提高采收率用聚丙烯酰胺微球的制备与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯酰胺微球调驱体系由于受到聚合物有效含量和乳化剂成本的限制而无法在提高原油采收率中得到大范围推广应用。针对这两个问题,本文从聚合工艺和超低界面张力乳化体系两方面开展研究。
     借助电导率仪,通过绘制柴油、乳化体系和高浓度丙烯酰胺水溶液的拟三元相图界定了反相微乳液区,合成了两类不同乳化体系的聚丙烯酰胺微球。对于质量比为3/1的Span80/Tween80复配乳化体系,反相微乳液中柴油占43.0wt%,乳化剂占17.4wt%,水相占39.6wt%;对于质量比为5/3/2的LA/Span20/Tween60复配乳化体系,反相微乳液中柴油占46.0wt%,乳化剂占16.0wt%,水相占38.0wt%;反应温度均为30.0℃,搅拌速度400~700rpm,水相中丙烯酰胺浓度为62.0wt%,APS占单体的质量分数为0.098%,SHS占单体的质量分数为0.041%,MBA用量可根据需要调整。两次聚合工艺可将微球体系中聚丙烯酰胺含量提高10%以上,将乳化剂用量降低5%左右。
     采用透射电子显微镜、激光粒度分析仪、流变仪对微球进行了定性和定量的评价。聚丙烯酰胺微球的原始粒径小于100nm,吸水膨胀后粒径可达几百微米,其水溶液为膨胀型流体。测定油水动态界面张力发现:Span80/Tween80乳化体系分别与碱和表面活性剂复配后可以将桩西稠油/水界面张力降至超低(<10-2mN/m);LA/Span20/Tween60经碱中和后即表现出超低界面张力特性。填砂管调驱结果表明:水驱后注微球调驱可将桩西稠油采收率提高20%以上;微观驱油实验证明:中和后的LA/Span20/Tween60乳化体系具有比Span80/Tween80乳化体系更高的洗油效率。
     可见,两次聚合工艺可以有效提高微球体系中的聚丙烯酰胺含量;将二元乳化体系复配使用或采用三元乳化体系可以有效提高洗油效率,使微球体系兼具增大波及系数和提高洗油效率的双重功能,对于聚合物微球体系在油田提高采收率中的推广应用具有重要的理论和实用价值。
Limited by low polymer content and high cost of emulsifiers employed, polyacrylamide microspheres can’t be widely applied in Enhanced Oil Recovery. To address these problems, twice polymerization process and new emulsifiers with potential ultra-low IFT were studied.
     Assisted by electrical conductivity meter, W/O microemulsions were prepared with diesel oil, acrylamide solution and emulsifiers. Then, with the constituents of microemulsions defined by pseudo-ternary phase diagram, two kinds of polyacrylamide microspheres with different emulsifiers were successfully synthesized. In microemulsions stabilized by Span80/Tween80 with the mass ratio of 3/1, mass fraction of diesel oil, emulsifiers and acrylamide solution separately accounts for 43.0wt%, 17.4wt% and 39.6wt%; for microemulsions made by LA/Span20/Tween60 with the mass ratio of 5/3/2, diesel oil, emulsifiers and acrylamide solution respectively occupies 46.0wt%, 16.0wt% and 38.0wt%. Temperatures are both set at 30.0℃, stirring speed ranges from 400 to 700rpm, acrylamide concentration of the solution is 62.0wt%. Usage of APS accounts for 0.098wt% of the acrylamide, and that of SHS is 0.041wt%, while crosslinker MBA can be adjusted for the water absorptivity of nanospheres. Polymer content of the microspheres products can be lifted by over 10wt% via twice polymerization process; meanwhile, the amount of emulsifiers can be reduced by about 5wt%.
     Transmission electron microscope, laser particle scanning analyzer and rheometer were adopted for qualitative and quantitative evaluations. Original diameters of the microspheres are less than 100nm; however, after water absorption they can reach several hundred microns, their aqueous solutions belong to dilatant fluids. Dynamic IFT measurements by spinning drop interfacial tension meter show that Span80/Tween80 has good synergic effects separately with alkali and surfactants in achieving ultra-low IFT values (<10-2mN/m) between Zhuangxi heavy oil and formation water; while LA/Span20/Tween60 merely neutralized by alkali exhibits satisfying performance in decreasing IFT to ultra-low values. Moreover, sandpack tests indicate that injection of microspheres and succeeding water flooding can contribute more than 20% OOIP to the primary recovery of Zhuangxi heavy oil; microscopic oil displacement demonstrate that: LA/Span20/Tween60 neutralized solution possesses better performance in improving displacement efficiency than Span80/Tween80 solution with the same concentration.
     It can be concluded that the twice polymerization process can significantly improve the polyacrylamide content of the microspheres products. Besides, oil displacement efficiency can be increased by emulsifiers with ultra-low IFT properties; therefore, enlargement of sweep efficiency and improvement of displacement efficiency can be simultaneously acquired. Experimental studies in this paper are of tremendous value for future large-scale application of nanospheres in EOR.
引文
[1]邹新禧.超强吸水剂[M].北京化学工业出版社,2002:1-114
    [2]赵玉强,张志斌,刘宁,等.智能水凝胶的应用[J].现代化工,2007,27(3):66-69
    [3]刘廷栋,刘京.高吸水性树脂的吸水机理[J].高分子通报,1995,(3):181-185
    [4]郑彤,王鹏,何钟怡.高吸水树脂水凝胶合成与表征方法的研究现状[J].材料导报,2008,22(6):83-86
    [5] Taylor L. D., Cerenkowski L. D.. J. Polym. Sci., 1975, 13: 2551-2570
    [6]刘崎,杨小敏,付海英,等.氮-异丙基丙烯酰胺温敏凝胶的辐射合成与性能表征[J].核技术,2007,30(8):652-656
    [7] Zhang J. T., Liu X. L., Fahr A., et al. A new strategy to prepare temperature-sensitive poly(N-isopropylacryamide) microgel[J]. Colloid Polym Sci, 2008, 286: 1209-1213
    [8] Liu Q. F., Zhang P., Qin A. X., et al. Poly(N-isopropylacrylamide) hydrogels with improved shrinking kinetics by Raft polymerization[J]. Polymer, 2006, 47: 2330-2336
    [9]张平,兰延勋,吕满庚.通过RAFT聚合方法合成具有高强度和高溶胀率的纳米水凝胶[J].精细化工,2007,24(12):1158-1162
    [10] Yu Y. Q., Li Z. Z., Tian H. J., et al. Synthesis and characterization of thermoresponsive hydrogels cross-linked with acryloyloxyethylaminopolysuccinimide[J]. Colloid Polym Sci, 2007, 285:1553-1560
    [11]张晓丽,王花丽,高青雨.聚N-异丙基丙烯酰胺/甲基丙烯酸聚乙二醇酯温敏性水凝胶的制备及性能研究[J].现代化工,2008,28(7):54-56
    [12]马敬红,许雅菁,梁伯润.CMCS/PNIPA/粘土纳米复合水凝胶的结构与性能[J].高分子材料科学与工程,2008,24(5):64-67
    [13] Okamura H., Maruyama T., Masuda S., et al. A new thermosensitive Poly(methyl 2-acetamidoacrylate)[J]. Journal of Polymer Research, 2002, 9: 17-21
    [14] Li H,Wang X. G., Yan G. P., et al. A novel multiphysic model for simulation of swelling equilibrium of ionized thermal-stimulus responsive hydrogels[J]. Chem Phys, 2005, 309: 201-208
    [15]王效贵.电中性温敏智能水凝胶的体积相变动力学模型[J].中国科学G辑:物理学力学天文学,2008,38(5):531-538
    [16]刘琼,范晓东.快速溶胀pH敏感明胶水凝胶的研究[J].精细化工,2005,22(10):739-743
    [17]白羽,李鹏程,张黎明.pH敏感瓜胶-聚丙烯酸水凝胶的流变和溶胀性研究[J].精细化工中间体,2007,37(6):57-59
    [18]袁金芳,郭保林,张晓丽,等.pH、离子强度敏感性壳聚糖水凝胶的合成及其对辅酶A的释放控制[J].功能材料,2007,38(1):36-39
    [19] Xua X. D., Zhang X. Z., Zhuo R. X., et al. A strategy to introduce the pH sensitivity to temperature sensitive PNIPAAm hydrogels without weakening the thermosensitivity[J]. Carbohydrate Polymers, 2007, 68(3):416-423
    [20]黄怡,杨振,黄方千,等.新型环境敏感性β-环糊精水凝胶的合成及性能评价[J].功能材料,2007,38(5):778-786
    [21]王欣宇,朱秀芳,韩颖超,等.pH/温度双重敏感高分子水凝胶的合成及性能[J].武汉理工大学学报,2007,29(8):32-36
    [22]凌有道,吕满庚.温度和pH双重敏感性水凝胶的制备与表征[J].精细化工,2008,25(6):545-549
    [23]李志军,叶伟.PAA/PNIPAAm互穿网络水凝胶的微波合成与性能研究[J].合成技术与应用,2008,23(2):16-19
    [24]顾正彪,吴嘉根.淀粉丙烯腈接枝共聚物皂化制备吸水剂[J].无锡轻工大学学报,2001,20(1):24-28
    [25]左可胜,李剑敏,李绍卿,等.淀粉接枝丙烯腈类吸水剂的制造工艺及原理[J].西安工程学院学报,2002,24(1):76-78
    [26]崔亦华,崔英德,郭建维,等.番薯淀粉接枝丙烯酸吸水剂的制备及生物降解性能[J].材料导报,2007,21(8):151-153
    [27]孙慧,林建明,吴季怀,等.两步水溶液聚合法合成聚丙烯酸盐/淀粉半互穿网络水凝胶[J].高分子材料科学与工程,2008,24(6):42-45
    [28]刘爱红,姜发堂.魔芋超强吸水剂(KSAP)的结构分析[J].材料科学与工程学报,2007,25(6):826-829
    [29]张卫,关荐伊,李建英,等.聚丙烯酸类超强吸水剂的反相悬浮聚合法制备研究[J].精细石油化工,2002,(6):37-39
    [30]林曼斌,高玉会.微波合成高吸水树脂的研究[J].吉林化工学院学报,2004,21(1):45-48
    [31]李夜平,胡振鹏,方月娥,等.甲壳胺-丙烯酸钠超强吸水剂的辐射制备与性能[J].辐射研究与辐射工艺学报,2002,20(2):123-127
    [32]敖海勇,吴季怀,黄妙良,等.新型互穿网络超大孔水凝胶的制备、性能及表征[J].功能材料,2007,38:1964-1967
    [33]廖列文,刘正堂,黎新明,等.AA/AMPS共聚物水凝胶的吸液性能[J].化工进展,2008,27(5):729-732
    [34]李安,王爱勤,陈建敏.聚丙烯酸(钾)/凹凸棒吸水剂的制备及性能研究[J].功能高分子学报,2004,17(2):200-205
    [35]汪涛,朱惟徳.用正交实验优化聚丙烯?匪旱幕敌阅躘J].上海大学学报(自然科学版),2001,7(1):60-64
    [36]鲍俊杰,许戈文,刘都宝,等.水性聚氨酯-聚丙烯酰胺IPN水凝胶的合成及性能[J].应用化学,2008,25(5):587-591
    [37]容建华,陈敏,胡永红,等.纳米复合水凝胶的制备与表征[J].暨南大学学报(自然科学版),2005,26(5):657-661
    [38]董雯,张贵才,葛际江,等.耐温抗盐水膨体调剖堵水剂的合成与性能评价[J].油气地质与采收率,2007,14(6):72-75
    [39]刘国良,刘朝霞,赵振兴,等.含油污泥水膨体深部调剖剂的制备与应用性能评价[J].石油与天然气化工,2007,36(1):66-70
    [40]李海东,程凤梅,肖静.医用聚乙烯醇水凝胶的制备及性能[J].长春工业大学学报(自然科学版),2006,27(3):188-191
    [41]郑凯,何吉宇,陈丹萍,等.双螺杆挤出法制备聚乙烯醇水凝胶及其表征[J].高分子材料科学与工程,2006,22(5):189-192
    [42]潘育松,熊党生,陈晓林.聚乙烯水凝胶的制备与性能[J].高分子材料科学与工程,2007,23(6):228-231
    [43] Zhang H. F., Hussain I, Brust M,et al. Aligned two and three-dimensional stuctures by directional structures by directional freezing of polymers and nanoparticles[J]. Nature Materials, 2005, 4(10): 787-793
    [44]童昕,张振方,卢言成,等.聚乙烯醇/膨润土杂化水凝胶的力学性能和溶胀行为[J].过程工程学报,2006,6(3):503-506
    [45]黄晓兵,张熙,代华,等.PVA/P(AA-AM)复合水凝胶的制备及性能[J].高分子材料科学与工程,2008,24(6):30-33
    [46]蔡勇,杨荣杰.短纤维复合聚乙烯醇水凝胶的力学性能[J].高分子材料科学与工程,2007,23(4):102-104
    [47]王建全,吴文辉,刘艳,等.HEMA/St共聚水凝胶的溶胀、拉伸性能和网络参数的研究[J].北京理工大学学报,2005,25(6):551-555
    [48]谭帼馨,王迎军,关燕霞.疏水改性共聚物水凝胶体积相变研究[J].离子交换与吸附,2006,22(6):559-564
    [49] Chung T. W., Cho K. Y., Lee H C, et al. Novel micelle-forming block copolymer composed of Poly(ε-Caprolactone) and Poly(Vinyl pyrrolidone)[J]. Polymer, 2004, 45(5): 1591-1597
    [50]易国斌,王永亮,康正,等.聚乙烯基吡咯烷酮对聚乙烯基吡咯烷酮/聚己内酯半互穿网络水凝胶性能的影响[J].石油化工,2008,37(2):183-186
    [51]王雪珍,汪辉亮.具有规整结构和高强度的水凝胶研究进展[J].高分子通报,2008,(3):1-6
    [52] Okumura Y., Ito K.. The polyrotaxane gel: A topological gel by figure-of-eight cross-links[J]. Advanced Materials, 2001, 13(7): 485-487
    [53] Fleury G., Schlatter G., Brochon C., et al. Unveiling the sliding motion in topological networks: Influence of the swelling solvent on the relaxation dynamics[J]. Advanced Materials, 2006, 18(21): 2847-2851
    [54] Gong J. P., Katsuyama Y., Kurokawa T., et al. Double network hydrogels with extremely high mechanical strength[J]. Advanced Materials, 2003, 15(14): 1155-1158
    [55] Yasuda K., Gong J. P., Katsuyama Y., et al. Biomechanical properties of high-toughness double network hydrogels[J]. Biomaterials, 2005, 26(21):4468-4475
    [56] Christopher D. H., Liu X. M., Wang D.. Click Chemistry, a powerful tool for pharmaceutical sciences[J]. Pharmaceutical Research, 2008, 25(10):2216-2230
    [57] Malkoch M., Vestberg R., Gupta N., et al. Synthesis of well-defined hydrogel network using click chemistry. Chem Commun, 2006: 2774-2776
    [58] Ossipov D. A., Hilborn J.. Poly(vinyl alcohol)-Based Hydrogels Formed by“ClickChemistry”[J]. Macromolecules, 2006,39(5): 1709-1718
    [59] Leong Y. S., Candau F.. Inverse microemulsion polymerization[J]. J Phys Chem, 1982, 86(13): 2269-2271
    [60] Candau F., Leong Y. S., Pouyet G., et al. Inverse microemulsion polymerization of acrylamide: Characterization of the water-in-oil microemulsions and the final microlatexes[J]. J Colloid Interf Sci, 1984, 101(1): 167-183
    [61] Candau F., Leong Y. S., Fitch R. M.. Kinetic study of the polymerization of acrylamide in inverse microemulsion[J]. J Polym Sci: Polym Chem Ed, 1985, 23(1), 193-214
    [62] Schulman J. H., Stoeckenius W., Prince L. M.. Mechanism of formation and structure of microemulsions by electron microscopy[J]. J Phys Chem, 1959, 63(10): 1677-1680
    [63] Kozakiewicz J. J., Dauplaise D. L.. Microemulsion functionalized polymers[P]. US 4956400, 1990
    [64]哈润华,侯斯健.(2-甲基丙烯酰氧乙基)三甲基氯化铵-丙烯酰胺反相微乳液共聚合研究[J].高分子学报,1993,(5):570-575
    [65]张志成,徐相凌,张曼维.丙烯酰胺微乳液聚合[J].高分子学报,1994(4):426-434
    [66]张志成,徐相凌,张曼维.过硫酸铵引发丙烯酰胺微乳液聚合[J].高分子学报,1995(1):23-27
    [67]哈润华,侯斯健,王德松,等.高单体浓度下反相微乳液聚合[J].高分子学报,1995,(6):745-748
    [68] Neyret S., Vincent B.. The properties of polyampholyte microgel particles prepared by microemulsion polymerization[J]. Polymer, 1997, 38(25): 6129-6134
    [69]周春华,刘威,张瑾,等.高分子量速溶型聚丙烯酰胺的合成[J].山东建材学院学报,1998,12(3):262-264
    [70] Reekmans, Stevens, Irene, et al. Polyacrylamide Polymerization[P]. WO 009998, 1998
    [71]赵勇,何炳林,哈润华.反相微乳液中疏水缔合型聚丙烯酰胺的合成及其性能研究[J].高分子学报,2000,(5):550-553
    [72]张玉玺,郑晓宇,魏桃树.丙烯酰胺-丙烯酸钠反相微乳液共聚合[J].石油学报(石油加工),2004,20(1):40-45
    [73]王凤贺,卢时,雷武,等.丙烯酰胺反相微乳液聚合体系及其微观结构[J].化工学报,2006,57(6):1447-1452
    [74] Chang K. T., Frampton H., Morgan J. C.. Composition and method for recovering hydrocarbon fluids from a subterranean reservoir[P]. US 6454003B1, 2002
    [75]赵楠,葛际江,张贵才,等.反相微乳液聚合制备聚丙烯酰胺水凝胶微球研究[J].西安石油大学学报(自然科学版),2008,23(6):78-82
    [76] Candau F., Pabon M., Anquetil J. Y.. Polymerizable microemulsions: some criteria to achieve an optimal formulation[J]. Colloids and Surfaces A, 1999, 153: 47-59
    [77] Holtzcherer C., Candau F.. Application of the cohesive energy ratio concept (CER) to the formation of polymerizable microemulsions[J]. Colloids Surf, 1988, 29(4): 411-423
    [78] Corpart J. M., Candau F.. Formulation and polymerization of microemulsions containing a mixture of cationic and anionic monomers[J]. Colloid Polym Sci, 1993, 271(11), 1055-1067
    [79] Braun O., Selb J., Candau F.. Synthesis in microemulsion and characterization of stimuli-responsive polyelectrolytes and polyampholytes based on N-isopropylacrylamide[J]. Polymer, 2001, 42(21): 8499-8510
    [80] Candau F., Zekhnini Z., Durand J. P.. Copolymerization of water-soluble monomers in nonionic bicontinuous microemulsions[J]. Journal of colloid and interface science, 1986, 114(22): 398-408
    [81] Holtzcherer C., Candau F.. Salt effect on solutions of nonionic surfactants and its influence on the stability of polymerized microemulsions[J]. J Colloid Inter Sci, 1988, 125(1): 97-110
    [82] Holtzcherer C., Durand J. P., Candau F.. Polymerization of acrylamide in nonionic microemulsions: Characterization of the microlatices and polymers formed[J]. Colloid&Polymer Science, 1987, 265(12): 1067-1074
    [83] Fouassier J. P., Lougnot D. J., Zuchowicz I.. Reverse micelle radical photo polymerization of acrylamide: excited states of ionic initiators[J]. European Polymer Journal, 1986, 22(11): 933-938
    [84] Ge X. W., Ye Q., Xu X. L., et al. Radiation copolymerization of acrylamide and cationic monomer in an inverse emulsion[J]. Appl polym sci, 1998, 39(10): 1917-1920
    [85]赵怀珍,吴肇亮,郑晓宇,等.Span80-Tween60/白油/丙烯酰胺/丙烯酸钠/H2O体系形成反相微乳液的研究[J].石油学报(石油加工),2005,(1):46-51
    [86]刘祥,范晓东,晁芬.高固体质量分数丙烯酰胺共聚物反相微乳胶的制备[J].化学工程,2006,34(11):55-58
    [87]赵楠,葛际江,张贵才,等.Span-OP乳化体系下丙烯酰胺反相微乳液的制备[J].精细石油化工,2008,25(4):43-46
    [88] Carver M. T., Hirsch E., Wittmann J. C., et al. Percolation and particle nucleation in inverse microemulsion polymerization[J]. J Phys Chem, 1989, 93(12): 4867-4873
    [89] Vaskova V., Juranicova V., Barton J.. Polymerization in inverse microemulsions, 1. Homopolymerizations of water- and oil-soluble monomers in inverse microemulsions[J]. Makromol Chem, 1990, 191(3): 717-723
    [90] Vaskova V., Juranicova V., Barton J.. Polymerization in inverse microemulsions, 2. Copolymerization of water- and oil-soluble monomers initiated by 2,2’-azoisobutyronitrile[J]. Makromol Chem, 1991, 192(4): 989-997
    [91] Vaskova V., Juranicova V., Barton J.. Polymerization in inverse microemulsions, 3. Copolymerization of water- and oil-soluble monomers initiated by radical initiators[J]. Makromol Chem, 1991, 192(6): 1339-1347
    [92] Barton J.. Partitioned polymerization, 6. Inverse microemulsion polymerization of acrylamide by ammonium peroxodisulfate, 2,2’-azoisobutyronitrile and dibenzoyl peroxide in the presence and/or absence of Fremy’s salt[J]. Makromol, Chem Rapid Commun, 1991, 12: 675-679
    [93] Vaskova V., Hlouskova Z., Barton J., et al. Polymerization in inverse microemulsions, 4 locus of initiation by ammonium peroxodisulfate and 2,2’-azoisobutyronitrile[J]. Makromol Chem, 1992, 193(3): 627-637
    [94] Chung M. A., Adams J., Fuhrmann J.. Analysis of the microemulsion polymerization of acrylamide by time resolved fluorescence[J]. Polymer Bulletin, 1998, 40: 195-202
    [95] Carver M. T., Dreyer U., Knoesel R., et al. Kinetics of photopolymerization of acrylamide in AOT reverse micelles[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1989, 27: 2161-2177
    [96]哈润华,侯斯健,栗付平,等.微乳液结构和丙烯酰胺反相微乳液聚合[J].高分子通报,1995(1):10-19
    [97]徐相凌,张志成,张曼维.辐射引发丙烯酰胺微乳液聚合[J].高分子学报,1995(3): 377-379
    [98]李晓,袁惠根.辛烷/Span80-Tween60/丙烯酰胺/水反相微乳液聚合动力学[J].合成橡胶工业,1999,22(4):220-224
    [99]李晓,刘戈,袁惠根.煤油/Span80-Tween60/水/丙烯酰胺反相微乳液聚合动力学[J].化学反应工程与工艺,1999,15(1):13-18
    [100]罗青枝,王德松,安静,等.不同单体浓度范围反相微乳液聚合速率的比较[J].河北科技大学学报,2002,23(4):15-20
    [101]王德松,罗青枝,安静,等.高单体浓度范围丙烯酰胺反相微乳液聚合[J].高分子材料科学与工程,2003,19(4):79-81
    [102]申迎华,谢龙,王志忠.AM/(甲基丙烯酰氧乙基)三甲基氯化铵/2-丙烯酰胺基-2-甲基丙基磺酸钠的反相微乳液共聚合动力学研究[J].高分子学报,2005,(6):846-850
    [103]刘祥,晁芬,范晓东.高固含量聚丙烯酰胺反相微乳胶的制备[J].精细化工,2005,22(8):631-633
    [104] Ryles R. G., Honig D. S., Harris E. W., et al. Cross-linked and amphoteric polymeric microparticles[P]. US 5171808, 1992
    [105] Neff R. E., Ryles R. G.. Cross-linked cationic polymeric microparticles[P]. US 4968435, 1990
    [106] Dawson J. C., Le H. V.. Method of controlling production of excess water in oil and gas wells[P]. US 5465792, 1995
    [107] Frampton H., Morgan J. C., Cheung S. K., et al. Development of a novel waterflood conformance control system[C]. SPE 89391, 2004
    [108] James P., Frampton H., Brinkman J., et al. Field application of a new in-depth waterflood conformance improvement tool[C]. SPE 84897, 2003
    [109] Choi S. K., Ermel Y. M., Bryant S. L., et al. Transport of a pH-sensitive polymer in porous media for novel mobility-control application[C]. SPE 99656, 2006
    [110]赵怀珍,吴肇亮,郑晓宇,等.水溶性交联聚合物微球的制备及性能[J].精细化工,2005,22(1):62-65
    [111]韩秀贞,李明远,林梅钦,等.交联聚合物微球体系水化性能分析[J].油田化学,2006,23(2):162-165
    [112]马海霞,林梅钦,李明远,等.交联聚合物微球体系性质研究[J].应用化工,2006,35(6):453-455
    [113]韩秀贞,李明远,郭继香,等.交联聚合物微球分散体系封堵性能[J].中国石油大学学报(自然科学版),2008,32(4):127-131
    [114]刘祥,晁芬,范晓东.聚丙烯酰胺反相微乳胶的制备及其驱油性能研究[J].西安石油大学学报(自然科学版),2006,21(4):72-74
    [115] Liu Q., Dong M., Ma S.. Alkaline/surfactant flood potential in Western Canadian heavy oil reservoirs[C], SPE 99791, 2006
    [116] Xie J., Chuang B., Leung L.. Design and implementation of a caustic flooding EOR pilot at Court Bakken heavy oil reservoir[C], SPE 117221, 2008
    [117] Dong M., Ma Z., Liu Q.. Enhanced heavy oil recovery through interfacial instability: A study of chemical flooding for Brintnell heavy oil[J], Fuel, 2008, 88, 1049-1056
    [118] Bryan J., Kantzas A.. Improved recovery potential in mature heavy oil fields by alkali-surfactant flooding[C], SPE 117649, 2008
    [119] Feng Y., Tabary R., Renard M., et al. Characteristics of microgels designed for water shutoff and profile control[C], SPE 80203, 2003
    [120] Cozic C., Rousseau D., Tabary R.. Novel insights into microgel systems for water control[C], SPE 115974, 2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700