水性紫外光固化树脂的合成以及结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水性光固化涂料结合了传统光固化技术和水性涂料技术的优点,对环境无污染、对人体健康无影响,不易燃烧、安全性好,已成为涂料行业的研究热点。因此,本文先合成了改性环氧丙烯酸酯树脂和水性聚氨酯树脂,然后配制了水性光固化涂料,并添加有机蒙脱土制备了水性光固化抗菌涂料,研究了树脂及涂料的制备及表征。
     首先合成了马来酸酐和丁二酸酐改性环氧丙烯酸酯树脂,研究反应速率、树脂水溶性和颜色的影响因素,优化了反应条件,用红外光谱(FTIR)表征了产物结构;由合成树脂配制了水性紫外光固化涂料,研究了固化工艺和涂膜性能。研究结果表明:丁二酸酐改性环氧丙烯酸酯树脂的水溶性好、颜色浅;丁二酸酐与双酚A型环氧丙烯酸酯反应的最佳条件为环氧丙烯酸酯与丁二酸酐的摩尔比为1:2,丙酮为溶剂,反应温度75℃,三乙胺催化剂用量1.0 mass%;由丁二酸酐改性环氧丙烯酸酯树脂配成的水性光固化涂料,其固化膜的光泽度好和柔韧性优良,将具有广阔的应用前景。
     其次,用异佛尔酮二异氰酸酯(IPDI)、2,2-二羟甲基丙酸(DMPA).丙烯酸羟乙酯(HEA)和聚醚型聚乙二醇(PEG)、聚酯型聚己二酸丁二醇酯二醇(PBA)合成了水性聚氨酯丙烯酸酯树脂,研究了反应条件对反应速率、树脂水溶性的影响,优化了反应的工艺条件;然后由该树脂配制了水性紫外光固化涂料,研究了固化工艺和涂膜性能。得到了如下研究结果:水性聚氨酯树脂的耐黄变性能良好;优化的反应的工艺条件为:水性光固化聚氨酯反应的最佳条件为2,2-二羟甲基丙酸(DMPA)与聚乙二醇(PEG)摩尔比为2:1,溶剂为10%,反应温度80℃,催化剂二丁基二月桂酸二正丁锡用量0.6 mass%;由水性聚氨酯丙烯酸酯树脂配成的水性光固化涂料,其固化膜的光泽度好、柔韧性优良的优点,有望获得广泛应用。
     最后,将有机蒙脱土加入水性紫外光固化环氧丙烯酸酯涂料中制备了抗菌涂料,研究了抗菌涂层的理化性能、抗菌防霉性能和耐水性。研究发现:抗菌水性光固化涂料具有优异的抗菌防霉性能;当有机蒙脱土的添加量为2.0 mass%时,抗菌涂层对E.coli和S.aureus的抑菌圈大小分别为7.0和9.0 mm,防霉等级为0级,耐水性良好,理化性能指标都达到国家或行业标准。
Waterborne UV-curing coatings combined with the traditional uv-curable technology and water-borne coatings advantages, no pollution to environment, no effect on human health, burning-free and high security, have become the hotspot of coating industry. Therefore, this paper first synthesized epoxy acrylates modified resin and water-borne polyurethane resin, and confected waterborne UV-curing coatings. Then waterborne UV-curing antibacterial coatings were prepared by adding organic montmorillonite into waterborne UV-curing coatings, and the preparation and characterization of these coatings were studied.
     First, maleic anhydride and succinic anhydride modified epoxy acrylates resins were synthesized. From the reaction rate, water-solubility and colors of the resin, the optimum conditions to synthesize resins was explored, and the result coating was analyzed by FTIR. Then, waterborne UV-curing coatings were prepared from these resins, and the curing process and coating properties were studied. The results showed that succinic anhydride modified epoxy acrylates resins have good water-solubility and lighter color. The optimum reaction conditions for succinic anhydride and bisphenol A type epoxy resin were determined as molar ratio of 1:1 of succinic anhydride and bisphenol A type epoxy resin, catalyst amount of 1%-2% of triethylamine, reaction temperature of 60-65℃, solvent of acetone. The cured film of succinic anhydride modified epoxy acrylates resins has shining and excellent flexibility, and has wide application in future.
     Then, polyurethane acrylate (PUA) UV-curable waterborne coating was synthesized by isophorone diisocyanate (IPDI),2,2-dimethylol propionic acid (DMPA), hydroxyethyl acrylate (HEA) and polyether polyethylene glycol (PEG). From the reaction rate, water-solubility and colors of the resin, the optimum conditions to synthesize resins was explored. Then, waterborne UV-curing coatings were prepared from these resins, and the curing process and coating properties were studied. The results showed that polyurethane acrylate UV-curable waterborne coating have excellent performance of yellowing resistance. The optimum reaction conditions for polyurethane acrylate UV-curable waterborne coating were determined as molar ratio of 1:1 of DMPA and PEG, solvent amount of 10%, reaction temperature of 60-65℃, catalyst amount of 1%-2% of dibutyltindilaurate. The cured film of polyurethane acrylate UV-curable waterborne coating has shining and excellent flexibility, and has wide application in future.
     Finally, antimicrobial water-based UV-curing coating was prepared by means of composite organic montmorillonite antimicrobial agents with water-based UV-curing coating, and its physiochemical performance, antibacterial and anti-mildew performance as well as water resisting property were investigated. The results showed that antimicrobial water-based UV-curing coating has excellent antibacterial and anti-mildew performance, when the additive content of antibacterial agent is 2.0 mass%, the inhibition zone of the antimicrobial water-based UV-curing coating against E. coli and S. aureus is 7.0 and 9.0 mm, respectively, the fungicidal grade is 0. The antimicrobial water-based UV-curing coating has excellent water-proofing, physical and chemical property index reaches the national or trade standards.
引文
[1]陈用烈,曾兆华,杨建文.辐射固化材料及其应用[M].北京:化学工业出版社,2003:175-190.
    [2]唐承恒,董建华.辐射固化涂料[J].涂料工业,1998,28(11):34-35.
    [3]金养智,洪啸吟.紫外光固化涂料的进展[J].涂料工业,1999,29(12):30-33.
    [4]Decker C. UV-curing chemistry:past, present, and future[J]. Journal of Coatings Technology,1987,59 (751):97-106.
    [5]Dvorchak M J, Riberi B H, Water-reducible unsaturated polyesters as binders and clear coatings for UV curable furniture coatings[J]. Journal of Coatings Technology,1992,64 (808):43-56.
    [6]刘东华,冯树强.激光快速造型技术及其应用[J].广西工学院学报,2002,11(2):26-29.
    [7]王德海,江棂.紫外光固化材料-理论与应用[M].北京:科学出版社,2001.
    [8]徐国财,刑宏龙,江权.紫外光固化涂料进展[J].涂料工业,1998,28(5):36-38.
    [9]施文芳,黄宏.辐射固化涂层技术的最新发展[J].化学通报,1997,60(4):1-5.
    [10]潘国宁,田兴和.光固化型CTPE改性环氧丙烯酸酯树脂的研究[J].1996,16(3):16-19.
    [11]胡和丰,紫外光固化涂料的进展[J].涂料工业,1991,(2):36-37.
    [12]洪啸吟.绿色涂料与光固化涂料[J].中国涂料,1999,(4):15-16.
    [13]Witter F M, Radiation-Curable Powder Coatings[J]. Europe Coatings,1996, (3):115-117.
    [14]杨建文,曾兆华,陈用烈.光固化涂料及应用[M].北京:化学工业出版社,2005.
    [15]虞兆年.涂料工艺[M].北京:化学工业出版社,1996.
    [16]Haetal C S. Properties of UV-Curable Polymerthane Acrylate Using Nonyellowing Polyisocyanate for Floor Coating [J]. J.Appl.Polym.Sci,1996,62 (7):1001-1021.
    [17]Padge J C. Polymers for water-based coatings-A thematic overview [J]. Journal of Coatings Technology,1994,66 (39):89-102.
    [18]Stenson P. Radiation-curable water-borne urethanes for the wood industry [J]. Modern Paint and Coatings,1990,80 (6):44-48.
    [19]Sandet M R. Behzophenone Triethylamine-Photoinitiate Polymerization of Methylacrylate [J]. Polym.Sci.Polym.Chem,1972,31 (10):31-37.
    [20]Decker C. UV-radiation Curing of Vinyl Ether-based Coatings[J]. Surface Coatings International,2000, (4):173-178.
    [21]戴洪义,石守衡,王美君.辐射固化市场的主要障碍及开发热点[J].化学推进剂与高分子材料,1998,(3):38-40.
    [22]Zhang H, Massingill J L, Low VOC Low Viscosity UV Cationic Radiation-Cured Ink-Jet Ink System[J]. Journal of Coatings Technology,2000,72 (6):45-52.
    [23]唐承恒,董建华.辐射固化涂料[J].涂料工业,1998,28(11):34-35.
    [24]Meixner J, Kremer W.15th international conference on organic coatings and technology[C]. Athens, Greece,1989,7:489-493.
    [25]Deckera C, Massona F, Schwalmb R. Weathering resistance of waterbased UV-cured polyurethane-acrylate coatings[J]. Polymer Degradation and Stability,2004,83 (2): 309-320.
    [26]Hegedus C L, Kloiber K A. Aqueous acrylic-polyurethane hybrid dispersions and their use in industrial coatings[J]. J. Coat. Technol,1993,68 (860):39-48.
    [27]杨建文,曾兆华,陈用烈.丙烯酸酯树脂接枝聚氨酯光固化水性体系研究[J].材料研究学报,2002,14(1):109-112.
    [28]杨小毛,杨建文,陈用烈,熊伟.光固化氨酯改性丙烯酸系水性涂料[J].功能高分子学报,1 999,12(3):285-288.
    [29]Philips M, Loutz J M, Peeter S, et al. Radiation curable water dilutable polyester acrylates [J]. European polymers paint colour journal,1993,183 (4322):38-39.
    [30]Kosnik F J. Water offers possibilities in radiation-cure coatings [J]. Modern Paint & Coatings, 1989,79 (6):42-45.
    [31]Allen N S, Barker I C, Edge M, et al. Spectroscopic properties and photodimerisation of water soluble poly(vinylalcohol) modified with pendant (E)-2-[p-formylstyryl]-3,4-dimethyl-thiazolium methyl sulphate groups:polymer and model chromophore studies[J]. Journal of Photochemistry and Photobiology A:Chemistry,1992,68 (2): 227-237.
    [32]Visconti M, Cattaneo M. A highly efficient photoinitiator for water-borne UV-curable systems[J]. Progress in organic coatings,2000,40 (4):243-248.
    [33]Visconti M, Cattaneo M. A Highly Efficient Photoinitiatorfor Waterborne UV-curable Systems[J]. Progress in Organic Coatings,2000,40 (1):243-251.
    [34]本山卓彦.光固化乳液[J].丙烯酸化工,1999,12(3):33-39.
    [35]白湘云,金养智.水基光固化材料[J].影像技术,2000,(2):41-44.
    [36]韩仕甸,金养智.UV固化水性树脂的研究进展[J].信息记录材料,2001,2(2):31-34.
    [37]刘鹏,赵勇刚,王远勇.UV光固化胶粘剂的研究及应用[J].粘接,2003,24(6):13-16.
    [38]Farsari M, Huang S, Young RCD, et al. HolograPhic cure monitoring of the DuPont Somos TM 7100 StereolithograPhy resin[J]. Optics and Lasers in Engineering,1999, (31): 239-246.
    [39]Song M E, Kim J Y, Suh K D. Preparation of UV curable emulsions using PEG-modified urethane acrylates and their coating properties [J]. JCT, Journal of coatings technology,1996, 68 (862):43-50.
    [40]高玉,潘少波,谢洪泉.水显影光固化材料的制备及其各组分对感光性能的影响[J].高分子材料科学与工程,2002,(1):127-130.
    [41]Padjet J C. Polymers for Water-based Coatings-A Sysrematic Overview[J]. Journal of Coatings Technology,1994,66 (893):89-102.
    [42]Desai S, Thakore I M, Sarawade B D, et al. Effect of polyols and diisocyanates on thermo-mechanical and morphological properties of polyurethanes[J]. European Polymer Journal,2000, (36):711-725.
    [43]Nakamae K, Nishino T, Asaoka S, et al. Microphase separation and surface properties of segmented Polyurethane-Effect of hard segment content[J]. Internationa Journal of Adhension and Adhensives,1996, (11):233-239.
    [44]Yen M S, Cheng K L. The effects of soft segments on the physical Properties and water vapor permeability of H12MDI-PU cast films [J]. Journal of Applied polymer Science,1994, (52):1707-1717.
    [45]Asif A, Shi W. Synthesis and properties of UV curable waterborne hyperbranched aliphatic polyester[J]. European Polymer Journal,2003, (39):933-938.
    [46]Asif A, Huang C, Shi W. Structure-property study of waterborne, Polyuethane acrylate dispersion based on hyperbranched aliphatic polyseter for UV-curable coatings [J]. Colloid and Polymer Science,2004,283 (2):200-208.
    [47]Asif A, Shi W. UV curable waterborne polyurethane acrylate dispersions based on hyperbranched aliphatic polyester:effect of molecular structure on physical and thermal properties[J]. Polymers for Advanced Technologies,2004,15 (11):669-675.
    [48]冯宗财,王跃川,赵凌.含光敏剂的高支化碱溶性感光聚合物的合成及性能[J].高分子材料科学与工程,2001,17(3):66-70.
    [49]冯宗财,王跃川,陈毅敏等.高支化碱溶性丙烯酸化聚酯光刻胶的性能及成像性研究[J].影像技术,2001,(3):12-14.
    [50]Odeberg J, Rassing J, Jonsson J, et al. Water-based radiation-curable latexes[J]. Journal of Applied Polymer Science,1996,62 (2):435-445.
    [51]Odeberg J, Rassing J, Jonsson J, et al. Influence of spacer groups on Grafting ability, curing ability, and film properties of water-based radiation Curable latexes[J]. Journal of Applied Polymer Science,1998,70 (5):897-906.
    [52]Odeber G J, Rassn G J, Jonsson J E, et al. Water-based radiation-curable latexes[J]. J Appl Polym Sci,1996,62 (2):435-445.
    [53]Jung S J, Lee S J, Cho W J, et al. Synthesis and properties of UV-curable Waterborne unsaturated polyester for wood coating[J]. Journal of Applied Polymer Science,1998,69 (4):695-708.
    [54]Dvorchak M J, Riberi B H. water-reducible, unsaturated polysters as binders and clear coatings for UV-curable furniture coating[J]. Journal of Coatings Technology,1992,64 (888):43-49.
    [56]林毅清,钱篡,王金娣等.新型水性硫杂蕙酮类光引发剂的合成[J].华东理工大学学报,2000,26(2):212-214.
    [57]Steward P A, Hwarn J, Wilkinson M C. An overview of polymer latex film formation and properties[J]. Advances in Colloid and Interface Science,2000,86 (3):195-267.
    [58]Asf A, Huang C, Shi W. UV curing behaviors and hydrophilic characteristics of Uvcurable waterborne hyperbranched aliphatic polyesters [J]. polymers for Advanced Technologies, 2003,14 (9):609-615.
    [59]Kim Y B, Kim H K, Yoo J K, et al. UV-curable polyurethane dispersion for cationic electrodeposition coating[J]. Surface and Coatings Technology,2002,157 (1):40-46.
    [60]虞浩,袁荞龙,王得宁.影响水性聚氨酯/丙烯酸酷光固化速度的因素[J].弹性体,2004,12(2):19-24.
    [61]Scherzer T, Decker U. Kinetic investigations on UV-induced photopolymerization reactions by real-time FTIR-ATR spectroscopy:the efficiency of photo initiators at 313 and 222 nm[J]. Nuclear Instruments and Methods in physics Research B,1999,151 (4):306-312.
    [62]Scherer T, Decker U. Kinetic investingations on the UV-induced Photopolymerization of a diacrylate by time-resolved FTIR spectroscopy:the Influence of photoinitiator concentrationlight intensity and temperature[J]. Radiation Physics and Chemistry,1999,55 (5):615-619.
    [63]Ruiz C S B, Machado L D B, Volponi, et al. Oxygen inhibition and coating thickness effects on UV radiation curing of weatherfast clearcoats Studied by photo-DSC[J]. Journal of Thermal Analysis and Calorimetry,2004,75 (2):507-512.
    [64]Kip B J, Berghmans T, Palmen P, et al. on the use of recent developments in vibrational spectroscopic instrumentation in an industrial environment:quicker,smaller and more robust[J]. Vibrational Spectroscopy,2000,24 (1):75-92.
    [65]Scherzer T, Decker U. Real-time FTIR-ATR. Spectroscopy to study the kinetics of ultrafast photopolymerization reactions induced by monochromatic UV light[J]. Vibrational Spctroscopy,1999,19 (2):385-398.
    [66]胡涛,毛文钦.抗菌涂料的应用进展[J].安徽化工,2005,137(5):2-3.
    [67]余宗萍,杨军.紫外光固化涂料的研制[J].上海涂料,2008,46(12):4-5.
    [68]刘红波,李荣先,缪国元等.紫外光固化抗菌木器漆[J].涂料工业,2007,37(5):14-16.
    2.3小结
    1. 丁二酸酐改性环氧丙烯酸酯比马来酸酐改性环氧丙烯酸酯颜色更好,其它性能也符合实际应用要求。
    2. 确定丁二酸酐与双酚A型环氧丙烯酸酯反应的最佳条件:环氧丙烯酸酯与丁二酸酐的摩尔比为1:2,丙酮为溶剂,反应温度75℃,三乙胺催化剂用量1.0mass%。
    3.由丁二酸酐改性环氧丙烯酸酯配成的水性光固化涂料的固化膜光泽度好,柔韧性优良,将具有广阔的应用前景。
    [1]李红强,曾幸荣.紫外光固化水性涂料的研究进展[J].中国涂料,2007,22(5):28-32.
    [2]Padjet J C. Polymers for Water-based Coatings-A Sysrematic Overview[J]. Journal of Coatings Technology,1994,66 (893):89-102.
    [3]Cruan G P. Zero-VOC Polyester Coating[J]. Metal Finishing,1997,8 (8):85-93.
    [4]王德海,江棂.紫外光固化材料——理论与应用[M].北京:科学出版社,2001.
    [5]白湘云,钟慧,金养智.UV固化水性环氧丙烯酸树脂的研究[J].信息记录材料,2000,1(3):17-19.
    [6]陶莉,黄高山,聂辉等.水基光敏树脂的合成[J].电镀与涂饰,2002,(6):33-37.
    [7]唐熏,李喜见,陈洪等.UV固化纸印品水性上光油的研制[J].涂料工业,2003,33(6):7-8.
    [8]吕君亮,张力.紫外光固化水性环氧丙烯酸酯的研究[J].广东化工,2008,35(177):38-40.
    [9]庄宏清,肖华.UV固化水性环氧树脂的合成研究[J].热固性树脂,2008,23(3):14-18.
    [10]过敏兰,楼李华.自乳化水性丙烯酸环氧乳液的研制[J].涂料工业,2007,37(1):22-24.
    [11]刘建中,舒武炳,刘朝阳等.UV固化水性环氧树脂的改性研究[J].涂料工业,2004,34(11):8-10.
    [12]马洪芳.水性涂料用环氧丙烯酸树脂的研究[J].山东建筑工程学院学报,2002,17(3):74-77.
    [13]罗兰,雷建华,丁著明,等.不饱和聚酯树脂稳定化研究进展[J].热固性树脂,2008,23(4):50-54.
    [14]刑宏龙,倪惠琼,黄岩峰.水基光敏环氧丙烯酸酯的合成[J].原材料,2003,11(3):30-33.
    [15]张恒,杨卓如.UV固化纸张水性上光油的研究[J].合成材料老化与应用,2006,35(3):35-36.
    [16]梁宗军,史宜望,沈亚等.用于紫外光固化涂料的羧基化环氧丙烯酸酯水分散性研究[J].上海大学学报,、2005,11(3):303-306.
    [17]吕君亮,刘意,易运红.复合催化合成水性欢颜脂及光固化研究[J].广州化工,2007,35(6):22-25.
    择合适的大分子多元醇为原料。
    3.3小结
    1. 合成了水性紫外光固化聚氨酯,其耐黄变性能良好。
    2. 确定了优化的反应的工艺条件:水性光固化聚氨酯反应的最佳条件为2,2-二羟甲基丙酸(DMPA)与聚乙二醇(PEG)摩尔比为2:1,溶剂为10mass%,反应温度80℃,催化剂二丁基二月桂酸二正丁锡用量0.6 mass%。
    3. 由水性紫外光固化聚氨酯配成的水性光固化涂料的固化膜光泽度好、柔韧性优良、耐光性优异,有望获得广泛应用。
    [1]Odeber G J, Rassn G J, Jonsson J E, et al. Water-based radiation-curable latexes[J]. J Appl Polym Sci,1996,62 (2):435-445.
    [2]Jung S J, Lee S J, Cho W J, et al Synthesis and properties of UV-curable waterborne unsaturated polyester for wood coating[J]. J Appl Polym Sci,1998,69 (4):695-708.
    [3]Decker C, Masson F, Schwalm R. Dual-curing of water-borne urethane-acrylate coating by UV and thermal processing[J]. Macromol Mater Eng,2003,208 (1):17-28.
    [4]Hsieh K H, Kuo C H, Dai C A, et al. synthesis and kinetic studies of UV-curable urethane acrylates[J]. J Appl Polym Sci,2004,91 (5):3162-3166.
    [5]牛振斌,张兴元,戴家兵等.基于HTPB的可紫外光固化聚氨酯丙烯酸酯水性体系的研究[J].高分子材料科学与工程,2006,22(3):199-202.
    [6]陈云传,刘晓亚,胡红梅等.UV固化涂料用水性聚氨酯及微凝胶的制备[J].涂料工业,2004,34(5):8-10.
    [7]李红强,葛会勤,赵建设等.水性UV固化聚氨酯丙烯酸酯涂料的制备及其合成工艺的研究[J].涂料工业,2007,37(7):1-4.
    [8]韩仕甸,金养智.紫外光固化水性聚酯型聚氨酯丙烯酸酯的合成及性能[J].北京化工大学学报,2001,28(4):19-22.
    [9]熊军,孙芳,杜洪光.丙酮-二正丁胺法测定聚氨酯中的异氰酸酯[J].分析实验室,2007, 26(8):73-76.
    [10]王浩,唐黎明,陈久军等.水性端丙烯酸酯基聚氨酯的合成与紫外光固化[J].清华大学学报,2007,47(6):867-869.
    [11]李博,赵修文,张利国.耐黄变聚氨酯软泡的研究[J].化学推进剂与高分子材料,2009,7(3):40-42.
    [12]沈效峰.脂肪族水性聚氨酯皮革涂饰剂耐黄变性能研究[J].皮革化工,1997,15(1):23-25.
    [13]贾宏春.耐黄变溶剂型聚氨酯皮革涂饰剂的研究[J].Leather Chemicals,2004,21 (2): 18-21. 量为2.0 mass%时,抗菌涂层对E. coli和S. aureus的抑菌圈大小分别为7.0和9.0 mm,防霉等级为0级,显示出优异的抗菌防霉性能。
    2. 含2.0 mass%有机蒙脱土的抗菌涂层的耐水性良好,理化性能指标都达到国家或行业标准。
    [1]胡涛,毛文钦.抗菌涂料的应用进展[J].安徽化工,2005,137(5):2-3.
    [2]Walter G. Multiple choice:new microbial control option for paint and coating[J]. Modern Paint and Coatings,2001, (1):21-23.
    [3]Yang H, Wang K, Ding X G, et al. Study on relationship between antibacterial property and silver ions in inorganic antibacterial powders[J]. Kuei Suan Jen Hsueh Pao,2002,30 (5): 585-588.
    [4]Robert F, Sharrock A. European Approach to UV Protection with A Novel Pigment[J]. JCT, 1990,62(798):125-128.
    [5]余宗萍,杨军.紫外光固化涂料的研制[J].上海涂料,2008,46(12):4-5.
    [6]刘红波,李荣先,缪国元等.紫外光固化抗菌木器漆[J].涂料工业,2007,37(5):14-16.
    [7]郭清泉,涂伟萍,陈焕钦.抗菌涂料用抗菌剂及应用情况[J].广东化工,2002,(1):8-10.
    [8]邵青,黄旦光,杨魁.抗菌涂料研究新进展[J].材料导报,2008,(3):60-62,71.
    [9]杨超,王云普,郭金山等.环境友好型纳米银/氟碳抗菌涂料的研究[J].现代涂料与涂装,2008,(2):21-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700