陕西槐角的资源、品质、化学成分及其生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
槐角(Sophorae Fructus)为豆科植物(Leguminosae sp.)槐(Sophora japonicaL.)的干燥成熟果实。是我国常用的传统中药之一,具有清热泻火,凉血止血的功效,用于肠热便血,痔肿出血,眩晕目赤等症。为《中华人民共和国药典》历版收载的品种。槐角富含黄酮、异黄酮类等多种成分,药理作用显著,临床应用广泛,具有极好的应用前景和开发前途。陕西为槐角的主产区,槐角多处于自然生长状态,分布广,来源复杂,对槐角相关的生物学特性、资源、品质、成分和生物活性等尚不十分清楚。因此,对陕西境内槐角的综合研究需要在已有基础上,进行更深入的物效基础和生物活性研究,扩大应用范围,为槐角的合理利用提供科学依据。本课题应用植物资源学、植物化学、药理学和分子生物学等多种技术方法,从资源、品质、化学成分和生物活性四个方面对陕西槐角进行了较系统的研究,包括对陕西境内槐角进行了实地资源调查,分析了不同来源槐角的品质,考察了槐角总黄酮栓的抗炎止血活性、槐角苷的提取分离、纯化、结构鉴定及其药代动力学特点、染料木黄酮对海马神经元的保护作用以及槲皮素对胰岛素淀粉样纤维形成的影响,在整体动物、细胞和分子水平上探讨了槐角活性成分的作用及其机制,以期为进一步开发陕西的槐角资源提供实验依据。
     研究的内容和结果如下:
     1.槐角资源调查:在查阅相关文献资料和核对标本的基础上,采用走访调查和实地调查相结合的方法进行槐角资源调查。结果显示:槐角的资源树种槐在陕西境内分布较广泛,多处于野生状态,其生长的植被主要为农耕地、荒地、田埂、道沿和部分天然草本群落。伴生植物主要为人工栽培的农作物、以及村镇林木,零星散在苜蓿、铁杆蒿、白羊草等草本。种质资源类型有白槐与黑槐之分,白槐是栽培的主要树种。样品区树龄均>20年,单株平均产量>200Kg,槐角在全省自然蕴藏量估算可达2100吨/年。随着城市化进程加快,槐角的原植物发生多方面的变化,包括成年植株移栽数量巨大、产量锐减(年递减率达到13%)、变种增多,这些都会影响到槐角的品质,因此需要加强野生槐角种质资源的收集、保存,并保护好现有资源。
     2.槐角品质评价:通过建立UV法和RP-HPLC法,分别测定了陕西不同地区槐角样品中总黄酮和槐角苷的含量,并检查了槐角中灰分和重金属含量,结合小鼠雌激素样作用考察,共同评价槐角的品质。结果显示,采用8倍量65%乙醇回流提取3次,每次1小时,为总黄酮提取的最佳条件,按此条件提取槐角总黄酮,平均得率在10.92-20.18%之间。槐角苷含量在4.21-8.05%之间。不同区域的槐角品质有一定差异,宝鸡陇县槐角中槐角苷含量最高,而杂质及重金属以延安宜川为最低。陕北黄土丘陵沟壑区9月的槐角样品中总黄酮含量较高;渭北黄土高原沟壑区则10-11月槐角中总黄酮含量较高。槐角提取物显示了一定的弱雌激素样作用,与空白对照组相比,在第3天就能促进小鼠阴道的开口数量,第7天达到54%,并能显著增加小鼠卵巢和子宫的重量(*P<0.05或**<0.01),其中延安宜川、渭南蒲城的槐角提取物雌激素样作用较强。
     3.槐角黄酮栓生物活性评价:槐角黄酮栓在一定程度上可减轻二甲苯所致小鼠耳廓肿胀,其中0.60g/kg及0.30g/kg在给药6d、9d、14d对二甲苯引起的小鼠耳廓肿胀有显著的抑制作用,与模型组相比具有极显著差异(**P<0.01),并表现出一定的量效关系。各剂量组均能明显减轻小鼠滤纸肉芽组织重量(**P<0.01),其中高剂量组抑制率在50%以上,与阳性药物阿司匹林组(0.50g/kg)作用接近。黄酮栓各剂量组对醋酸所致小鼠腹腔毛细血管通透性增高具有明的抑制作用(*P<0.05或**P<0.01),并表现出一定的量效关系,但弱于阿司匹林栓组。槐角黄酮栓能显著缓解角叉菜胶引起的大鼠足肿胀,与模型组比较有统计学意义(*P<0.05或**P<0.01)。从致炎后2h开始即显示有抑制作用,持续到4h时抑制作用更为明显,抑制率在40%以上。槐角黄酮栓也能缩短正常小鼠的出、凝血时间,与空白对照组比较差异明显(*P<0.05或**P<0.01)表明其具有促进止血、加强凝血的作用。槐角黄酮栓能使10%醋酸所致大鼠直肠渗出液减少,溃疡面积缩小,溃疡愈合时间缩短,与模型对照组比较,具有显著性差异(*P<0.05或**P<0.01),证明槐角黄酮栓具有抗直肠溃疡,保护创面的药理作用,有望开发成治疗痔疮的新药。
     4.槐角苷的分离、纯化、鉴定及药代动力学研究:建立了槐角中槐角苷含量测定的HPLC法,色谱条件为,流动相:甲醇-乙腈-10mL·L-1冰乙酸(40:5:55);流速:1.0mL/min,检测波长:260nm,进样量为20gL,最低检出浓度为0.015μg/mL。该法灵敏、准确、可靠。采用正交试验法对槐角的提取工艺进行了考察,结果最佳提取条件为95%乙醇8倍量(W/V),提取3次,每次1.5小时。经对三批1000g槐角样品经过醇提、水沉淀、乙酸乙酯除杂、水洗步骤处理后,获得槐角苷的粗品,收率分别为1.326%、1.258%、1.203%;纯度分别为:85.21%、85.08%、84.46%。在此基础上,运用大孔树脂吸附的方法纯化槐角苷粗提物,考察了吸附条件,结果洗脱剂浓度为80%乙醇、流速以2BV/h,上样液质量浓度在1.0mg/mL能使槐角苷粗品的纯度由84.92%提高到了91.98%。采用甲醇热溶,丙酮沉淀、反复析晶的方法,获得了纯度>97%的槐角苷单体,通过理化性质和波谱学研究,证明获得的提取物为5,7-二羟基异黄酮-4'-O-葡萄糖苷,即槐角苷。首次建立HPLC测定大鼠血浆中槐角苷的定量分析方法,并通过尾静脉注射给药的方式来研究血药浓度变化规律,结果各取样时间点雌性大鼠血浆中原形药物的浓度要高于雄性大鼠,Cmax=2.531mg/L(雌)、Cmax=1.648mg/L(雄)。槐角苷雌性大鼠的达峰时间Tmax=10min,雄性大鼠Tmax=7min,雌性大鼠对药物的吸收速度明显要高于雄性大鼠。槐角苷原形药物在血浆中的代谢过程符合一室模型。大鼠槐角苷半衰期为t1/2=55.70min(雌),半衰期t1/2=23.14min(雄),说明槐角昔在雌性大鼠吸收、代谢均比雄性大鼠要慢。
     5.染料木黄酮对Aβ25-35引起海马神经元损伤的拮抗作用及机制研究:在获得槐角苷单体的基础上,用含10%HCl的50%乙醇在90℃热回流酸水解4h,10mol/L的NaOH溶液调pH为7,乙醚萃取,水洗,80℃干燥,甲醇重结晶,可以得到染料木黄酮单体,通过理化性质和波谱鉴定为5,7,4'-三羟基异黄酮,HPLC检测纯度>98%。以原代培养的大鼠海马神经元为研究对象,应用Aβ25-35处理海马神经元,观察从槐角中提取的染料木黄酮对Aβ25-35毒性的拮抗作用,结果显示:染料木黄酮能够显著改善Aβ25-35诱导引起的海马神经细胞形态的改变,减轻细胞膜的损伤,对抗Aβ引起的海马神经元活性降低,提高细胞的存活率,减少氧化损伤所致的细胞凋亡。与雌二醇相比,两者抗Aβ神经毒性作用的效果类同。染料木黄酮能抑制caspase-3酶活性,提高抑凋亡分子Bcl-2表达,对抗ROS和MDA的改变,提示染料木黄酮发挥神经保护作用可能与其抗氧化作用有关。此外,染料木黄酮还能拮抗Aβ所致的nAChR亚单位α7mRNA、蛋白表达的下调,使得海马细胞正常代谢活动得以维持,从而起到神经保护作用。
     6.槲皮素对牛胰岛素蛋白淀粉样纤维化的抑制作用研究:采用牛胰岛素作为模式蛋白,通过体外孵育,综合采用ThT荧光检测、透射电子显微镜观察、蛋白沉积率测定、溶血实验和蛋白凝胶电泳分别考察了槐角中提取的槲皮素抗蛋白淀粉样纤维形成的作用及其机制。结果显示,当浓度为25gg/mL或50μg/mL的槲皮素与胰岛素进行共孵育时,ThT荧光强度出现明显的剂量依赖减弱,使胰岛素纤维的ThT荧光特征S曲线消失。说明槲皮素对胰岛素淀粉样蛋白纤维形成具有良好的抑制效果。而用不同浓度(10、25、50μg/mL)的槲皮素处理成熟的胰岛素纤维,可以使胰岛素纤维的形貌受到破坏,电镜下观察为无具体形貌的小颗粒或无定形聚合物。用40μg/mL的槲皮素进行培育时,13%的胰岛素纤维在4h内转化成了无定形沉积物,槲皮素对胰岛素纤维抑制表现的沉积效应呈现出明显的时间和剂量依赖性。当与槲皮素进行同孵育后,由同等剂量胰岛素纤维引起的溶血现象受到抑制,并呈剂量依赖性的下降。凝胶电泳研究证明,胰岛素纤维可诱导血影蛋白质的聚集,而槲皮素减弱了胰岛素纤维诱导的高分子量聚合物的形成。疏水作用、芳香氨基酸重迭以及氢键结合可能是槲皮素发挥其抗淀粉样纤维化和破坏纤维形成作用的驱动力。
As one of the most commonly used Chinese traditional medicine, Sophorae Fructus refers to the fruits from Sophora japonica L. which belongs to Leguminosae sp. After being dried, Sophorae fructus has the function of clearing heat-fire and cooling blood and hemostasis, and it is widely used to cure enteric fever hemafecia, bleeding hemorrhoids and vertigo red eye and so on. The fruit, as a kind of medicine, has been written in every edition of Pharmacopoeia of The People's Republic of China. Containing several ingredients of flavones and isoflavones, the medicine has shown an outstanding pharmacological action and has been widely used in clinic, which indicates its value in future research and application. Shaanxi Province is the main producing area of sophorae fructus. As the plant usually grows in a natural way with features of wide distribution and complicated sources, the related biological characteristics, sources, quality, ingredients and biological activity of the medicine still remain unclear. Therefore, the study of this medicine will be based on the existed results to deepen the research on its Physical effect of foundation and biological activity, so as to enlarge the field of application and provide scientific prove for the rational use of sophorae fructus. This thesis is to apply several technologies and methods including plant resources, phytochemistry, pharmacology, and molecular biology, in order to conduct a systematic research on Shaanxi sophorae fructus from four aspects of source, quality, chemical ingredients and biological activity. The research also includes the investigation on the wild sophorae fructus in Shaanxi. Through analyzing the quality of the plant from different sources, we tested the antiphlogistic hemostatic activity of the sophorae fructus flavonoids suppository, observed the extraction, separation, purification, and structure analysis process of sophoricoside, and found out its pharmacokinetic characteristics, the protection effect of genistein on hippocampal neurons, and the influence of quercetin on insulin fibrils. This thesis will discuss on the overall level of animal, cell and molecular level the function and medicine process of the active constituent of sophorae fructus and finally to provide experimental evidence for further development of Shaanxi's sophorae fructus.
     The contents and results are following:
     1. Sophorae Fructus Source Investigation:The relevant literature and data of Sophorae Fructus were scrutinized and herbarium specimens were compared, interview and field survey methods were carried out. According to the investigation, the sources of sophorae fructus are widely distributed in Shaanxi Province and remain in wild state, which include natural herbs found mainly in farmland, uncultivated land, balk, or along the roads. Its associated plants are artificial cultivated crops, forest tree in villages, and a few herbs of M.sativa, artemisia gmelinii, and bothriochloa ischaemum. There are white and black Sophora japonica. L divided by their quality type in which the white one is considered the main seeding tree for sophorae fructus. In the sample area, the age of the tree is over twenty years, and the average production of each plant is over200kilogram. The natural reserved quantity of the fruit is estimated to reach2100ton per year. With the speed up of the urbanization, the original source of the fruit has changed in many ways including the transplant of a great amount of adult trees, sharply declining of the production (the annual declining rate is13%), the increasing of the varietas of the tree. These factors are affecting the quality of sophorae fructus and we need to make efforts to collect and preserve the fine quality seed resource of the plant and protect the existing sources.
     2. Quality Assessment of Sophorae Fructus:the application of the methodology of UV and RP-HPLC makes possible the determination of the total flavonoid content and the sophoricoside content as well as the examination of the ash content and the heavy metal content in the sophorae fructus samples elicited from different regions of Shaanxi province. The results of the determination and examination together with that of the investigation of the estrogen-like effect in mice formed the foundation for the quality assessment of sophorae. The research results show that the optimal process for the extraction of total flavonoids is adding eight-time-amount of ethanol in the reflux extraction for three times (one hour per time). In this case, the average yield of the total flavonoid content ranges from10.92%to20.18%, while the sophoricoside content is in-between4.21%and8.05%. The quality of sophorae fructus varies in different regions. Amongst the samples, the maximum sophoricoside content resides in the sophorae fructus in Bao Ji, while the minimum impurity and heavy metal exists in the sophorae fructus in Yichuan County in Yan'an. Comparatively speaking, higher level of total falvonoid content can be found in the sophorae fructus samples obtained in September from the gully regions of the Loess Plateau in Northern Shaanxi and of the hilly areas to the north of Weihe River, and in those obtained in October and November from the flatland and hilly regions to the north of Weihe River. Compared with the blank control group, the sophorae fructus extract shows certain weak estrogen-like effect in mouse. The number of the mouse's vaginal opening has been increased in the first three days of the experiment, and the proportion amounted to54%on the seventh day. Meanwhile, the weight of the mouse's ovary and uterus has also been increased significantly (*P<0.05or**P<0.01). The research has it that the sophorae fructus extract obtained from Yichuan County in Yan'an and Pucheng County in Weinan has a comparatively strong estrogen-like effect.
     3. Evaluation of Biological Activity of Sophorae Fructus Flavonoids Suppository:Sophorae Fructus Flavonoids Suppository (SFFS) can release on some extent the swelling auricle of the mice caused by xylol. specifically,0.60g/kg and0.30g/kg medicine were given to mice6d,9d,14d and showed an obvious restrain effect on the swelling auricle, and the result was different compared with the model (**P<0.01). It also reflected certain relations between the dosage and the effect. Every dose group caused the lightening of the filter paper granulation tissue (**P<0.01), in which the high dose groups have an inhibition ratio of over50%whose effect is close to positive drug aspirin group (0.50g/kg). The entire SFFS dose groups showed clear restrains effect for capillary permeability caused by acetic acid on mice cavum abdominis (*P<0.05or**P<0.01), and reflected certain dose-effect relationship, which is weaker than the aspirin bolt group. The SFFS in the medicine can release the foot swelling of the rats caused by carrageenin and means valuable in statistics as well compared to model group (*P<0.05or**P<0.01). The experiment took effect in2hours after the inflammation and the restrain effect became more obvious after4hours with an inhibition ratio of over40%. The medicine can also shorten the bleeding and coagulating time of the normal mice. The difference (*P<0.05or**P<0.01) between the group and the blank group indicates the medicine has the effect on stanching bleeding. The bolt can reduce the rectal exudates of rats caused by10%acetic acid, reduce the ulcer area, which showed an obvious difference with the model group (*P<0.05or**P<0.01). These experiments proved that the SFFS has pharmacological action to control intestinal ulcer and protect the wound, therefore, it can be developed as a new medicine for haemorrhoids.
     4. Separation, purification, testing, and pharmacokinetics study of sophoricoside: We established a method to measure the contents of sophoricoside in sophorae fructus under the chromatographic condition, the mobile phase was composed of methanol-acetonitrile-10mL-L-1glacial acetic acid(40:5:55); at a flow rate of1.0mL/min, The detector wavelength was260nm, and sample size was20μL, the lowest detectable concentration was0.015μg/mL,This method has been proved to be reliable and accurate. Extraction processes were studied by orthogonal design, the optimal process was performed by1.5-hour extraction for three times, with8-fold volume of95%ethanol (W/V), the raw sophoricoside will be obtained after alcohol extraction, water sedimentation, ethyl acetate purification and washing the1000g sophorae fructus in three batches of samples. the extraction rate of sophoricoside was1.326%、1.258%、1.203%, and the purity was85.21%、85.08%、84.46%respectively. Based on this experiment, we applied macroporous resin adsorption to purify the raw sophoricoside and tested the adsorption condition. As a result, the eluant potency is80%ethanol with the flow speed of2BV/h, and the sample solution potency is1.0mg/mL. Under the above condition, the purity of the raw sophoricoside was improved from84.92%to91.98%. Then we used methods of methanol hot dissolve, acetone precipitation, and repeated crystallization to extract sophoricoside monomer with the purity of over97%. Through physicochemical property and spectral identification, the monomer was proved to be5,7-Dihydroxy isoflavones-4'-O-glucoside which is sophoricoside. For the first time we established HPLC, a method of quantitative analysis to measure the amount of sophoricoside in the rats'blood plasma, then found out the rules of blood drug level change through tail intravenous injection. The results indicate that the prototype drug potency in female rats'plasma is higher than that in male rats at every sampling point-Cmax=2.531mg/L (female rats) and Cmax=1.648mg/L (male rats). Tmax of sophoricoside in female rats is in10minutes, while in male rats the time is7minutes. The uptake speed of female rats to the medicine are higher than the male. The metabolic process of prototype drug in blood plasma meets a criterion with one compartment model. The sophoricoside in rats has a half-life period of t1/2=55.70min (female) and t1/2=23.14min (male), which means the absorbing and metabolizing of sophoricoside in female rats are slower than that in male rats.
     5. The Antagonism and Mechanism Research on Genistein in Fructus Sophorae to Cure Damage of Hippocampus Neurons Caused by Aβ25-35:With obtaining the sophoricoside monomer at first place, hydrolyzing the50%alcohol (with10%HC1 inside) in90℃thermal reflux AW (acid water) for4hours, adjusting the pH of NaOH liquor of10mol/L to7, extracting the alcohol, washing, desiccating in80℃and making methanol recrystallization, we will get genistein monomer (5,7,4'-trihydroisoflavone through the physical and chemical properties and spectral identification and the HPLC purity test is above98%). As the research object to the hippocampus neurons of primary cultured rat, after using Aβ25-35to deal with hippocampus neurons and observing the antagonism of hippocampus neurons extracting form sophorae fructus to cure cytotoxic of Aβ25-35, it shows that genistein can effectively improve the morphology change of hippocampus neurons caused by inducing of Aβ25-35, reduce the damage of cell membrane, resist the activity reduction of hippocampus neurons caused by Aβ25-35, improve the survival rate of cells and reduce the apoptosis caused by oxidative injury. Comparing with the estradiol, both have the similar effect for resisting toxic effect of A(3. Genistein can restrain the enzyme activities of caspase-3, improve the impression of Inhibitory molecules apoptosis Bcl-2, and resist the change of ROS and MDA. The protection function of genistein may connect with its antioxidant effect, In addition, genistein can resist the downregulation of nAChR subunit a7mRNA and protein expression caused by Aβ, maintain the normal metabolization activity of hippocampus neurons, and thus exert neuroprotective effects.
     6. The Effect of Quercetin in Sophorae to restrain Bovine Insulin Protein Amyloid Fibrosis: The experiment applied bovine insulin as model protein to detect with ThT fluorescence, observe from transmission electron microscope, test the protein deposition rate, and conduct the hemolytic test and protein gel electrophoresis. Through vitro incubation, we studied the mechanism and effect of quercetin anti protein amyloid fibrils extracted from sophorae fructus. The experiment displayed that when insulin and quercetin (potency of25μg/mL or50μg/mL) were incubated together, the ThT fluorescence became weaker with the change of the dose and the S curve of insulin fibrils faded, which indicates the effect of quercetin to restrain the formation of insulin amyloid fibrils. However the quercetin of different potencies (10,25,50μg/mL) can damage the appearance of the insulin fibrils when processing it. Observed from the electric mirror, it became granulum and amorphous polymers without specific pattern. Bred by40μg/mL quercetin,13%insulin fibrils turned in to amorphous sediments within4hours. The deposition effect showed an obvious dependency on time and dosage. After the incubation, hemolysis caused by insulin fibrils of the same dosage was released with the dosage. According to the results of gel electrophoresis, insulin fibrils may lead to the gathering of spectrin proteins, while the quercetin weakened the formation of heavy polymer caused by insulin fibrils. The motivations of quercetin to develop its effect to resist amyloid fibrosis and destroy the fibrils formation might be hydrophobic interaction, aromatic amino acid overlap and hydrogen bonding.
引文
[1]中华人民共和国药典委员会.中华人民共和国药典(一部)[M].北京:化学工业出版社.2010:254-255.
    [2]申艳艳,汪海峰,张妮萍,许茜.槐角中黄酮化合物的提取分离研究[J].东南大学学报(医学版).2011,30(3):519-522.
    [3]南京中医药大学编著.中药大辞典[M],上海科学技术出版社,2006,2433.
    [4]中国科学院中国植物志编委会.中国植物志[M].韦直主编.北京:科学出版社,第40卷,1994:62-63.
    [5]王伟群,反相高效液相测定新鲜植物材料中的植物雌激素含量,云南植物研究.1994,16(4):424-430.
    [6]谭志远,朱铭莪,贺学礼,李颖,等.陕西及甘、宁部分地区豆科植物根瘤菌资源调查[J].西北植物学报.1996,15(2):189-196.
    [7]马其云.槐属分类系统的修订.BULLETIN OF BOTANICAL RESEARCH. 1990,10(4):79-81.
    [8]纪爱平.不同形态国槐在同一立地条件下生长量及威活率的调查分析[J].定西科技.2008,3:35-36.
    [9]石进朝.国槐扦插繁殖试验研究[J].林业科技开发.2001,15(2):21-23.
    [10]韦华梅,王剑波.陕西省道地药材槐角的资源调查[J].西北药学杂志.2010,25(6):419-421.
    [11]裴仙娥.乡土树种国槐变种的繁殖与应用[J].宁夏农林科技.2005,356-57.
    [12]唐桂梅,姜卫兵.论槐树家族及其在园林绿化中的应用[J].安徽农业科学.2006,34(18):4577-4579.
    [13]王玉兰,等.槐角的本草考证及其药用价值[J].中草药.1986,17(8):8.
    [14]陆拯.中药临床生用与制用[M].北京:人民卫生出版社,1983:221.
    [15]潘瑞乐,陈迪华.植物雌激素结构类型、药理活性和临床应用[J].国外医药:植物药分册.2002,17(4):139-143.
    [16]Ma L, Lou F C. The anticancer activity in vitro constituents from fruits of Sophora japonica [J]. Chinese J Nat Med.2006,4(2):151-153.
    [17]Lao C J, Lin J G, Kuo J S, et al. Microglia, apoptsis and interleukin-1 beta expression in the effect of Sophora japonica L. on cerebral infarct induced by ischemia-reperfusion in rats [J]. AM J Chinese Med.2005,33(3):425-438.
    [18]国家中医药管理局《中华本草》编辑委员会.中华本草[M].上海:上海科学技术出版社,1998.923-926.
    [19]Qi Y, Sun A I, Liu R M, et al. Isolation and puification of flavonoid and isoflavonoid compounds from the pericarp of Sophora japonica L. by adsorption chromatography on 12% cross-linked agarose gel media [J]. J Chromatogr A.2007,1140 (1-2):219-224.
    [20]唐于平,楼凤昌,王景华.槐果皮中两个山奈酚三糖苷成分.中国中药杂志.2001,26(12):839-841.
    [21]唐于平,楼凤昌,王景华.槐果皮中的异黄酮类成分.中草药.2002,33(1):20-21.
    [22]Tulaganov A, Gaibnazarava D. Isolation and identification of flavonoids from Sophora japonica occurring in Uzbekistan [J]. Pharm Chem J.2001,35:433-434.
    [23]Tang Y, Yang R., Duan I, et al. Isotlavone Tetraglyeosides from Sophora japonica Leaves. J. Nat. Prod.2008,71:448-450.
    [24]Tang F. Lou L. Wang J. Zhuang S. Four new isoflavone triglycosides from Sophora japonica. J. Nat. Prod.2001,64:1107-1110.
    [25]Wang J, Lou F, Wang Y, Tang Y. A Flavonol tetraglycoside from Sophora japonica seeds. Phytochemistry,2003,63:463-465.
    [26]Gevrenova R, Kitanov G Ilieva D. Ontogenetic and seasonal variation in the flavonoid composition of Sophora japonica cultivated in Bulgaria. Pharm. Biol. 2007,45:149-155.
    [27]Kite G. Veitch N. Boalch M, Lewis G. Leon C. Simmonds M. Flavonol tetraglyeosides from fruits of Styphnolobium japonica (Leguminosae) and the authentication of Fructus Sophorae and Flos Sophorae. Phytochemistry,2009; 70 (6):785-794.
    [28]Liu R. Qi Y. Sun A. Xie H. Isolation and purification of chemical constituents from the pericarp of Sophora.japonica L. by chromatography on a 12% cross-linked agarose gel. J. Sep. Sci.2007,30:1870-1874.
    [29]Sun A, Sun Q, Liu R. Preparative isolation and purification of fiavone compounds from Fructus Sophorae L. by high speed counter-current chromatography combined with macroporous resin column separation. J. Sep. Sci..2007,30:1013-1018.
    [30]Tang Y, Li Y, Hu J, Lou F. Isolation and identification of antioxidants from Sophora.japonica. J. Asian Nat. Prod. Res.2002,4:123-128.
    [31]Geoffrey C. Kite, Nigel C. Veitch, et al. Flavonol tetraglycosides from fruits of Styphnolobium japonicum (Leguminosae) and the authentication of Fructus Sophorae and Flos Sophorae[J]. Phytochemistry,2009,70:7857-7894.
    [32]董文彦,张东平,高学敏,等.大豆皂甙的免疫增强作用[J].中国粮油学报.2001,16(6):9-11.
    [33]Masayuki Yoshikawa, Toshiyuki Murakami, Yuhao Li, Hiromi Shimada, Johji Yamahara, Hisashi Matsuda. Bioactive triterpene glycosedes from several medicinal foodstuffs [J]. Studies in Plant Science.1999,6:19-35.
    [34]Shashi B. Mahato, Sudip K. Sarkar, Gurudas Poddar. Triterpenoid saponins [J]. Phytochemistry.1988,27(10):3037-3067.
    [35]Kh. S. Mukhamedova and A. I. Glushenkova. Phospholipids of the ripening seeds of Sophora japonica[J]. Chemistry of Natural Compounds.1986,22(3): 364-365.
    [36]D. N. Olennikov, A. V. Stolbikova, A. V. Rokhin, V. B. Khobrakova and L. M. Tankhaeva. Polysaccharides from Fabaceae. V. a-Glucan from Sophora flavescens roots[J]. Chemistry of Natural Compounds.2011,47 (1):1-6.
    [37]周金娥,陈聪颖,谢一凡,刘慧中,陈泽乃,陆阳.槐角中脂溶性化学成分的研究[J].上海交通大学学报(医学版).2006,26(11):1245-1248.
    [38]冯爱青,胡秋娈,崔娟.槐豆中天然芦丁的提取工艺研究[J].安徽农业科学.2008,36(15):6163-6164.
    [39]冉晓燕,胡德禹,薛伟.槐角中总黄酮的提取工艺研究[J].贵州教育学院学报.2009,(6):22-24.
    [40]王景华.槐种子的化学成分和槐角的开发应用研究[D].南京:中国药科大学,2002.
    [41]田中民,万明习.中药槐角中槐角苷超声提取工艺的研究[J].中国药学杂志.2003,38(5):351-353.
    [42]倪帆呈,刘增辉,于楠楠,杨停,周安祥,黄荣峰,徐燕.超声波辅助提取槐角总黄酮的工艺优选[J].中国实验方剂学杂志.2011,17(17):23-25.
    [43]刘寿林.槐角中染料木素微波萃取法[J].光谱实验室.2008,25(4):745-756.
    [44]丛艳波,张永忠,刘潇.亚临界水提取槐角中总异黄酮的研究[J].中草药.2010,41(5):717-720.
    [45]袁崇均,王笳,陈帅,等.大孔树脂对槐角总黄酮分离纯化工艺研究[J].四川中医.2008,26(2):40-42.
    [46]YANG F Q, QUAN J, ZHANG T Y, et al. Multidimensional counter-current chromatographic system and its application [J]. J Chromatogra A.1998,803: 298-301.
    [47]SUN A L, SUN Q H, LIU R M, et al. Preparative isolation and purifcation of flavone compounds from Sophora japonica L. by high speed counter-current chromatography combined with macroporous resin column separation [J]. J Sep Sci,2007,30:1013-1018.
    [48]邬建国,余伟,葛娟,张晓昱.酶法转化槐角异黄酮的工艺及转化途径推论[J].华中科技大学学报:自然科学版.2010,8:125-128.
    [49]郑芳,李志浩,李鹏,朱雪松.高效液相色谱法同时测定槐角中槐角苷和芦丁的含量[J].新乡医学院学报.2010,6:569-571.
    [50]边清泉,杨振萍,刘家琴,刘思曼.HPLC同时测定槐角丸中生药槐角的4种有效成分[J].中国中药杂志.2005,30(1):1513-1515.
    [51]刘思曼,边清泉.槐角丸中槲皮素和没食子酸含量的HPLC测定[J].化学研究与应用.2010,22(9):1195-1198.
    [52]潘娓婕,张尊听,郑俊丽.薄层扫描法测定槐角及槐角丸中的染料木苷和总染料木素[J].分析实验室.2004,23(12):25-27.
    [53]连云岚,崔宇红.槐角丸中槐角的TLC鉴别及黄芩苷含量测定的研究[J].药物分析杂志.2000,20(1):57-59.
    [54]刘金荣,黄韶光,等.槐角丸的聚酰胺TLC鉴别研究[J].中成药.2002,24(12):U005-U006.
    [55]王爱月,傅乃华.紫外分光光度法测定槐角丸中总黄酮的含量[J].河北中医.1994,16(1):31-32.
    [56]刘景东,刘惠敏,王憬,王秀卿,甘露.槐角多糖含量测定方法的研究[J].白求恩军医学院学报.2007,5(3):171-172.
    [57]冯海燕,李向军,袁倬斌.在线酸坝富集.毛细管区带电泳法测定槐角中的染料木素[J].分析实验室.2011,30(5):30-33.
    [58]吕元琦,李玉美,李辉信,魏正贵.毛细管电泳法研究槐角生长过程中黄酮类化合物含量变化[J].德州学院学报.2008,24(4):45-48.
    [59]和凡,钟国平,赵立子,毕惠嫦,黄民.LC-MS/MS法研究黄酮类化合物对人肝微粒体细胞色素P450酶6种亚型的体外抑制作用[J].中国新药杂志.2009,18(24):2340-2348.
    [60]李伯男,马超,王伟,邢东明,杜力军.利用LC/MS检测中药总成分中各大类成分含量的方法学探讨[J].世界科学技术-中医药现代化.2008,4: 2340-2348.7-10.
    [61]吴胜明,安代志,方均建,马昆鹏,李海静,李昱,郭长江,董方霆.应用液质联用技术对大鼠血浆中槲皮素的测定[J].分析测试学报.2008,27(S1):19-20.
    [62]Lzumi T. Piskula MK. Osawa S. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in human[J]. J. Nutr.2000,130: 1695-1699.
    [63]Lai KL, Thomas TW. Bcl-2 is not reduced in the death of MCF-7 cells at low genistein concentration[J]. The Journal of Nutrition.2000,130 (12): 2922-2926.
    [64]沈丽霞,赵丕文,牛建昭,王继峰.金雀异黄素和槲皮素对人类乳腺癌细胞增殖和细胞周期的影响[J].中国药理学通报.2008,24(1):59-62.
    [65]Roth A, Schaffner W, Hertel C. Phytoestrogen kaempferol (3,4',5,7-tetrahydroxyflavone) protects PC12 and T47D cells from beta-amyloid-induced toxicity [J]. J Neurosci Res.1999,1; 57(3):399-404.
    [66]Zhao L, Chen Q, Diaz Brinton R. Neuroprotective and neurotrophic efficacy of phytoestrogens in cultured hippocampal neurons[J]. Exp Biol Med.2002,227 (7):509-19.
    [67]Haiyan Z, Qi C, Baolu Z. Genistein ameliorates-amyloid peptide (25-35)-induced hippocampal neueonal apoptosis [J].. Free Radical Biology and Medicine.2004,36(2):180-188.
    [68]Xu J, Zhu J H, Shi C, et al. Effects of genistein on hippocampal neurodegeneration of ovariectomized rats [J]. J Mol Neurosci.2007,31: 101-112.
    [69]Linofrd NJ, Dorsa DM.17-estradiol and the phytoestrogen genistein attenuate neuronal apoptosis induced by the endoplasmic reticulum calcium-ATPase inhibitor thapsigargin [J]. Steroids.2002,67: 1029-1040.
    [70]何玲玲,封锦芳,肖荣,余焕玲,麻微微,丁冰杰,苑林宏.染料木黄酮对p淀粉样肽25-35介导的PC12细胞凋亡过程相关基因表达的影响[J].中国食品卫生杂志.2011,23(2):100-105.
    [71]石纯,武凤鸣.植物雌激素对神经系统退行性疾病的作用[J].解剖学研究.2011,33(2):153-154.
    [72]Pedersen WA, Blusztajn JK. Characterization of the acetylcholine reducing effect of the amyloid-beta peptide in mouse SN56 cells [J]. Neurosci Lett.1997, 239:77-80.
    [73]胡燕,张志军,杨学峰,等.Genistein对体外培养的Parkinson病模型大鼠多巴胺能神经元及突触素的影响[J].神经解剖学杂志.2006,22(3):301-306
    [74]罗思婧,黄庆,任冬冬,廖维良,杨红.染料木素的神经保护作用及其机制的研究进展.广东药学院学报.2011,27(1):94-98.
    [75]LEPHART E D, WEST T W, WEBER K S, et al. Neurobehavioral effects of dietary soy phytoestrogens[J]. Neurotoxicol Teratol,2002,24:5-16.
    [76]MA Wei-wei, YUAN Lin-hong, YU Huan-ling, et al. Genistein as a neuroprotective antioxidant attenuates redox imbalance induced by beta-amyloid peptides 25-35 in PC12 cells [J]. Int J Dev Neurosci.2010,28 (4):289-295.
    [77]ZHAO Li-xia, CHEN Qi, DIAZ BRINTON R. Neuroprotective and neurotrophic efficacy of phytoestrogens in cultured hippocampal neurons [J]. Exp Biol Med (Maywood).2002,227 (7):509-19.
    [78]赵景霞,姚扬,张涛,杨卓.槲皮素对谷氨酸诱导的PC12细胞损伤的保护作用及对海马CA1锥体神经元钾通道的影响[J],生物物理学报.2010,9:799-804.
    [79]Roth A, Schaffner W, Hertel C. Phytoestrogen kaempferol proteets PC12 and T47D cells from beta amyloid-induced toxicity[J]. Neurosci Res.1999,57 (3): 399-402.
    [80]Sloley BD, Urichuk LJ, Morley P. Identification of kaempferol as a monoamine oxidase inhibitor and potential Neuroprotectant in extracts of Ginkgo biloba leaves[J]. Pharm Pharmacol,2000,52 (1):451-453.
    [81]董敏,肖亮,宋明柯.山奈酚对急性短暂缺氧时大鼠海马CA1神经元电压依赖性钾通道的作用[J].中南药学.2004,2(3):135-138.
    [82]王增禄,孙纪元,王多宁,王剑波,谢艳华,王四旺,赵文明.槐角染料木素的结构鉴定及预防骨质疏松症的药理研究[J].中国药理学通报.2004,20(5):580-584.
    [83]Fanti P, Monier-Faugere Mc, Geng Z, et al. The Phytoestrogen geinstein reduces bone loss in short term ovariectomized rats. Osteopor Int.1998,8 (3): 274-81.
    [84]Du N, Xu Y, Chen WZ, Zhang FH. Effect of sophoricoside on histomorphology of bone in ovarietomized rats. J Chin Integr Med.2003,1(1):44-46.
    [85]许勇,陈伟珍,杜宁.槐角苷及染料木素对成骨细胞生物学特性的影响[J].中西医结合学报.2009,7(3):223-227.
    [86]DuN, Chen WZ, XuY, LiuT, Ye J Q, Fan YH. Observation on therapeutic effect of sophoricoside capsule for postmenopausal osteoporosis[J]. Zhongguo LinChuang KangFu.2003,7(30):4122-4123.
    [87]Chen XW, Garner SC, Anderson J J. Isoflavones regulate interleukin-6 and osteoproteger in synthesis during osteoblast cell differentiation via an estrogen receptor dependent pathway[J]. Biochem Biophys Res Commun.2002,295 (2): 417-422.
    [88]Pie J E, park J H, Park YH, et al. Effect of genistein on the expression of bone metabolism genes in ovariectomized mice using a cDNA microarray[J]. J Nutr Blochem.2006,17:157-164.
    [89]Ya magishi T, Otsuka E, Hagiwara H. Reciprocal control of expression of mRNAs for osteoclast differentiation factor and OPG in ostengenic stromal cells by genistein:evidnce for the involvement of topoisemersse II in oateoclastogenesis[J]. Endocrinology.2001,142:3632-3637.
    [90]Lissin LW, Cooke J P. Phytoestrogens and cardiovascular health [J]. Am Coll Cardiol.2000,35:1403-10.
    [91]LiH F, Wang L D, Qu S Y. Phytoestrogen genistein decreases contractile response of aortic arteryin vitro and arterial blood pressurein vivo[J]. Acta Pharmacol Sin.2004,25 (3):313-8.
    [92]Steinberg FM, Guthrie NL, Villablanca AC, et al. Soy protein with isflavones has favorable effects onendot helical function that are independent of lipid and antioxidant effects in healthy postmenopausal women[J]. Am J Clin Nutr.2003, 78(1):123-130.
    [93]Liew R,W illiams JK, Collins P, Macleot KT. Soy derived isoflavones exert opposing actions on Guinea pig ventricular myocytes [J]. J Pharmacol Exp Ther, 2003,304 (3):985-93.
    [94]吴金霞,李红芳,田治峰,邱小青,顾静,贾忠健.染料木素对离体豚鼠左室乳头肌收缩功能的影响.中国药理学通报.2006,22(6):743-746.
    [95]周新妹,姚慧,夏满莉,曹春梅,蒋惠娣,夏强.槲皮素与芦丁对离体大鼠主动脉环的舒张作用及机制[J].浙江大学学报:医学版,2006,35(1):29-33.
    [96]石建辉,苗明三,田效志.槐角颗粒冲剂降脂作用研究[J].河南中医,1997,17(6):347-348.
    [97]戴顺龄,段金虹,陆嫒,等.新的植物雌激素明显抑制实验性动脉粥样硬化 发病进程[J].中国动脉硬化杂志.2003,11(5):385-390.
    [98]Wagner JD, Schwenke DC, Greaves KA, et al. Soy protein with isoflavone rich supplement, improves arterial low-density lipopmtein metabolism and atherogenesis [J]. Arterioscler Thromb Vase Biol.2003,23 (12):2241-2246.
    [99]王永红,龙晓莉,何菲,王剑波,袁娟丽.槐角总黄酮对高脂血症大鼠降血脂及抗氧化能力的实验研究[J].第四军医大学学报.2009,30(22):2677-2681.
    [100]阿金.槐花槐角均入药[J].家庭中医.46-47.
    [101]中药大词典编委会.中药大词典[M].上册.上海人民出版社,1977:876.
    [102]赵维中,王瑜.复方槐角口服液的抗炎、镇痛和止血作用[J].安徽医科大学学报.1997,32(2):110-112.
    [103]陈菡,黄世福,徐鹏夫,等.槐角颗粒的主要药效学研究[J].安徽医药.2005,9(10):731-733.
    [104]马磊,楼凤昌.槐角中的抗癌活性成分[J].中国天然药物.2006,4(2):151-153.
    [105]王景华,唐干平,楼风昌.槐角化学成分与药理作用[J].国外医药·植物药分.2002,17(2):58-60.
    [106]Wei H, Bowen R, Cai Q,et al. Antioxidant and antipromotional effects of the soybean isoflavone genistein[J]. Proc Soc Biol Med.1995,208 (1):124-130.
    [107]赵宝深.槐角浓膏治疗急性泌尿系感染[J].山东中医杂志.1988,7(5):46-57.
    [108]祝普凡.槐花散与槐角丸治疗Ⅰ期内痔出血疗效对比观察[J].吉林中医药.2006,25(11):21-22.
    [109]西北植物研究所.黄土高原植物志(第二卷).北京:中国林业出版社,1992,315-510.
    [110]王卫卫.陕、甘黄土高原根瘤菌一豆科植物共生体结构及固氮作用研究[D].西安,西北大学,2003,11,P40-41.
    [111]王志玲,刘景东,勾凌燕,等HPLC同时测定槐角中的芦丁和槐角苷[J].华西药学杂志.2010,25(1):72-74.
    [112]中华人民共和国药典委员会.中华人民共和国药典(一部)[M].北京:化学工业出版社.附录.IXK,灰分测定,1059.
    [113]房敏峰,曲欢欢,文颂华,等.槐角不同炮制品中槐角苷的含量测定[J].中药材.2007,30(1):24-25.
    [114]刘晓华,孙文基,李涛.高效液相色谱法测定槐角中槐角苷的含量[J].药 物分析杂志.2004,24(2):160-162.
    [115]China. Green Industry Standards of Import and Export of Medicinal Plants and Preparation(药用植物及制剂进出口绿色行业标准)[s].中国科技出版社,2001:3.
    [116]吴丽明,张锦周,庄志雄.用子宫增重试验检测莲须的雌激素样作用[J].现代临床医学生物工程学杂志.2003,9(2):83-87.
    [117]王秋菊,吕娟,盛丽,郝伟,张予阳.化痔片的抗炎镇痛及抗直肠溃疡作用[J].中国实验方剂学杂志.2009,15(4):60-63.
    [118]杨澍,朱国旗,李庆林.植物雌激素类化合物药理学功效及作用机制研究概况[J].安徽中医学院学报.2010,29(2):76-78.
    [119]LAN YEB, MING Y, CHAN B. The soy isoflavone genistein induces estrogen synthesis in an extragonadal pathway [J]. Molecular and Cellular Endocrinology.2009,3 (2):73-80.
    [120]MARCEL O F. Montenegron Isof lavone genistein inhibits the angiotensin convening enzyme and alters the vascular responses to angiotensin I and bradykinin [J]. European Journal of Pharmacology.2009,6 (7):173-17.
    [121]林蓉,刘俊田.槲皮素对缺氧缺糖诱导血管内皮细胞损伤的保护作用[J].中国药理学通报.2003,19(4):475-478.
    [122]吴立军.天然药物化学[M].北京:人民卫生出版社,2003,177.
    [123]徐叔云,卞如濂,陈修等.药理实验方法学[M].第三版.北京:人民卫生出版社,2002:913-915.
    [124]Sung TS, La JH, Kim Tw, et al. Alteration of nitrergic neuromuscular transmission as a result of acute expermental colitis in rat [J]. J Veteri Sci.2006. 7(2):143
    [125]陈奇.中药药理研究方法学[M].北京:人民卫生出版社.2006:353.
    [126]Ialenti A, Ianaro A, Moncada S, et al. Modulation of acute anti-inflammation by endogenous nitric oxide [J]. Eur J Pharmacol.1992,211:177.
    [127]Iuvone T, Carnuccio R, Dirosa M. Modulation of granuloma formation by endogenous nitric oxide [J]. Eur J Pharmacol.1994,265 (122):89.
    [128]王永红,龙晓莉,何菲,王剑波,袁娟丽.槐角总黄酮对高脂血症大鼠降血脂及抗氧化能力的实验研究[J].第四军医大学学报.2009,30(22):2677-2681.
    [129]丛艳波.槐角异黄酮的的提取、纯化及水解工艺的研究[D].哈尔滨:东北农业大学,2011.
    [130]Xu X, Harris KS, Wang HJ, Murphy PA, Hendrich S. Bioavailability of soybean isoflavones depends upon gut microflora in women[J]. J Nutr.1995,125: 307-315.
    [131]彭游,钟婵娟,邓泽元,叶志刚.植物雌激素染料木素的体内转运过程研究进展[J].食品科技.2011,36(8):28-31.
    [132]白永涛,文红梅,彭彬,熊海伟.UPLC法测定大鼠血浆中染料木素浓度及其药代动力学参数[J].中药新药与临床药理.2010,21(5):512-514.
    [133]米靖宇,宋纯清.大孔吸附树脂在中草药研究中的应用进展[J].中成药.2001,23(12):914-917.
    [134]葛淑兰,田景振.大孔吸附树脂对淫羊藿总黄酮分离纯化工艺研究[J].中国药学杂志.2005,40(5):365-367.
    [135]Kazutaka Watanabe, J unei Kinjo and Toshihiro Nohata. The new isoflavovonoid glycosides from Lupinusluteus and L. polyphenyllus arboreus[J]. Chem Pharm Bull.1993,41 (2):394-396.
    [136]Shah V P, Midha K K, Hulse J D, et al. Bioanalytical methods validation-a revisit with a decade of progress [J]. Pharm Res.2000,17,1551-1557.
    [137]Kmaes HT, March C, Precision, accuracy and data acceptance criteria in biopharmaceutical analysis[J]. Phaarm Res.1993,10,1420-1422.
    [138]Jia C, Shi H, Jin W, Zhang K, Jiang Y, Zhao M, Tu P. Metabolism of echinacoside, a good antioxidant, in rats:isolation and identification of its biliary metabolites[J]. Drug Metab Dispos.2009,37,431-8.
    [139]Christian MS. Introduction/overview: gender-based differences in pharmacologic and toxicologic responses[J]. Int J Toxicol.2001,20(3): 145-148.
    [140]Pleym H, Spigset O, Kharasch ED, Dale O. Gender differences in drug effects: implications for anesthesiologists [J]. Acta Anaesthesiol Scand.2003.47(3): 241-259.
    [141]W.Slikker, Jr.,A.Cscallet, D.R.Dogerge, S.A.Ferguson.Gnder-based differences in rats after chronic dietary exposure to genistein[J]. J Toxicol.2001:20 (3): 175-179.
    [142]Lzumi T. Piskula MK. Osawa S. Soy isofavone aglycones are absorbed faster and in higher amounts than their glucosides in human[J]. J. Nutr.2000:130: 1695-1699.
    [143]王维治.神经病学[M].北京:人民卫生出版社,2007.1397-1405.
    [144]Massimo Tabaton, Alessandra Piccini. Role of water soluble amyloid-beta in the pathogenesis of Alzheimer's disease[J]. Int J Exp Pathol.2005,86 (3): 139-143.
    [145]Paganini-hill A, Henderson VW. Estrogen deficiency and risk of Alzheimer's disease in women[J]. Am J Epidemiol.1994,140(3):256-261.
    [146]Birge SJ, Is there a role for estrogen replacement therapy in the prevention and treatment of dementia[J]. J Am Geriatr Soc.1996,44 (7):865-870.
    [147]Costa MM, Reus VI, WoLkowitz OM, et al. Estrogen replacement therapy and cognitive decline in memory-impaired postmenopausal women[J]. Biol Psychiatry.1999,46(2):182-188.
    [148]Paola Zanoli, Manuela Zavatti, Elisa Geminiani,et al. The phytoestrogen ferutinin affects female sexual behavior modulating ERa expression in the hypothalamus[J]. Behavioural Brain Research.2009,199 (2):283-287.
    [149]BANG O Y, HONG H S, KIM D H, et al. Neuroprotective effect of genistein against beta amyloid-induced neurotoxicity [J]. Neurobiol Dis.2004,16(1): 21-28.
    [150]Anthony MS, Clarkson TB, Williams JK. Effects of soy isoflavones on atherosderosis:potential mechanisms. Am J Clin Nutr.1998; 68 (Suppl):S1390.
    [151]Yamaguchi M. M. Isoflavone and Bone Metabolism:Its Cellular Mechanism and Preventive Role in Bone Loss[J].2004; 48(3):209-222.
    [152]Wang CN, Chi CW, et al. The neuroprotetive effects of phytoestrogen on amyloid protein-induced toxicity are mediated by abrogating the activation of capase cascade in rat cortical neurons[J].J Bio Chemistry.2001,276:5287-5295.
    [153]Zhu JH, Guo KH,Xu J. Effects of genistein on learning and memory function of ovariectomized rats [J]. Chinese Journal of Clinical Rehabilitation.2004,8(4): 650-651.
    [154]谢慧清,陈茹,孙绍丹,李旭红,等.植物雌激素染料木素抗去卵巢大鼠海马血管内β-淀粉样蛋白沉积研究.实用预防医学.2007;14(3):633-635.
    [155]Emerit J, Edea M, Bricaire F. Neurodegenerative diseases and oxidative stress [J]. Biomed Pharmacother,2004,58(1):39-46.
    [156]李骅,王剑波,王四旺.染料木素对卵巢切除大鼠学习记忆能力的影响[J].现代生物医学进展.2009,9(20):3826-3830.
    [157]Kwon,Suk Hyung, Hwang, et al.2007. Method for preparing sophorae fructus extract containing isoflavone. United States patent,22313-1404[P].2001-9-2..
    [158]何兴林,徐去翔,薛慧中,王文华,周志仁,程培元,樊梅芳.槐角的避孕成分研究[J].生殖与避孕.1982:2(2):23-27.
    [159]John A Yegge, David T. Bailey, Jamesl. Sullivan. Process for the isolation and purification of isolavones [P]. US:5679806.10/1997.
    [160]丁红秀,高荫榆,晁红娟,等.毛竹叶柄多糖体外抗氧化作用研究[J].食品科学.2007,28(11):122-125.
    [161]Jun-ei Kinjo, Jun-ichi Furusawa, Jumko Baba, et al. Studies on the Constituents of Pueraria lobata. III. Isoflavonoids and Related Compounds in the Roots and the Voluble Stems[J]. Chem.. Pham. Ball.1987; 35(12):4840-450
    [162]Jacobson MD, Raff MC. Progemmed cell death and Bcl-2 protection in very low oxygen [J]. Nature,1995,374:814-816.
    [163]Estrogen modulates neuronal Bcl-XL expression and beta-amyloid induced apoptosis:relevance to Alzheimer's disease [J]. J Neurochem,1999,72: 1552-1563.
    [164]Kawahara M, Kuroda Y. Intracellular calcium changes in neuronal cells induced by Alzheimer's beta-amyloid are blocked estradiol and cholesterol [J]. Cell Mol Neurobiol.2001,21:1-13.
    [165]Cai J, Jones DP. Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss [J]. J Biol Chem,1998,273 (19):11401-11404.
    [166]Kluck RM, Ella BW, Green DR, et al. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis [J]. Science,1997, 275(5303):1132-1136.
    [167]Wevers A, et al. Expression of nicotinic acetylcholine receptors in Alzheimer's disease:postmortem investigations and experimental approaches [J]. Behav Brain Res,2000,113(1-2):207-215.
    [168]Dajas Bailador F, Wonnacott S. Nicotinic acetylcholine receptors and the regulation of neuronal signaling[J]. Trends Pharmacol Sci.2004; 25(6): 317-324.
    [169]Nordberg A. Nicotinic receptor abnormalities of Alzheimer's disease: therapeutic implications [J]. Biol Psychiatry.2001; 49(3):200-210.
    [170]Guan ZZ, Miao H, Tian JY, et al. Suppressed expression of nicotinic acetylcholine receptors by nanomolar beta-amyloid peptides in PC 12 cells[J]. J Neural Transm.2001; 108(2):1417-1433.
    [171]Guan ZZ, Zhang X, Ravid R, et al. Decreased protein levels of nicotinic receptor subunits in the hippocampus and temporal cortex of patients with Alzheimer's disease[J]. J Neurochem.2000; 74(1):237-243.
    [172]Pettit DL, Shao Z, Yakel JL. beta-Amyloid (1-42) peptide directly modulates nicotinic receptors in the rat hippocampal slice[J]. J Neurosci,2001,21(1): RC120.
    [173]Qi XL, Xiu J, Shan KR, et al. Oxidative stress induced by beta-amyloid peptide (1-42) is involved in the altered composition of cellular membrane lipids and the decreased expression of nicotinic receptors in human SH-SY5Y neuroblastoma cells[J]. Neurochem Int.2005; 46(8):613-621.
    [174]Covey MV Murphy MP Hobbs CES Mith RA Oorschot DE. Effect of the mitochondrial antioxidant, Mito Vitamin E, on hypoxic-ischemic striatal injury in neonatal rats:a dose-response and stereological study [J]. Experimental Neurology.2006; 199(2):513-519.
    [175]Kihara T, Shiohama S, Sawasa H, et al. Nicotinic receptor stimulation protects neurons against β-amyloid toxity[J]. Ann Neurol,1997; 42(1):159-163.
    [176]Ji D, Lape R, Dani JA. Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity [J]. Neuronology,2001; 31(1):131-141.
    [177]Hellstr M, Lindahl E, Gorbounova O, Seiger, et al. Regional distribution of nicotinic receptors during prenatal development of human brain and spinal cord[J].Dev Brain Res,1998; 108(1):147-160.
    [178]Pan Y, Anthony M, Clarkson TB. Evidence for up-regulation of brain-derived neurotrophic factor mRNA by soy phytoestrogens in the frontal cortex of retired breeder female rats[J]. Neurosci. Lett.261 (1999), pp.17-20.
    [179]Breese CR, Marks MJ, Logel J, et al. Effect of smoking history on [3H] nicotine binding in human postmortem brain[J]. J Pharmacol Exp Ther.1997; 282(1):7-13.
    [180]Marks MJ, Pauly JR, Gross SD, et al. Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment[J]. J Neurosci.1992; 12(7): 2765-2784.
    [181]C.M. Dobson, Protein folding and misfolding[J], Nature,2003,426:884-890.
    [182]M. Stefani, Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world[J], Biochim. Biophys. Acta,2004, 1739:5-25.
    [183]M.H. Krebs, E.C. Bromley, A.M. Donald, The binding of thioflavin-T to amyloid fibrils:localization and implications[J]. J. Struct. Biol.2005,149: 30-37.
    [184]A.Ahmad,I.S.Millett, S. Doniach, V.N. Uversky, A.L. Fink, Partially folded intermediates in insulin fibrillation, Biochemistry,2003,42:1404-1416.
    [185]Q.X. Hua, M.A. Weiss, Mechanism of insulin fibrillation: The structure of insulin under amyloidogenic conditions resembles a protein-folding intermediate, J. Biol. Chem.2004,279:21449-21460.
    [186]N.S. Green, T.R. Foss, J.W. Kelly, Genistein, a natural product from soy, is a potent inhibitor of transthyretin amyloidosis, Proc. Natl. Acad. Sci. USA 2005, 102:14545-14550.
    [187]D.E. Ehrnhoefer, J. Bieschke, A. Boeddrich, M. Herbst, L. Masino, R. Lurz, S. Engemann, A. Pastore, E.E. Wanker, EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers, Nature Struct. Mol. Biol. 2008,15:558-566.
    [188]T.Akaishi,T.Morimotoa,M.Shibaoa,S.Watanabea,K. Sakai-Katob, N. Utsunomiya-Tateb, K. Abea, Structural requirements for the flavonoid fisetin in inhibiting fibril formation of amyloid β protein, Neurosci. Lett.2008,444: 280-285.
    [189]S. Chirumbolo, The role of quercetin, flavonols and flavones in modulating inflammatory cell function, Inflamm. Allergy Drug Targets.2010,9:263-85.
    [190]S. Jagtap, K. Meganathan, V. Wagh, J. Winkler, J. Hescheler, A. Sachinidis, Chemoprotective mechanism of the natural compounds, epigallocatechin-3-O-gallate, quercetin and curcumin against cancer and cardiovascular diseases, Curr. Med. Chem.2009,16:1451-1462.
    [191]M.A. Ansari, H.M. Abdul, G. Joshi, W.O. Opii, D.A. Butterfield, Protective effect of quercetin in primary neurons against Abeta (1-42):relevance to Alzheimer's disease, J. Nutr. Biochem.2009,20:269-275.
    [192]K. Matsuzaki, T. Noguch, M. Wakabayashi, K. Ikeda, T. Okada, Y. Ohashi, M. Hoshino, H. Naiki, Inhibitors of amyloid (3-protein aggregation mediated by GM1-containing raft-like membranes, Biochim. Biophys. Acta.2007,1768: 122-130.
    [193]K.Ono, Y. Yoshiike, A. Takashima, K. Hasegawa, H. Naiki, M. Yamada, Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer's disease, J. Neurochem.2003,87:172-181.
    [194]M.A. da Silva, M.A. Arruda, Mechanization of the Bradford reaction for the spectrophotometric determination of total proteins, Anal. Biochem.2006,351 155-157.
    [195]J.L. Whittingham, D.J. Scott, K. Chance, A. Wilson, J. Finch, J. Brange, G.G. Dodson, Insulin at pH2:structural analysis of the conditions promoting insulin fiber formation, J. Mol. Biol.2002,318:479-490.
    [196]B. Huang, J. He, J. Ren, X.Y. Yan, C.M. Zeng, Cellular membrane disruption by amyloid fibrils involved intermolecular disulfide cross-linking, Biochemistry 2009,48:5794-5800.
    [197]J. He, J. Lin, J. Li, J.H. Zhang, X.M. Sun, C.M. Zeng, Dual effects of Ginkgo biloba leaf extract on human red blood cells, Basic Clin. Pharm. Toxicol.2009, 104:138-144.
    [198]M. Fandrich, Absolute correlation between lag time and growth rate in the spontaneous formation of several amyloid-like aggregates and fibrils, J. Mol. Biol.2007,365:1266-1270.
    [199]A. Ahmad, V.N. Uversky, D. Hong, A.L. Fink, Early events in the fibrillation of monomeric insulin, J. Biol. Chem.2005,280:42669-2675.
    [200]T. Richard, D. Lefeuvre, A. Descendit, S. Quideau, J.P. Monti, Recognition characters in peptide-polyphenol complex formation, Biochim. Biophys. Acta. 2008,1760:951-958.
    [201]K.J. Siebert, N.V. Troukhanova, P.Y. Lynn, Nature of Polyphenol-protein interactions, J. Agric. Food Chem.1996,44:80-85.
    [202]J. He, Y.F. Xing, B. Huang, Y.Z. Zhang, C.M. Zeng, Tea catechins induced the conversion of preformed lysozyme amyloid fibrils to amorphous aggregates, J. Agr. Food Chem.2009,57:11391-11396.
    [203]J. Bieschke, J. Russ, R.P. Friedrich, D.E. Ehrnhoefer, H. Wobst, K. Neugebauer, E.E. Wanker, EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity, Proc. Natl. Acad. Sci. USA.2010,107: 7710-7715.
    [204]J.A. Lemkul, D.R. Bevan, Destabilizing Alzheimer's Aβ42 protofibrils with morin: mechanistic insights from molecular dynamics simulations, Biochemistry 2010,49:3935-3946.
    [205]Y. Porat, A. Abramowitz, E. Gazit, Inhibition of amyloid fibril formation by polyphenols:structural similarity and aromatic interactions as a common inhibition mechanism, Chem. Biol. Drug Des.2006,67:27-37.
    [206]M. Levy-sakin, M. Shreberk, Y. Daniel, E. Gazit, Targeting insulin amyloid assembly by small aromatic molecules:toward rational design of aggregation inhibitors, Islets.2009,1:210-215.
    [207]M. Hirohata, K. Hasegawa, S. Tsutsumi-Yasuhara, Y. Ohhashi, T. Ookoshi, K. Ono, M. Yamada, H. Naiki, The anti-amyloidogenic effect is exerted against Alzheimer's β-amyloid fibrils in vitro by preferential and reversible binding of flavonoids to the amyloid fibril structure, Biochemistry.2007,46:1888-1899.
    [208]M. Hirohata, K. Hasegawa, S. Tsutsumi-Yasuhara, Y. Ohhashi, T. Ookoshi, K. Ono, M. Yamada, H. Naiki, The anti-amyloidogenic effect is exerted against Alzheimer's (β-amyloid fibrils in vitro by preferential and reversible binding of flavonoids to the amyloid fibril structure, Biochemistry.2007:46:1888-1899.
    [209]H. Shoval, L. Weiner, E. Gazit, M. Levy, I. Pinchuk, D. Lichtenberg, Polyphenol-induced dissociation of various amyloid fibrils results in a methionine-independent formation of ROS, Biochim. Biophys. Acta.2008, 1784:1570-1577.
    [210]S.Rattanajarasroj,S.Unchern, Comparable attenuation of A beta(25-35) induced neurotoxicity by quercitrin and 17beta-estradiol in cultured rat hippocampal neurons, Neurochem Res.2010,35:1196-1205.
    [211]J. Kim, H.J. Lee, K.W. Lee, Naturally occurring phytochemicals for the prevention of Alzheimer's disease, J. Neurochem.2010,112:1415-1430.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700