广东桉树人工林耗水量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过去20年桉树在华南地区大面积发展,目前桉树人工林种植面积达250万hm2。在其它国家桉树经常被指责消耗大量水导致水资源减少。本文以广东雷州半岛沿海平原区和高要丘陵山区的桉树人工林为研究对象,针对这两种主要立地类型桉树人工林树干液流、树木蒸腾耗水、林分蒸散与水量平衡各分量及相关的环境因子进行了连续系统的研究。获得以下几方面的结论与认识:
     1、桉树液流密度及影响因素:桉树树干形成层以内木质部不同深度的液流密度不同,其中靠近形成层部分液流速度较快,但各层都具有相同的日变化趋势;不同直径尾叶桉的日液流密度具有相似日变化趋势,大树较小树的液流密度高主要与大树更多受光有关;树干液流与饱和蒸汽压差(Vapour pressure deficit, VPD)和太阳辐射相关性极显著;桉树人工林边材面积与胸径具有显著的相关性,利用边材面积进行单株向林分尺度耗水的转换是可行的。
     2、沿海平原区桉树人工林耗水特征:对广东省雷州半岛沿海平原区两种主要土壤类型下(河头、纪家)的4 a生尾叶桉(Eucalyptus urophylla)耗水量(用热脉冲法)与水量平衡进行为期1 a的观测。河头是保水能力差的浅海沉积物发育的砂质土,纪家为玄武岩发育的砖红壤。河头、纪家尾叶桉人工林日平均液流密度分别为2772±66、1839±86 L·m~(-2)·d~(-1),这与土壤水文特征及林分边材面积差异有关;旱季的日均液流密度值为2477±86、1715±73 L·m~(-2)·d~(-1),而雨季则为3 241±88、1 970±67 L·m~(-2)·d~(-1),桉树林分树液流密度具有相似的季节变化节律;雨季由于雨热同期,液流密度值相对较高,而旱季由于土壤水分相对短缺,液流密度值明显减少。河头与纪家尾叶桉人工林林分日均耗水量为1.49、1.53 mm,年耗水量分别为542、559 mm,占年降水量的35 %和36 %,其中旱季日耗水量分别为1.25、1.35 mm·d~(-1),雨季为1.83、1.69 mm·d~(-1);木材的水分利用效率4.75×10-3、4.24×10-3 m3·m-3 (木材/水);开阔的林冠及较小的叶面积指数、旱季时土壤有效水的减少及较低的VPD等在不同程度上都限制了桉树的耗水量。
     河头与纪家的年蒸散量分别为1040和1081 mm,占同期降水量的67.9 %和70.2 %。旱季时蒸散量大于降水量,表明蒸散可用深层土壤水,土壤水在雨季可以得到补充。由于土壤质地的差异,纪家的持水性高,有更多的水分以地表蒸发的形式散失。砂质土的河头持水性差,但渗透性高,旱季时桉树人工林有可能吸收深层土壤水。
     3、丘陵山区桉树人工林耗水特征:用热扩散法(Thermal dissipation probe method, TDP)测定高要山地的4-6 a生尾巨桉(E. urophylla X grandis)日均液流密度分别为1032±30、867±22和659±26 L·m~(-2)·d~(-1),其中旱季日均液流密度值分别为782±32、739±25和529±30 L·m~(-2)·d~(-1),而雨季则为1 279±41、972±31和798±36 L·m~(-2)·d~(-1)。另外随着尾巨桉林龄增加液流密度呈下降趋势。日耗水量均值分别为1.22、1.10和0.99 mm·d~(-1),年耗水量分别为443.6、402.0和362.6 mm,占年降水量的26.7 %、24.5 %和29.0 %;3 a年均耗水量为402.8 mm(占年降水量26.5%),其中旱季为162.9 mm、雨季为239.9 mm,分别占同期降水量的77.8%和18.3%。年蒸散量分别为944.3、862.1和843.0 mm,分别占年降水量的56.9 %、52.5 %、67.3 %。桉树人工林0~100cm土层的最大蓄水量为470.06 mm,其中非毛管蓄水量为98.22mm,土壤总孔隙度和非毛管孔隙度随土壤深度增加呈递减趋势;0~10cm土壤层的初渗速率和稳渗速率分别为25.03和8.83 mm·min~(-1),且随土壤深度增加而逐渐减小。对高要山地集水区4 a生尾巨桉人工林耗水量与水量平衡进行了为期3 a的观测,平均年输入降水量1517.8 mm,其中径流量、蒸散量、土壤蓄水量变化分别为637.3、883.2、~(-2).6 mm,分别占年降水量42.0%、58.2 %、-0.2%;蒸散量中冠层截留量、树木蒸腾耗水量、地表蒸发量分别为202.2、405.3、275.7mm,分别占降水量的13.3%、26.7%、19.3%。
     热脉冲法和热扩散法(TDP)均被认为是准确、有效测定树木蒸腾耗水量的方法,可适用人工林水量平衡方面研究。以上研究结果表明在当降水量超过1200mm,桉树人工林不会抽取地下水及对区域水量平衡有负面影响。
Plantations of Eucalyptus and other exotic species have been extensively established in southern China during the past 20 years. Over 2.5 millions hm2 of Eucalyptus plantations have been established in southern China. In other countries, Eucalyptus have sometimes been shown to have high annual water use, which leads to depletion of water resource. This dissertation reports studies on whole-tree transpiration (sap flow), canopy interception, soil evaporation, soil moisture dynamics, weather conditions and tree growth conducted for 1 year in 4-year-old Eucalyptus urophylla trees grown at two sites (Hetou and Jijia) in the coastal flat area of the Leizhou peninsula and for 3 years in a of 4-6-year-old plantation of E. urophylla X grandis in hilly area in Gaoyao of Guangdong province, China.
     Investigatations the characteristics of sap flux density (SFD) of 4-year-old E. urophylla trees in Leizhou using heat pluse method and 4-year-old E. urophylla X grandis trees in Gaoyao using heat dissipiation probe method, respectively. Results indicated that SFD of outer sapwood moved faster than the inner one. The daily patterns of SFD of trees of different sizes of diameter were similar pattern, and larger trees had higher SFD than smaller ones probably due to better radiation exposure. Among meteorological factors, solar radiation and vapour pressure ddficit (VPD) were the main factors controlling the sap flow.
     The results also revealed that the relationship of between sapwood area and diameter at breast height (DBH) in Eucalyptus urophylla and E. urophylla X grandis trees were highly significant and therefore it was possible to use the sapwood area to scale up estimation of water use from individual trees to a stand level. The mean daily SFDs in Hetou and Jijia in dry season were 2477±86 and 1715±73 L·m~(-2)·d~(-1), while in wet season 3241±88 and 1970±67 L·m~(-2)·d~(-1), with annual averages of 2772±66 and 1839±86 L·m~(-2)·d~(-1), respectively. Annual mean daily water use Eucalyptus plantations at Hetou and Jijia were 1.49 and 1.53 mm·d~(-1) (1.25 and 1.35 mm·d~(-1) in dry season, 1.83 and 1.69 mm·d~(-1) in wet season), respectively. Annual total water use calculated from sap flow were 542 and 559 mm, respectively, which were equivalent to 35 and 36 % of annual rainfall. Water use efficiency, defined as total stem volume growth per unit of water transpired, was 4.75×10-3 m3·m-3 at Hetou and 4.24×10-3 m3·m-3 at Jijia. Low water use in this region may have resulted from combined effects of several factors, including open canopy and low leaf area index, soil water decline in the dry season, and low VPD that limited water consumption of the trees.
     The annual evapotranspiration (ET) (October 1999 to September 2000) in Hetou and Jijia were 1040 and 1081 mm, which were equivalent 67.9 % and 70.2 % of annual rainfall. Dry season water balances showed ET exceeded or approached rainfall in the same period, indicating water use from soil water storages was associated with soil water depletion, particularly at Hetou. However, soil water storages were replenished by high water recharge in wet season. The differences in soil properties between the two sites resulted in greater soil water store at Jijia that provided a supply for soil evaporation. Sandier soils at Hetou with poor water holding capacity had greater drainage in wet season and higher abstraction in dry season from water storages of deep soil.
     The annual mean daily SFD of 4-6-year-old E. urophylla X grandis plantations in Gaoyao over the three years were respectively 1032±30, 867±22 and 659±26 L·m~(-2)·d~(-1), and those in dry season were 782±32, 739±25 and in wet season 529±30 L·m~(-2)·d~(-1) and 1279±41, 972±31 and 798±36 L·m~(-2)·d~(-1), respectively. Mean values of daily water use in the three years were 1.22, 1.10 and 0.99 mm·d~(-1). Water use of plantations per annum was 443.6, 402.0 and 362.6 mm respectively, or 26.7 %, 24.5% and 19.3 % of annual rainfall, respectively. Annual water use were 402.8 mm, or 26.5 % of annual rainfall in the three years,of which 162.9 mm occurred in dry season, accounting for 77.8% of rainfall in the same period and 239.9 mm or 18.3 % of rainfall in wet season. The maximum water-capacity of the soil layer from 0 to 100 cm depth is 470.06 mm, and the non-capillary water-capacity accounts for 20.90 % (98.22 mm) of the total. Both of the total and non-capillary porosities show a decreasing trend with the increasing soil depth. The initial and steady infiltration rates in the surface (0~(-1)0 cm) are 25.03 and 8.83 mm·min~(-1) respectively, and also decrease with the increasing soil depth. Average annual precipitation was 1518 mm, and 42.0 %, 58.2 % and -0.2 % of which were allocated to total runoff (637.3 mm), ET (883.1 mm) and change of soil water storage (~(-2).6 mm). Annual values of ET were 944.3, 862.1 and 843.0 mm, which were equivalent to 56.9 %, 52.5 % and 67.3 % of annual rainfall. Annual ET was allocated to 202.2 mm (13.3 %) of canopy interception, 405.3 mm (26.7 %) of tree transpiration and 275.7 mm (19.3%) of soil evaporation。
     Both the heat pulse method and heat dissipation probe (TDP) method were proved to be valid and accurate way to measure transpiration by eucaypt platnations and recommended for wider application in water balance studies of tree plantions.
     Comparison of the water balance of the above eucalypt plantations with other type of plantations in the same region did not support the opinion that eucalypt plantation will deplete ground water reserves and negatively affect regional water balance in regions with annual rainfall of≥1200 mm.
引文
[1]祁述雄.中国桉树(第二版),北京:中国林业出版社,2002.22
    [2]徐大平.桉树速生丰产林--我国林浆纸一体化的必然选择,中华纸业, 2006, 27(4): 14-25
    [3] Poore M E D, Fries C.The ecological effects of Eucalyptus. FAO Forestry Paper No.59. FAO, Rome, 1985: 87
    [4] Calder I R. Water use of Eucalypts-a review. Calder I R,Hall R L. Adlard P G. (eds) Growth and water use of forest plantation. England, Chichester: John Wiley and Sons,1992:167~179
    [5]白嘉雨,甘四明.桉树人工林的社会、经济和生态问题.世界林业研究, 1996(2):63-68
    [6] Shiva S, Bandyopadhyay J. Eucalyptus-a disastrous tree for India. Ecologist, 1983,13(5):184-187
    [7] Davidson J. Ecological aspect of Eucalyptus plantation.Proceedings of the regional expert consultation on Eucalyptus, October 1993. RAPA Publiciation 1995/1996, FAO Regional Office for Asia and the Pacific,Bangkok,Thailand RAPA Publication.1995:180
    [8] White K, Ball J, Kashio M. Silviculture of Eucalyptus plantings-learning in the region. Proceedings of the regional expert consultation on Eucalyptus, October 1993. RAPA Publiciation 1995/1996, FAO Regional Office for Asia and the Pacific, Bangkok, Thailand RAPA Publication. 1995:196
    [9] Iglesias G, Wiltermann D. Eucalytpus universalia: global cultivated eucalyptus forests map.Version 1.02. In: Eucalyptologics Information Resources on Eucalypt Cultivation Worldwide,WWW.git-foresty.com, 2009
    [10] Dijk A I J M, Keenan R J. Planted forests and water in perspective. Forest Ecology and Management, 2007, 251:1-9
    [11] Vanclay J K. Managing water use from forest plantations. Forest Ecology and Management, 2009, 257: 385-389
    [12]中国工程院,中国可持续发展水资源战略研究报告.北京:中国水利电力出版社, 2000
    [13]中国可持续发展林业战略项目组,中国可持续发展林业战略.北京:中国林业出版社, 2003
    [14] Jackson R B, Jobbagy E G, Avissar R, et al. Trading water for carbon with biological carbon sequestration. Science, 2005,310:944-1947
    [15]王华田.北京市水源保护林区主要树种耗水性的研究.北京:北京林业大学, 2002:10
    [16] Calder I R. Water use by forests, limits and controls. Tree Physiology, 1998, 18:625-631
    [17] Wullschleger S D, Meinzer F C, Vertessy R A. A review of whole-plant water use studies in trees. Tree Phyiology, 1998,18:499-512
    [18] Buckley T N. The control of stomata by water balance. New Phytologist, 2005,168:275-292
    [19] Kallarackal J, Somen C K. Water loss from tree plantations in the tropics. Current Science, 2008,94: 201-210
    [20]刘奉觉, Edwards W R N.杨树树干液流动态研究.林业科学研究, 1993, 6(4):368-372
    [21]孙鹏森,马履一,王小平,等.油松树干液流的时空变异性研究.北京林业大学学报, 2000, 22(5): 1-6
    [22]高岩,张汝民,刘静.应用热脉冲技术对小美杨树干液流的研究.西北植物学报, 2001, 21(4): 644-649
    [23]熊伟,王彦辉,徐德应.宁南山区华北落叶桉人工林蒸腾耗水规律及其对环境因子的响应.林业科学,2003, 39(2): 1-7
    [24]王华田,邢黎峰,马履一.栓皮桦水源林林木耗水尺度扩展方法研究.林业科学, 2004,40(6): 170-175
    [25]张小由,康尔泗,司建华,等.胡杨蒸腾耗水的单木测定与林分转换研究.林业科学, 2006, 42(7): 28-32
    [26] Greenwood E A N, Klein L, Beresford J D, et al. Differences in annual evaporation between grazed pasture and Eucalyptus species in plantations on a saline farm catchment. Journal of Hydrology, 1985, 78: 261-278
    [27] Benyon R G, Marcar N E, Crawford D F, et al. Growth and water use of Eucalyptus camaldulensis and E. occidentalis on a saline discharge site near Wellington, NSW, Australia. Agricultural Water Management, 1999, 39: 229-244
    [28] Cramer V A, Thoroburn P J, Fraser G W. Transpiration and groundwater uptake from farm forest plots of Casuarina glauca and Eucalyptus camaldulensis in saline areas of southeast Queensland, Australia. Agricultural Water Management, 1999, 39: 187-294
    [29] George R J, Nulsen R A, Ferdowsian R, et al. Interactions between trees and groundwaters in recharge and discharge areas-A survey of Western Australian sites. Agricultural Water Management, 1999, 39: 91-113
    [30] Morris J D, Collopy J J. Water use and salt accumulation by Eucalyptus camaldulensis and Casuarina cunninghamiana on a site with shallow saline groundwater. Agricultural Water Management, 1999, 39: 205-227
    [31] Luangjame J, Lertsirivorakul R. Water use of Eucalyptus camaldulensis on saline and non-saline soils in Yang Talad, Kalasin Province, Thailand. Turnbull J W. (Eds.) Eucalypts in Asia. Proceedings of an international conference held in Zhangjiang, Guangdong, People’s Republic China, 7-11 Apirl 2003. ACIAR Proceedings No. 111: 198-203
    [32] Sorriso-Valvo M, Bryan R B, Yair A, et al. Impact of afforestation on hydrological response and sediment production in a small Calabrian catchment. Catena, 1995, 25: 89-104
    [33] Sahin V, Hall M J. The effects of afforestation and deforestation on water yields.Journal of Hydrology, 1996, 178: 293-309
    [34] Maitre D C L, Wilgen B W, Gelderblom C M, et al.Invasive alien trees and water resources in South Africa: case studies of the costs and benefits of management. Forest Ecology and Management, 2002, 160: 143-159
    [35] Whitehead D, Beadle C L. Physiological regulation of productivity and water use in Eucalyptus: a review. Forest Ecology and Management, 2004, 193: 113-140
    [36] Engel V, Jobbágy E G, Stieglitz M, et al. Hydrological consequences of Eucalyptus afforestation in the Argentine Pampas. Water Resources Research, 2005, 41: 1-14
    [37] KAWAD. A fine Balance: managing Karnataka’s scarce water resources. Karanataka Watershed Development Society (KAWAD), Bangalore, India, 2001: 18
    [38] Calder I, Amezaga J, Aylward B, et al. Forest and water policies. The need to reconcile public and science perceptions.Geologica Acta, 2004, 2(2): 157-166
    [39] Roberts J M, Rosie P T W, Srunivasa M K V. Physiological studies in young Eucalyptus stands in southern India and their use in estimating forest transpiration. Calder I R, Hall R I.(eds) Growth and water use of forest plantation. England, Chichester: John Wiley and Sons, 1992, 226-243
    [40] Harding R J, Hall R L, Swaminath M H, et al. The soil moisture regimes beneath forest and agricultural crop in southern India-measurements and modelling.Calder I R, Hall R I.(eds) Growth and water use of forest plantation. England, Chichester: John Wiley and Sons, 1992, 244-269
    [41] Calder I R, Swaminath M H, Kariyappa G S, et al. Deuterium tracing for the estimation of transpiration fromtree.Part 3. Measurements of transpiration from Eucalyptus plantation, India.Journal of Hydrology, 1992, 130: 37-48
    [42] Calder I R,Rosier P T W, Prasanna K T, et al. Eucalyptus water use greater than rainfall input-a possible explanation from southern India. Hydrology and Earth System Sciences, 1997, 1(2), 249-256
    [43] Samraj P, Sharda V N, Chinnamani S, et al. Hydrological behaviour of the Nilgiri sub-watersheds as affected by bluegum plantations, part I. The annual water balance. Journal of Hydrology, 1988, 103: 335 - 345
    [44] Samra J S, Sikka A K, Sharda V N. Hydrological implications of planting bluegum in natural shola and grassland watersheds of southern India.In Stott D E, Mohta R H, Steinhardt G C (eds), Sustaining the Global Farm: Selected papers from the 10th International Soil Conservation Organization Meeting, May 24-29, 1999. Purdue University and USDA-ARS National Soil Erosion Research Laboratory, 1999: 338-343
    [45] Sharda V N, Samraj P, Samra J S, et al. Hydrological behaviour of first generation coppiced bluegum plantations in the Nilgiri sub-watersheds. Journal of Hydrology, 1998, 211: 50-60
    [46] Sikka A K, Samra J S, Sharda V N, et al. Low flow and high flow responses to converting natural grassland into bluegum (Eucalyptus globulus) in Nilgiris watersheds of South India. Journal of Hydrology, 2003, 270: 12-26
    [47] Almeida A C, Soares J V. Comparison of water use in Eucalyptus grandis plantations and Atlantic Rainforest in eastern coast of Brazil. Revistaárvore, 2003, 27(2): 159-170
    [48] Soares J V, Almeida A C. Modeling the water balance and soil water fluxes in a fasting growing Eucalyptus plantation in Brazil.Journal of Hydrology, 2001, 253: 130-147
    [49] Almeida A C, Soares J V, Landsberg J J, et al. Growth and water balance of Eucalyptus grandis hybrid plantations in Brazil during a rotation for pulp production. Forest Ecology and Management, 2007, 251: 10-21
    [50] Stape J L, Binkley D, Ryan M G. Eucalyptus production and the supply, use and efficiency of use of water, light and nitrogen acress a geographic gradient in Brazil. Forest Ecology and Management, 2004, 193: 17-31
    [51] Stape J L, Binkley D, Ryan M G, et al. Water use, water limitation, and water use efficiency in a Eucalyptus plantation. Bosque, 2004, 25(2): 35-41
    [52] Australian Government Forest and wood products research and development corporation. Plantations and Water Use: A Riview, 2004
    [53] Ruprecht J K, Stoneman G L. Water yield issues in the jarrah forests of south-western Australia. Journal of Hydrology, 1993, 150: 369-391
    [54] Holmes J W and Sinclair J A. Water yield from some afforested cathchments in Victorica. Hydrology and Water Resources symposium, Griffith University, Brisbane, 25-27 November 1986. The Institution of Engineer, Austalia
    [55] Vertessy R A, Hatton T J, Benyon R G, et al. Long-term growth and water balance prdictions for a mountain ash (Eucalyptus regnans) forest catchment subject to clear-felling and regeneration. Tree Physiology, 1996, 16, 221-232
    [56] Putuhena W M, Cordery I. Some hydrological effects of changing forest cover from eucalypts to Pinus radiate. Agricultural and Forest Meteorology, 2000, 100: 59-72
    [57] Zhang L, Dawes W R, Walker G R. Response of mean annual evapotranspiration to vegetation changes atcatchment scale. Water Resources Research, 2001, 37: 701-708
    [58] Cornish P M, Vertessy R A. Forest age-induced changes in evapotranspiration and water yield in a eucalypt forest. Journal of Hydrology, 2001, 242: 43-63
    [59] Watson F, Vertessy R, McMahon T, et al. Improved methods to assess water yield changes from paired- catchment studies: application to the Maroondah catchments. Forest Ecology and Management, 2001, 143: 189-204
    [60] Morris J, Mann L, Collopy J. Transpiration and canopy conductance in a eucalypt plantation using shallow saline groundwater. Tree Physiology, 1998, 18: 547-555
    [61] Slavich P G, Walker G R, Jolly I D, et al. Dynamics of Eucalyptus largiflorens growth and water use in response to modified watertable and floodling regimes on a saline floodplain.Agricultural Water Management, 1999, 39: 245-264
    [62] Benyon R G, Marcar N E, Theiveyanathan S, et al. Species differences in transpiration on a saline discharge site. Agricultural Water Management, 2001, 50: 65-81
    [63] Myers B J, Theiveyanathan S, O’brien N D, et al. Growth and water use of Eucalyptus grandis and Pinus radiate plantations irrigated with effluent. Tree Physiology, 1996, 16: 211-219
    [64] Honeysett J L, White D A, Worledge D, et al. Growth and water use of Eucalytpus globulus and E. nitens in irrigated and rainfed plantation. Australian Forestry, 1996, 59(2): 64-73
    [64] Snow V O, Bond W J, Myers B J, et al. Modelling the water balance of effluent-irrigated trees. Agricultural Water Management, 1999, 39: 47-67
    [66] Medhurst J L, Battaglia M, Beadle C.Measured and predicted changes in tree and stand water following high-intensity thinning of an 8-year-old Eucalyptus nitens plantation.Tree Physiology, 2002, 22: 775-784
    [67] Forrester D I, Theiveyanathan S, Collopy J J, et al. Enhanced water use efficiency in a mixed Eucalyptus globulus and Acacia mearnsii plantation. Forest Ecology and Management, 2009, 259(9): 1761-1770
    [68] Hubbard R M, Stape J, Ryan M G, et al.Effects of irrigation on water use and water use efficiency in two fast growing Eucalyptus plantations.Forest Ecology and Mangagement, 2009, 259(9), 1714-1721
    [69] Haydon S R, Benyon R G, Lewis R.Variation in sapwood area and throughfall with forest age in mountain ash (Eucalyptus regnans F.Muell.).Journal of Hydrology, 1997, 187: 351-366
    [70] Vertessy R A, Watson F G R, O’Sullivan S K.Factors determining relations between stand age and catchment water balance in mountain ash forests.Forest Ecology and Management, 2001, 143: 13-26
    [71] Roberts S, Vertessy R, Grayson R.Transpiration from Eucalyptus sieberi (L. Johnson) forests of different age.Forest Ecology and Management, 2001, 143: 153-161
    [72] Dye P, Verseld. Manageing the hydrological impacts of South African plantation forests: An overview. Forest Ecology and Management, 2007, 251: 121-128
    [73] Bosch J M. Treatment effects on annual and dry period streamflows at Cathedral Peak. South Africa Forestry Journal, 1979, 108: 29-38
    [74] Bosch J M, Hewlett J D. A review of catchment experiments to determine the effect of vegetation change on water yield and evapotranspiration. Journal of Hydrology, 1982, 55: 2-23
    [75] Bosch J M, Gadow K V. Regulating afforestation for water conservation in South Africa. South AfricaForestry Journal, 1990, 153: 41-54
    [76] Van Lill W S, Kruger F J, Van Wyk D B. The effect of afforestation with Eucalytpus grandis (Jill wx Maiden) and Pinus Patula (Schlecht et cham) on streamflow from experimental catchments at Mokobulaam. Transvall Journal of Hydrology, 1980, 48: 107-118
    [77] Van Wyk D B. Some effects of afforestation on streamflow in the Western Cape Province, South Africa. Water SA, 1987, 24(13): 31-36
    [78] Dye P J. Climate, forest and streamflow relationships in South Africa afforested catchments. Commonwealth Forestry Review, 1996, 75: 31-38
    [79] Scott D F, Maitre D L, Fairbanks D. Forestry and streamflow reductions in South Africa: A reference system for assessing extent and distribution.Water SA, 1998, 24(3): 187-199
    [80] Scott D F. Soil wettability in forested catchments in South Africa: as measured by different methods and as affected by vegetation cover and soil characteristics. Journal of Hydrology, 2000, 231: 87-104.
    [81] Dye P J. Response of Eucalyptus grandis trees to soil water deficits.Tree Physiology, 1996, 16: 233-238
    [82] Dye P J, Jacobs S, Drew D. Verification of 3-PG growth and water-use predictions in twelve Eucalyptus plantation stands in Zululand, South Africa. Forest Ecology and Management, 2004, 193: 197-218
    [83]余作岳,皮永丰.广东热带沿海侵蚀地的植被恢复途径及其效应.热带亚热带森林生态系研究, 1985, (3): 97-108
    [84]余雨标,李维国,王尚明,等.桉树人工林若干生态问题的研究进展.桉树人工林长期生产力管理研究.北京:中国林业出版社, 2000: 19-26
    [85]周国逸,余作岳,彭少麟,等.小良试验站3种生态系统中蒸发散的对比研究.生态学报, 1995, 15(增刊A卷): 230-236
    [86]周国逸.热带北缘裸地与桉树林地降水—地表侵蚀特性的对比研究.地理学报, 1997, 52(6): 491-499
    [87]余作岳,周国逸,彭少麟.小良试验站三种地表径流的对比研究.植物生态学报, 1996, 20(4): 355-362
    [88]周国逸,余作岳,彭少麟.小良试验站3种生态系统中土壤及地下水动态的比较研究.生态学报, 1995, 15(增刊A卷): 217-222
    [89]周国逸,余作岳,彭少麟.广东小良水保站三种生态系统地表侵蚀的研究.热带亚热带植物学报, 1995, 7(2): 90-101
    [90] Zhou G Y, Morris J D, Yan J H, et al. Hydrological impacts of reafforestation with eucalypts and indigenous species: a case study in southern China.Forest Ecology and Management, 2002, 167: 209-222
    [91]程根伟,余新晓,赵玉涛,等著.山地森林生态系统水文循环与数学模拟.北京.科学出版社.2004
    [92] Nobel P S.植物生理学:物理化学与环境.北京:科学出版社.2010, 439-500
    [93]王正非,朱廷曜,朱劲伟.森林气象学.北京:中国林业出版社.1985: 196-205
    [94]王华田.北京市水源保护林区主要树种耗水性的研究.北京:北京林业大学, 2002
    [95] Ladefoged K A. Method for measuring the water consumption of large intact tree. Physiologia Plantarum, 1960, 13: 648-658
    [96] Landsberg J, Blandchard T, Warrit B. Studies on the movement of water through apple tree. Journal of Experimental Botany, 1976, 27: 579-596
    [97] Hinckley T M, Ritchie G A. Within crown patterns of transpiration, water stress and stomatal activity in Abiesamabilis. Forest Science, 1970, 16(4): 490-492
    [98] Aston A R. Evaporation from euclaypts growing in a weighing lysimeter: a test of the combination equations. Agricultural and Forest Meterolgoy, 1984, 31: 241-249
    [99] Blake T J. Effects of coppicing on growth rates, stomatal characteristics and water relations in Eucalyptus camaldulensis. Australian Journal of Plant Physiology, 1980, 7: 81-87
    [100] Dunin F X, Aston A R.The development and proving of models of large scale evapotranspiration: an Australian study. Agricultural Water Management, 1984, 8: 305-323
    [101] Heine R W, Farr D J. Comparison of heat pulse and radioisotope tracer methods for determining sapflow velocity in stem segments of poploar. Journal of Experimental Botany, 1973, 24(81): 649-654
    [102] Dye P J, Olbrich B W. Heat pulse observations of Eucalyptus grandis transpiration in South Africa. Calder I R, Hall R L, Adlard P G. (eds) Growth and water use of forest plantation.England, Chichester: John Wiley and Sons, 1992: 216-225
    [103] Waring R H, Roberts J M. Estimating water flux through stems of sctots pine with tritated water and phsophors-32. Journal of Experimental Botany, 1979, 30(116): 459-471
    [104] Waring R J, Whitehead D, Jarvis P G. Comparison of an isotopic method and the Penman-Monteith equation for estiamting transpiration from Scots pine. Canadian Journal of Forest Research, 1980, 10: 555-558
    [105] Stewart J B. Measurement and prediction of evaporation from forested and agricultural catchments. Agriculutral Water Management, 1984, 8: 1-28
    [106] Swanson R H. Significant historical developments in thermal methods for measuring sap flow in trees. Agricultural and Forest Meteorology, 1994, 72: 113-132
    [107] Smith D M, Allen S J. Measurement of sap flow in plant stems. Journal of Experimental Botany, 1996, 47: 1833-1844
    [108]岳广阳,张铜会,刘新平,等.热技术方法测算树木茎流的发展与应用.林业科学, 2006, 42(8): 102-108
    [109] Swanson R H, Whitfield D W A. A numerical analysis of heat pulse velocity theory and practice. Journal of Experimental Botany, 1981, 32: 221-239
    [110] Edwards W R N, Warwick N W M. Transpiration from a kiwifruit vine as estimated by the heat pulse technique and the Penman-Monteith equation. New Zealand Journal of Agriculture, 1984, 27: 537-543
    [111]刘奉觉,郑世锴,巨关升,等.用热脉冲仪速度记录仪(HPVR)测定树干液流.植物生理学通讯, 1993, 29(2): 110-115
    [112] Morris J, Collopy J, Mahmood K. Canpoy conductance and water use in Eucalyptus plantation. Pakistan Journal of Botany, 2006, 38(5): 1485-1490
    [113] Forrester D I, Collopy J J, Morris J D. Transpiration along an age series of Eucalyptus globulus plantations in southeastern Auctralia.Forest Ecology and Management, 2009, 258(9): 1754-1760
    [114] Cermak J, Deml M, Penka M. A new method of sap flow rate determintion in tree.Biologia Plantarum, 1976, 18: 105-110
    [115] Sakuratani T. A heat balance method for measuring water flux in the stem of intact plants. Journal of Agricultural Meteorology, 1981, 37: 9-17
    [116] Higuchi H, Sakuratani T. Water dynamics in mango (Mangifera indica L.) fruit during the young and mature fruit seasons as measured by the stem heat balance method. Journal of the Japanses Society for Horticultural Science, 2006, 75: 11-19
    [117] Granier A, Loustau D. Masuring and modelling the transpiration of a maritime pine canopy from sap-low data. Agricultural and Forest Meteorolgy, 1994, 71: 61-81
    [118] Granier A, Breda N. Modelling canopy conductance and stand transpiration of an oak forest from sap flow measurements. Annales des Sciences Forestieres, 1994, 53: 537-546
    [119] Granier A, Biron P, Lemoine D. Water balance, transpiration and canopy conductance in two beech stands.Agricultural and Forest Meteorology, 2000, 100: 291-308
    [120] Lu P, Urban L, Zhao P. Granier’s thermal dissipation probe (TDP) method for measuring sap flow in trees: Theory and practice. Acta Botanica Sinica, 2004, 46: 631-646
    [121]肖以华,陈步峰,陈嘉杰,等.马占相思树干液流的研究.林业科学研究, 2005, 18(3): 331-335
    [122]王华,赵平,蔡锡安,等.马占相思夜间树干液流的分配及其对整树蒸腾估算的影响.植物生态学报, 2007, 31(5): 777-786
    [123]孙龙,王传宽,孙慧珍,等.生长季白桦树干液流密度的特征.东北林业大学学报, 2007, 35(11): 13-16
    [124] Saugier B, Granier A, Pontailler J Y, et al. Transpiration of a boreal pine forest measured by branch bag, sap flow and micrometeorological methods. Tree Physiology, 1997, 17: 511-519
    [125] Hatton T J, Vertessy R A.Transpiration of plantation Pinus radiata estimated by the heat pulse method and the Bowen ratio. Hydrological Processes, 1990, 4: 289-298
    [126] Olbrich B W. The verification of the heat pulse velocity technique for estimating sap flow in Eucalyptus grandis. Canadian Journal of Forest Research, 1991, 21: 836-841
    [127] Kalma S J, Thorburn P J, Dunn G M.A comparison of heat pulse and deuterium tracing techniques forestimating sap flow in Eucalyptus grandis trees. Tree Physiology, 1998, 18: 697-705
    [128] Yunusa I A M, Nuberg I K, Fuentes S, et al. A simple field validation of daily transpiration derived from sap flow using a porometer and minimal meteorological data. Plant and Soil, 2008, 305: 15-24
    [129]张雷,孙鹏森,刘世荣.树干液流对环境变化响应研究进展.生态学报, 2009, 29(10): 5600-5610
    [130] Jarvis P G, Mcnaughton K G. Stomatal control of transpiration: scaling up from leaf to region. Advances in Ecological Research, 1986, 15: 1-49
    [131] Hatton T, Moore S J, Reece P H. Estimating stand transpiration in a Eucalyptus populnea woodland with the heat pulse method: measurement errors and sampling strategies. Tree Physiology, 1995, 15: 219-227
    [132]于贵瑞,王秋风.植物光合、蒸腾与水分利用的生理生态学.北京,科学出版社, 2010, 347
    [133]刘京涛,刘世荣.植被蒸散研究方法的进展与展望.林业科学, 2006, 42(6): 108-114
    [134] Hatton T, Wu H.Scaling theory to extrapolate individual tree water use to stand water use. Hydrological Process, 1995, 9: 527-540
    [135] Vertessy R A, Benyon R G, O’sullivan S K, et al. Relationships between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest. Tree Physiology, 1995, 15: 559-567
    [136] Granier A, Biron P, Breda N, et al. Transpiration of trees and forest stands: short and long-term monitoring using sapflow methods. Global Change Biology, 1996, 2: 265-274
    [137] Ooshi A C, Oren R, Stoy P. Estimating components of forest evapotranspiration: A footprint approach for scaling sap flux measurements. Agricultural and Forest Meteorology, 2008, 148: 1719-1732
    [138] Mitchell P J, Veneklaas E, Lambers H, et al. Partitioning of evapotranspiration in a semi-arid eucalypt woodland in south-western Australia. Agricultural and Forest Meteorolgy, 2009, 149: 25-37
    [139]孙鹏森.京北水源保护林格局及不同尺度树种耗水特性研究.北京林业大学, 2002
    [140]马李一,孙鹏森,马履一.油松、刺槐单木与林分水平耗水量的尺度转化.北京林业大学学报, 2001, 23(4): 1-5
    [141] Whitehead D, Kelliher F M. Modeling the water balance of a small Pinus radiata catchment.Tree Physiology, 1991, 9: 17-33
    [142] Kallarackal J. Water use of eucalypts in Kerala.In: Calder, I R, Hall R L, Adlard P G. (eds.), Growth and Water Use of Forest Plantations. Wiley, Chichester, 1992: 290-297
    [143] Kallarackal J, Somen C K.Water use by Eucalyptus tereticornis stands of differing density in southern India.Tree Physiology, 1997, 17: 195-203
    [144] Pereira A R, Green S, Nova N A V.Penman-Monteith reference evapotranspiration adapted to estimate irrigated tree transpiration.Agricultural Water Management, 2006, 83: 153-161
    [145] Whitley R, Medlyn B, Zeppel M, et al. Comparing the Penman-Monteith equation and a modified Jarvis-Stewart model with an artificial neural network to estimate stand-scale transpiration and canopy conductance. Journal of Hydrology, 2009, 373: 256-266
    [146]康文星,田大伦,文仕知,等.杉木人工林水量平衡和蒸散的研究.植物生态学与地植物学学报, 1992, 16(2): 187-196
    [147]闫俊华,周国逸,黄忠良.鼎湖山亚热带季风常绿阔叶林蒸散研究.林业科学, 2001, 37(1): 37-45
    [148]李孝广,毕华兴,刘胜,等. Penman-Monteith蒸散模型及其在森林下垫面中参数的确定.水土保持研究, 2005, 12(6): 257-261
    [149]刘胜,贺康宁.基于Penman-Monteith模型的林木日蒸腾模拟.西北林学院学报, 2006, 21(3): 15-20
    [150]刘昌明,王会肖.土壤-作物大气界面水分过程与节水调控.北京:科学出版社, 1999
    [151] Lesch W, Scott D F. The response in water yield to the thinning of Pinus radiate, Pinus patula and Eucalyptus grandis plantations. Forest Ecology and Management, 1997, 99: 295-307
    [152] David J S, Henriques M O, David T S, et al. Clearcutting effects on streamflow in coppiced Eucalyptus glotulus Stands in Portugal. Forest Ecology and Management, 1994, 162: 143-154
    [153]崔向慧,李海静,王兵.江西大岗山常绿阔叶林生态系统水量平衡的研究.林业科学, 2006, 42(2): 8-12
    [154] White D A, Dunin F X, Turner N C, et al. Water use by contour-planted belts of trees comprised of four Eucalyptus species. Agricultural Water Management, 2002, 53: 133-152
    [155] Dye P J, Olbrich B W, Everson C S. The water use of plantation forests and montane grassland in summer-rainfall forestry regions in South Africa. Proceedings of the Seventh South African National Hydrological Symposium. Institute for Water Research, Grahamstown. 1995
    [156] Hall R L, Calder I R, Rosier P T W, et al. Measurements and modelling of interception loss from a Eucalyptus plantation in southern India. In: Calder I R, Hall R L, Adlard P G (eds.), Growth and Water Use of Forest Plantations.Wiley, Chichester, 1992, 270-289
    [157] Feller M C. Water balances in Eucalyptus regnans, E. obliqua and Pinus radiate forests in Victoria. Australian Forestry, 1981, 44: 153 - 161
    [158] William M P, Ian C. Some hydrological effects of changing forest cover from eucalypts to Pinus radiate. Agricultural and Forest Meterology, 2000,100: 59-72
    [159] Dunin F X, Mackay S M. Evaporation by eucalypt and coniferous plant communities. In: O'Loughlin E M, Bren L J(eds).The first National symposium on forest Hydrology, Melbourne, 11-13 May 1982. The institute of Engineers, Australia. Preprints of papers. 1982: 18-25
    [160] Langford K J, O’Shaughnessy P J. A study of canopy interception in native forests and conifer plantations.Melbourne and Metropolitan Board of Works, Catchment Hydrology Research Report Number MMBW-W-0007, 1978: 88
    [161] Honeysett J L, Beadle C L, Turnbull C R A. Evapotransiration and growth of two contrasting species of eucalypts under non-limiting and limiting water availability. Forest Ecology and Management, 1992, 50: 203-216
    [162] David T S, Ferreira M I, David J S, et al. Transpiration from a mature Eucalyptus globulus plantation in Portugal during a spring-summer period of progressively higher water deficit. Oecologia, 1997, 110: 153-159
    [163] Lima W P. The hydrology of Eucalypt forests in Australia-A review. IPEF, 1984, 28: 11-32
    [164] Zhang L, Dawes W R, Walker G R. Predicting the effect of vegetation changes on catchment average water balance.Cooperative Research Centre for Catchment Hydrology, Technical Report, No.99/12, Monash University, Victoria, Australia. 1999: 35
    [165] Dunin F X, Green E A N. Evaluation of the ventilated chamber for measuring evaporation from a forest. Hydrological Processes, 1986, 1: 47-62
    [166] Denmead O T, Dunin F X, Wong S C, et al. Measuring water use efficiency of Eucalypt trees with chambers and micrometeorological techniques. Journal of Hydrology, 1993, 150: 649-664
    [167] Siberstein R P, Sivapalan M, Viney N R, et al. Modelling the energy balance of a natural jarrah (Eucalyptus marginata) forest. Agricultural and Forest Meteorlogy, 2002, 115: 201-230
    [168] Dunn G M, Connor D J. An analysis of sap flow in mountain ash (Eucalyptus regnans) forests of different age. Tree Physiology, 1993, 13(4): 321-336
    [169] Myers B J, Benyon R G, Theiveyanathan S, et al. Response of effluent-irrigated Eucalyptus grandis and Pinus radiata to salinity and vapour pressure deficits. Tree Physiology, 1998, 18: 565-573
    [170] Mahmood K, Morris J, Collopy J, et al. Groundwater uptake and sustainability of farm plantations on saline sites in Punjab province, province, Pakistan. Agricultural Water Management, 2001,48:1-20
    [171]Li C, Berninger F, Koskela J, et al. Drought responses of Eucalytpus microtheca provenances depend on seasonality of rainfall in their place of origin. Australian Journal of Plant Physiology, 2000, 27: 231-238
    [172]Hatton T, Reece E, Taylor P, et al. Does leaf water efficiency vary among eucalypts in water-limited environments?. Tree Physiology, 1998, 18: 529-536
    [173] Specht R L, Specht S. Canopy structure in Eucalyptus-dominated communities in Australia along climate gradient. Acta Eclogical (Ecologia Plantarum), 1989, 10: 191-213
    [174] Cannell M G R. Physiological basis of wood production: A review. Scandinavian Journal of ForestResearch, 1989, 4(1): 459-490
    [175] Laclau J, Arnaud M, Bouillet J, et al. Spatial distribution of Eucalyptus roots in a deep sandy soil in the Congo: relationships with the ability of the stand to take up water and nutrients. Tree Physiology, 2001, 21: 129-136
    [176] Sudmeyer R A, Simons J A. Eucalyptus globulus agroforestry on deep sands on the southeast coast of Western Australia: The promise and the reality. Agriculture, Ecosystems and Environment, 2008, 127: 73-84
    [177]张彦群,王传宽.北方和温带森林生态系统的蒸腾耗水.应用与环境生物学报, 2008,14(6): 838-845
    [178] Meilke M S, Oliva M A, Barros N F, et al. Stomatal control of transpiration in the canopy of a clonal Eucalyptus grandis plantation. Trees, 1999, 13: 152-160
    [179] Macfarlane C, White D A, Adams M A. The apparent feed-forward response to vapour pressure deficit of stomata in droughted, field-grown Eucalyputs globulus Labill. Plant, Cell and Enviornment, 2004, 27: 1268-1280
    [180] O’Grady A P, Worledge D, Battaglia M. Constraints on transpiration of Eucalytpus globulus in southern Tasmania, Australia. Agricultureal and Forest Meteorology, 2008, 148: 453-465
    [181] Kallarackal J, Somen C K.An ecophysiological evaluation of the suitability of Eucalyptus grandis for planting in the tropics. Forest Ecology and Management, 1997, 95: 53-61
    [182] O’Grady A P, Eamus D, Hutley L B. Transpiration increases during the dry season: Patterns of tree water use in eucalypt open-orests of northern Australia. Tree Physiology, 1999, 19: 591-597
    [183] Mielke M S, Oliva M A,Barros N F,et al. Leaf gas exchange in a clonal eucalypt plantation as related to soil moisture,leaf water potential and microclimate variables. Trees,2000,14: 263-270
    [184] White D A,Turner N C, Galgraith J H. Leaf water relations and stomatal behavior of four allopatric Eucalyptus species planted in Mediterranean southwestern Austalia.Tree Physiology, 2000, 20: 1157-1165
    [185] White D A, Beadle C L, Worledge D. Control of transpiration in an irrigated Eucalyputs globulus Labill. plantation.Plant Cell and Envionment, 2000, 23: 123-134
    [186] Campion J M, Dye P J, Scholes M C.Modelling maximum canopy conductance and transpiration in Eucalyptus grandis stands not subjected to soil water deficits. Southern African Forestry Journal, 2004, 202: 3-11
    [187] Pita P, Pardos J A. Growth, leaf morphology, water use and tissue water relations of Eucalyptus globulus clones in responses to water deficit. Tree Physiology, 2001, 21: 599-607
    [188] Wildy D T, Pate J S, Bartle J R. Budgets of water use by Eucalyptus Kochii tree belts in the semi-arid wheatbelt of western Australia. Plant and soil, 2004, 262: 1296-149
    [189] Eberbach P L, Burrows G. The transpiration response by four topographically distributed Eucalyptus species, to rainfall occurring during drought in south eastern Australia. Physiologia Plantarum, 2006, 127: 483-493
    [190] Theiveyanathan S, Benyon R, Polglase P, et al. Irrigation management for tree plantations in the southern Murray-Darling Basin. In: Connellan G J (Ed.). Proceedings of the Irrigation Association of Australia 2000 National Conference on water-essential for life, Melbourne 23-25 May, 2000. 2000: 52-61
    [191] Theiveyanathan S, Benyon R G, Polglase P, et al. Tree plantations for controlling water tables in irrigation districts of the southern Murray-Darling Basin. Proceedings of the 7th national PURSL conference onProductive Use and Rehabilitation of Saline Lands, Launceston, Australia, 20-23 March 2001. 2001: 81-87
    [192]林书蓉,廖观荣,韩锦光,等.雷州半岛桉树人工林土壤.雷州短轮伐期桉树生态系统研究.曾天勋(主编),北京.中国林业出版社.1995: 1-12
    [193]张国桃,陈世俊,曾黄锦,等.雷州半岛干旱情况统计及特性简析.广东水利水电, 2003, (6): 51-52
    [194]王彦辉,于澎涛,郭浩,等.北京官厅库区森林植被生态用水及其恢复.北京,中国林业出版社. 2008: 75-102
    [195] Marshall D C. Measurement of sap flow in conifers by heat transport. Plant physiology, 1958, 33: 385-396
    [196] Morris J D. HP: a heat pulse data management system for the Custom and Greenspan loggers. Melbourne. Centre for Forest Tree Technology, 1995
    [197] Landsberg J J. Physiological ecology of forest production. Academic press, 1986: 25
    [199] Zimmermann M H. Xylem and the ascent of sap. Berlin, Heidelerg, New York: Springer-verlag, 1983
    [200] Zhou GY, Huang ZH, Morris J, et al. Radial variation in Sap flux density as a function of sapwood thickness in two Eucalyptus (Eucalyptus urophylla S T Blake) Plantation. Acta Boanict Sinica, 2002, 44(12): 1418-1424
    [201] Granier A, Anfodillo T, Sabatti M, et al. Axial and radial water flow in the trunks of oak tree: a quantitative and qualitative analysis. Tree Physiology, 1994, 14: 1381-1396
    [202] Oren R, Phillips N, Ewers B E, et al. Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichum forest. Tree Physiology, 1999, 19: 337-347
    [203] Greacen E L, Walker G R, Cook P G. Procedure for the filter paper method of measuring soil water suction. CSIRO Division of Soils Report No. 108, CSIRO, Australia.1989, 162-167
    [204] Kramer P J. Water relations of plants.San Diego: Academic press, 1983
    [205]张济世,陈仁升,吕世华,等编者.物理水文学-水循环物理过程.郑州.黄河水利出版社. 2007
    [206] Khanznzada A N, Morris J D, Ansari R, et al. Groundwater uptake and sustainability of Acacia and Prosopis plantations in Southern Pakistan. Agricultural Water Management, 1998, 36: 121-139
    [207] Landsberg J J, Gower S T. Applications of physiological ecology to forest management. Academic Press, San Diego. 1997: 354
    [208]钟继洪,郭庆荣,谭军.桉林-砖红壤水分性能特征研究.土壤与环境, 2002, 11(2): 136-139
    [209] Denmead O T. Plant physiological methods for studying evapotranspiration: problems of telling the forest from the trees. Agricultural Water Management, 1984, 8: 167-189
    [210] Granier A. A new method for measure for sap flow. Annals of Forest Science, 1985,42: 93-200
    [211] Granier A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 1987, 3: 309-319
    [212] Phillips N, Oren R, Zimmermann R. Radial patterns of xylem sap flow in non-, diffuse- and ring-porous trees species. Plant Cell and Environment, 1996, 19: 983-980
    [213] Clearwater M J, Meinzer F C, Andrade J L, et al. Potential errors in measurement of nonuniform sap flow using heat dissipation probes. Tree Physiology, 1999, 19: 186-687
    [214] Lu P. A direct method for estimating the average sap flux density using a modified Granier measruing system. Australian Journal of Plant Physiology, 1997, 24: 701-705
    [215] Ma L, Lu P, Zhao P, et al. Diurnal, daily, seasonal and annual patterns of sap-flux-scaled transpiration from an Acacia mangium plantation in south China. Annals of Forest Science, 2008, 65
    [213]万师强,陈灵芝.东灵山地区大气降水特征及森林树干茎流.生态学报, 2000, 20(1): 61-67
    [214] Feller M C. Water balances in Eucalyptus regnans, E.obliqua and Pinus radiate forests in Victoria. Australian Forestry, 1981, 44: 153-161
    [215] Hall R L, Calder I R, Rosier P T W, et al. Measurements and modelling of interception loss from a Eucalyptus plantation in southern India. In: Calder I R, Hall R L, Adlard P G (Eds.), Growth and Water Use of Forest Plantations. Wiley, Chichester, 1992, 270-289
    [216]黄忠良,孔国辉,余清发,等.南亚热带季风常绿阔叶林水文功能及其养分动态的研究.植物生态学报, 2000, 24(2): 157-161
    [217]莫江明,方运霆,冯肇年,等.鼎湖山人为干扰下马尾松林水文生态功能.热带亚热带植物学报, 2002, 10(2): 99-104
    [218]尹光彩,周国逸,刘景时,等.鼎湖山针阔叶混交林生态系统水文效应研究.热带亚热带植物学报, 2004, 12(3): 195-201
    [219]王冬云,张卓文,苏开君,等.广州流溪河流域毛竹林的水文生态效应.浙江林学院学报, 2008, 25(1): 37-41
    [220]李凌浩,林鹏,王其兵,等.武夷山甜槠林水文学效应的研究.植物生态学报, 1997, 21(5): 393-402
    [221]陈步峰,周光益,曾庆波,等.热带山地雨林生态系统水文动态特征的研究.植物生态学报, 1998, 22(1): 68-75.
    [222]闫俊华,周国逸,张德强,等.鼎湖山顶级森林生态系统水文要素时空规律.生态学报, 2003, 23(11): 2359-2366
    [223]孟广涛,郎南军,方向京,等.滇中华山松人工林的水文待征及水量平衡.林业科学研究, 2001, 14(1): 78-84
    [224] Teskey R O, Sheriff W. Water use by Pinus radiata tress in a plantation. Tree Physiology, 1996,16:273-279
    [225] Myers B J, Talasma T. Site water balance and tree water status in irrigated and fertilised stands of pinus radiata. Forest and Ecology and Management, 1992,52:17-42
    [226] Bruijnzeel L A. Hydrology of forest plantations in the tropics. In: Nambiar E K S, Brown A L. Management of soil, nutrients and water in tropical plantation forests. ACIAR Monograph No. 43. ISBN 1 86320 198X,1997:146-147
    [227]张宁南,徐大平, Jim Morris,等.雷州半岛加勒比松人工林旱季液流特征与耗水量研究.林业科学研究, 2007,20 (5): 591-597

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700