquid Impacts with a Two-phase ParallelSPH Model[C]. ISOPE2010, June2010, Beijing China.
    [111]Koshizuka,S., Tamako,H., Oka,Y. A particle method for incompressible viscous flow fluidfragmentation[J]. Computational Fluid Dynamics Journal,1995,4(1):29-46.
    [112]Koshizuka,S., Oka,Y. Moving-particle semi-implicit method for fragmentation of incompressiblefluid[J]. Nucl Sci Eng,1996,123(3):421-434.
    [113]Koshizuka,S. Numerical analysis of breaking waves using the moving particle semi-implicitmethod[J].International Journal for Numerical Methods in Fluids,1998,26:751-769.
    [114]潘徐杰,张怀新.用移动粒子半隐式法模拟液舱横摇晃荡现象[J].上海交通大学学报,2008,42(11):1904-1907.
    [115]潘徐杰,张怀新.移动粒子半隐式法晃荡模拟中的压力振荡现象研究[J].水动力学研究与进展,2008,23(04):453-463.
    [116]张雨新,万德成.用MPS方法数值模拟低充水液舱的晃荡[J].水动力学研究与进展,2012,27(01):100-107.
    [117]Hu, C.H, Sueyoshi, M., Miyake, R., et al. A Validation Study of Applying the CIP Method and theMPS Method to2-D Tank Sloshing[C]. ISOPE2009, June2009, Osaka Japan.
    [118]Chikazawa,Y., Koshizuka,S., Oka,Y. Numerical Analysis of Sloshing with Large Deformation ofElastic Walls and Free Surfaces Using MPS method[J]. Transactions of the Japan Society of MechanicalEngineers. B,1999,65(637):2954-2960.
    [119]Lee, C.J.K., Noguchi, H., Koshizuka, S. Fluid–shell structure interaction analysis by coupledparticle and finite element method[J]. Computers and Structures,2007,85:688-697.
    [120]Nakayama, T., Washizu, K. Nonlinear analysis of liquid motion in a container subjected to forcedpitching oscillation[J]. Int. J. Numer. Methods Eng.,1980,15:1207-1220.
    [121]Marchandise,E., Remacle, J.F. A stabilized finite element method using a discontinuous level setapproach for solving two phase incompressible flows[J]. Journal of ComputationalPhysics,2006,219:780-800.
    [122]Eswaran, M., Saha, U.K., Maity, D. Effect of baffles on a partially filled cubic tank: Numericalsimulation and experimental validation[J]. Computers and Structures,2009,87:198-205.
    [123]管延敏,叶恒奎,陈庆任.基于ALE有限元法二维液体晃荡的数值模拟[J].船舶力学,2010,14(2):1094-1099.
    [124]管延敏,叶恒奎,陈庆任,等.三维带挡板箱体液体晃荡数值模拟[J].华中科技大学学报,2010,38(4):102-104.
    [125]Kishev, Z. R., Hu,C.H., Kashiwagi, M. Numerical simulation of violent sloshing by a CIP-basedmethod[J].Journal of Marine Science and Technology,2006,11(2):111-122.
    [126]Hu, C.H., Yang, K.K., Kim, Y.3-D numerical simulations of violent sloshing by CIP-basedmethod[J]. Journal of Hydrodynamics,2010,22(5):253-258.
    [127]方智勇,朱仁庆. Level-set法在液体晃荡研究中的应用[J].水动力学研究与进展,2007,22(2):150-156.
    [128]方智勇,朱仁庆.基于Level-set法的液舱液体晃荡数值模拟[J].船舶力学,2007,11(1):62-67.
    [129]方智勇,朱仁庆.基于Level-set法和通度概念液体晃荡特性研究[J].海洋工程,2007,25(2):91-97.
    [130]Chen,Y.G., Price,W.G., Temarel,P. Numerical Simulation of Liquid Sloshing in LNG Tanks Usinga Compressible Two-Fluid Flow Model[C]. ISOPE2009, June2009, Osaka Japan.
    [131]Yang, K.K., Kim, Y.W. A Comparative Study on the Numerical Simulation of2-D ViolentSloshing Flows by CCUP and SPH[C]. ISOPE2009, June2009, Osaka Japan.
    [132]Rebouillat, S., Liksonov, D. Fluid–structure interaction in partially filled liquid containers: Acomparative review of numerical approaches[J]. Computers&Fluids,2010,39:739-746.
    [133]Lee,S.G., Baek,Y.H., Lee,I.H., et al. Numerical Simulation of2D Sloshing by using ALE2DTechnique of LS-DYNA and CCUP Methods[C]. ISOPE2010, June2010, Beijing China.
    [134]Moirod,N., Baudin, E., Gazzola,T., et al. Experimental and Numerical Investigations of the GlobalForces Exerted by Fluid Motions on LNGC Prismatic Tanks Boundaries[C]. ISOPE2010, June2010,Beijing China.
    [135]Cao,Y.S., Graczyk,M., Pakozdi,C., et al. Sloshing Load Due to Liquid Motion in a TankComparison of Potential Flow,CFD,and Experiment Solutions[C]. ISOPE2010, June2010, BeijingChina.
    [136]Bagnold, R. Interim report on wave-pressure research[J]. Journal of ICE,1939,12:202–226.
    [137]Peregrine,D.H. Water-wave impact on walls[J]. Annual Review of Fluid Mechanics,2003,35:23-43.
    [138]Moiseyev, N.N. On the theory of nonlinear vibrations of a liquid of finite volume[J]. Appl. Math.Mech.(PMM),1958,22(5):612-621.
    [139]Hattori, M., Arami, A., Yui, T. Wave impact pressure on vertical walls under breaking waves ofvarious types[J]. Coastal Engineering,1994,22:79-114.
    [140]Kurihara,C., Masuko,Y., Sakurai,A. Sloshing impact pressure in roofed liquid tanks[J]. J.PressureVessel tech.,1994,116:93-200.
    [141]Panigrahy, P.K., Saha, U.K., Maity, D. Experimental studies on sloshing behavior due to horizontalmovement of liquids in baffled tanks[J]. Ocean Engineering,2009,36:213-222.
    [142]Pastoor, W., Klungseth-Ostvold, T., Byklum, E., et al. Sloshing load and response in LNG carriersfor new designs, new operations and new trades[R]. Technical Report, Det Norske Veritas TechnicalPaper,2005.
    [143]Kim, H.I., Kwon, S.H., Park, J.S., et al. An Experimental Investigation of Hydrodynamic Impacton2-D LNGC Models[C]. ISOPE2009, June2009, Osaka Japan.
    [144]Zheng, X., Maguire, J.R., Radosavljevic, D. Validation of Numerical Tools for LNG SloshingAssessment[C]. ISOPE2010, June2010, Beijing China.
    [145]Maillard, S., Brosset, L. Influence of Density Ratio Between Liquid and Gas on Sloshing ModelTest Results. ISOPE2009, June2009, Osaka Japan.
    [146]Braeunig, J.P., Brosset, L., Dias, F., et al. Phenomenological Study ofLiquid Impacts through2DCompressibleTwo-fluid Numerical Simulations[C] ISOPE2009, June2009, Osaka Japan.[147]Braeunig,J.P., Brosset,L., Dias,F., Ghidaglia,J.M. On the Effect of Phase Transition on Impact Pressures due toSloshing[C]. ISOPE2010, June2010, Beijing China.
    [148]Jeon, S.S., Kim, H.I., Park, J.S., et al. Experimental Investigation of Scale Effect in SloshingPhenomenon[C].27th Symposium on Naval Hydrodynamics,October,2008, Seoul, Korea.
    [149]Bogaert, H., Léonard, S., Brosset, L., Kaminski, M.L.Sloshing and Scaling: Results from theSloshel Project[C]. ISOPE2010, June2010, Beijing China.
    [150]Kimmoun, O., Ratouis, A., Brosset, L. Sloshing and Scaling: Experimental Study in a Wave Canalat Two Different Scales[C]. ISOPE2010, June2010, Beijing China.
    [151]Kaminski, M.L., Bogaert, H. Full Scale Sloshing Impact Tests[C]. ISOPE2009, June2009, OsakaJapan.
    [152]Kaminski, M.L., Bogaert, H. Full Scale Sloshing Impact Tests-Part2[C]. ISOPE2010, June2010,Beijing China.
    [153]Repalle, N., Pistani, F., Thiagarajan, K. Experimental Study of Evolution of Impact Pressure alongthe Vertical Walls of a Sloshing Tank[C]. ISOPE2010, June2010, Beijing China.
    [154]Bogaert, H., Léonard, S., Marhem, M., et al. Hydrostructural behaviour of LNG membranecontainment systems under breaking wave impacts: Findings from the Sloshel project[C]. ISOPE2010,June2010, Beijing China.
    [155]王德禹,金咸定,李龙渊.液舱流体晃荡的模型试验[J].上海交通大学学报,1998,32(11):114-117.
    [156]王德禹,李龙渊,施其.三自由度晃荡模拟装置及其模态分析[J].海洋工程,1998,18(4):94-96.
    [157]蔡忠华.液货船液舱晃荡问题研究[D].上海:上海交通大学,2012.
    [158]祁恩荣,庞建华,徐春,等.薄膜型LNG液舱晃荡压力与结构响应试验[J].舰船科学技术,33(4):17-24.
    [159]Xu,G.H.,Qi,E.R., Xu,C., et al. Experimental Investigation of Sloshing Loads and StructuralDynamic Responses in Tanks of LNG Carriers[J]. Journal of Ship Mechanics,2011,15(12):1374-1383.
    [160]Dillinghamm,J. Motion studies of a vessel with water on deck [J]. Marine Technology,1981,18:38-50.
    [161]Rognebakke,O.F., Faltinsen,O.M. Effect of sloshing on ship motions[C]. Proc.16th IWWWFB,April2001,Hiroshima Japan.
    [162]Rognebakke, O.F., Faltinsen, O.M. Coupling of sloshing and ship motion [J]. Journal of ShipResearch,2003,47(3):208-221.
    [163]Molin, B., Remy, F., Rigaud, S., Jouette, C. LNG-FPSO's: frequency domain coupled analysis ofsupport and liquid cargo motion[C]. IMAM Conference, November2002,Rethymnon Greece.
    [164]Malenica,S.,Zalar,M.,Chen,X.B. Dynamic coupling of seakeeping and sloshing[C]. ISOPE2003,May2003, Hawaii USA.
    [165]Park, J.J., Kawabe, H., Kim, M.S., et al. Sloshing Assessment of LNG-FPSO’s for Partial FillingOperations[C]. ISOPE2009, June2009, Osaka Japan.
    [166]Park,J.J.,Kawabe,H., Kim, M.S., et al. Numerical Sloshing Assessment Including Tank Sloshingand Ship Motion Coupling Effect[C]. ISOPE2010, June2010, Beijing China.
    [167]Clauss, G.F., Testa, D., Sprenger, F. Coupling effects between tank sloshing and motions of a LNGcarrier[C]. OMAE2010, June2010, Shanghai China.
    [168]Zhao,W.H., Hu,Z.Q., Yang,J.M., et al. Investigation on Sloshing Effects of Tank Liquid on theFLNG Vessel Responses in Frequency Domain[J]. Journal of Ship Mechanics,2011,(3):227-237.
    [169]Lee,D.Y., Choi,H.S., Faltinsen,O.M. A study on the sloshing effect on the motion of2d boxes inregular waves[C].9th International Conference on Hydrodynamics, October2010Shanghai, China.
    [170]Newman, J.N. Wave effects on vessels with internal tanks[C].20th Workshop on Water Waves andFloating Bodies, May2005, Spitsbergen Norway.
    [171]Mitra,S., Hai,L.V., Khoo,B.C. A Study on Complicated Coupling Effects of3-D Sloshing inRectangular Tanks and Ship Motion[C]. ISOPE2009, June2009, Osaka Japan.
    [172]Chen, B.F., Chiang, H.W. Complete two dimensional analysis of sea wave induced fully non linearsloshing fluid in a rigid floating tank[J]. Ocean Engineering,2000,27:953-977.
    [173]Kim, Y. A numerical study on sloshing flows coupled with ship motion-the anti-rolling tankproblem[J]. Journal of Ship Research,2002,46(1):52-62.
    [174]Kim, Y., Nam, B.W., Kim, D.W., et al. Study on coupling effects of ship motion and sloshing[J].Ocean Engineering,2007,34:2176-2187.
    [175]Lee, S.J., Kim, M.H. The effects of LNG-tank sloshing on the global motions of LNG carriers[J].Ocean Engineering,2007,34:10-20.
    [176]Nam,B.W., Kim,Y.H., Kim, D.W., et al. Experimental and Numerical Studies on Ship MotionResponses Coupled with Sloshing in Waves[J]. Journal of ship research,2009,53:68-82.
    [177]Kim,Y. Experimental and numerical analyses of sloshing flows[J]. Journal of EngineeringMath,2007,58(1):191-210.
    [178]Kim,K.S., Lee,B.H., Kim,M.H., et al. Simulation of Sloshing Effect on Vessel Motions by UsingMPS[J]. CMES,2011,79(3):201-221.
    [179]Wang,X., Arai,M. A Study on Coupling Effect between Sea-keeping and Sloshing forMembrane-type LNG Carrier [C].ISOPE2010, June2010, Beijing China.
    [180]Wang,X. Coupled analysis of ship motions and tank sloshing of LNG carriers-study of atime-domain numerical method and its application[D]. Ph.D.Thesis, Yokohama NationalUniversity,2012.
    [181]Lee,Y.B,Godderidge,B., Tan,M.Y., et al. Coupling between Ship Motion and Sloshing UsingPotential Flow Analysis and Rapid Sloshing Model[C]. ISOPE2009, June2009, Osaka Japan.
    [182]Francescutto, A., Contento, G. An experimental study of the coupling between roll motion andsloshing in a compartment[C]. ISOPE1994, April1994, Osaka, Japan.
    [183]Nasar,T., Sannasiraj,S.A., Sundar, V. Experimental study of liquid sloshing dynamics in a bargecarrying tank[J]. Fluid Dynamics Research,2008,40:427-458.
    [184]Medeiros,H.F. Experimental Study of Sloshing Effects in Roll Motion of Floating Units[C].OMAE2008,June2008, Estoril Portugal.
    [185]Tabri, K., Matusiak, J., Varsta, P. Sloshing interaction in ship collisions-An experimental andnumerical study[J]. Ocean Engineering,2009,36:1366-1376.
    [186]Huang, Z.J., Danaczko, M.A., Esenkov, O.E., et al. Coupled Tank Sloshing and LNG CarrierMotions[C]. ISOPE2009, June2009, Osaka Japan.
    [187]Ryu, M.C., Hwang, Y.S., Jung, J.H., et al. Sloshing Load Assessment for LNG Offshore Units witha Two-Row Tank Arrangement[C]. ISOPE2009, June2009, Osaka Japan.
    [188]Zhao,W.H.,Yang,J.M.,Hu,Z.Q., et al. Experimental investigation of effects of inner-tank sloshingon hydrodynamics of an FLNG system[J]. Journal of Hydrodynamics,2012,24(1)107-115.
    [189]Gueyffier,D.,Li,J.,Nadim,Ali., et al. Volume-of-Fluid interface tracking with smoothed surfacestress methods for three-dimensional flows[J].Journal of Computational Physics,1999,152:423–456.
    [190]Hu,C.H., Sueyoshi,M. Numerical simulation and experiment on dam break problem[J]. Journal ofMarine Science and Application,2010,9(2):109-114.
    [191]Martin,J.C., Moyce,W.J. An experimental study of the collapse of liquid columns on a rigidhorizontal plane[J]. R Soc,1952,244(882):312-324.
    [192]Jiang,G.S., Peng,D. Weighted ENO schemes for Hamilton–Jacobi equations[J].SIAM J. Sci.Comput.,2000,21:2126–2143.
    [193]Shu C.W., Osher S. Efficient implementation of essentially non-oscillatory shock-capturingschemes[J]. Journal of Computional Physics,1988,77:439-471.
    [194]Zalesak,S.T. Fully multi-dimensional flux-corrected transport algorithms for fluids[J]. Journal ofComputational Physics,1979,31:335-362.
    [195]Koshizuk, S., Oka, Y., Tamako, H. A particle method for calculating splashing of incompressibleviscous fluid[C]//In: Proceedings of the International Conference, Mathematics and Computations,Reactor Physics, and Environmental Analyses,1995:1514-1521.
    [196]Shibata,K., Koshizuka,S., Sakai,M., et al. Lagrangian simulations of ship-wave interactions inrough seas[J]. Ocean Engineering,2012,42:13-25.
    [197]Shibata,K., Koshizuka,S. Numerical analysis of shipping water impact on a deck using a particlemethod[J]. Ocean Engineering,2007,34(9):585-593.
    [198]Shibata,K., Koshizuka,S., Tanizawa,K. Three-dimensional numerical analysis of shipping wateronto a moving ship using a particle method[J]. Journal of Marine Science and Technology,2009,14(2):214-227.
    [199]Shakibaeinia,A.,Jin,Y.C. A weakly compressible MPS method for modeling of open-boundaryfree-surface flow[J]. International Journal for Numerical Methods in Fluids,2010,63(10):1208-1232.
    [200]Khayyer,A., Gotoh,H. Enhancement of stability and accuracy of the moving particle semi-implicitmethod[J]. Journal of Computational Physics,2011,230(8):3093-3118.
    [201]Cremonesi,M., Frangi,A., Perego,U. A Lagrangian finite element approach for the simulation ofwater-waves induced by landslides [J]. Computers and Structures,2011,89(11):1086–1093.
    [202]Monaghan J J, Kos A. Scott Russell’s wave generator [J].Physics of Fluids,2000,12(3):622–630.
    [203]戴仰山,沈进威,宋竞正.船舶波浪载荷[M].北京,国防工业出版社,2005.
    [204]董艳秋.船舶波浪外荷和水弹性[M].天津,天津大学出版社,1991.
    [205]Newmark,N.M. A method of computation for structural dynamics[J]. Journal of EngineeringMechanics,1959,85(3):67-94.
    [206]邹康.耦合液舱晃荡的船舶运动性能研究[D].镇江:江苏科技大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700